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Subradiance-enhanced excitation transfer between dipole-coupled nanorings of quantum emitters
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A ring of dipole-coupled quantum emitters positioned at subwavelength distances possesses only a few
radiant but many subradiant collective excitations with lifetimes growing exponentially with the atom number.
These exhibit a three-dimensionally confined spatial radiation field pattern and form nanoscale high-Q optical
resonators. Tailoring size, orientation, and distance between two rings allows for increasing the ratio of coherent
ring-to-ring energy transfer versus free-space emission by orders of magnitude. In particular, the more dark and
delocalized over several sites are excitons, the higher is their fidelity for transport to a second ring.
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I. INTRODUCTION

Identifying efficient mechanisms for radiant energy trans-
fer between designated subsystems without loss to the en-
vironment is a key ingredient in many physical applications
including solar energy conversion, photosynthetic processes,
and, in particular, coherent-state transfer in optical quantum
communication. In quantum information processing and com-
munication optical fibers are a viable solution for transporting
photonic bits with minimal loss. Via an evanescent field
overlap light can be coupled in and out of such structures.
Waveguides closed to a loop form optical ring resonators
with applications as switches, high-order optical filters, and
optomechanical sensors.

Spontaneous emission from a single atom in free space is
strongly modified by dipole-dipole interactions with identical
emitters close by, leading to fast decay via super-radiant
states or long-lived subradiant behavior [1–8]. Surprisingly,
as one consequence of strong dipole-dipole coupling, a chain
of subwavelength spaced quantum emitters acts like an ideal
optical waveguide transporting excitation energy with mini-
mal dissipation [9–12]. Excitons with wave vectors surpassing
the free-space photon wave vector become perfectly dark
for infinitely extended chains [9,10]. As photon emission
occurs at its ends only, even for a finite chain of emitters
the excited-state lifetime still grows with the third power of
the atom number [8,10,13,14]. Low-loss guiding studies have
also been performed for chains of gold nanoparticles [15].
However, in contrast to conventional fibers such atom chains
constitute active optical devices which can, e.g., be employed
for efficient optical photon storage [10].

The central phenomenon studied here is resonant excitation
transfer between two separate dipole arrays. We focus on the
specific example of regular rings, which, as we show in the
following, have extraordinary radiative properties [10] with
intriguing field distributions. Each ring of dipoles implements
a minimalist form of an optical ring resonator as depicted
in Fig. 1, which can exchange energy with a second ring

close by. Although the strong transverse field confinement
of subradiant states leads to an exponential field decay with
distance, energy is still transferred between rings with almost
negligible loss [11].

As with conventional fiber-optical ring resonators two such
rings are coupled via their field mode overlap which should
be large compared to free-space decay. Efficient coherent
coupling between two long-lived states is a central ingredient
required for distributed quantum computing [16]. We find that
subradiant states of individual rings feature a slower but much
more efficient ring-to-ring energy transfer than super-radiant
states.

Note that many light-harvesting complexes such as LHC-II
in biological systems exhibit a structure of coupled dipole
rings [17–20]. While modeling these molecules realistically
certainly requires a much more detailed and sophisticated
description, a corresponding simplistic model of outer dipole
rings commonly coupled to a central inner ring [21] shows
a wealth of complex, nontrivial dynamics with evidence of
coherent excitation propagation [21,22] or an enhanced op-
tical absorption [20] already. In our toy model inspired by
this geometry, dark states play an essential role in the coupled
dynamics and energy transfer between the rings.

II. SYSTEM

Let us consider N identical two-level quantum emitters
with given dipole orientations (denoted by ℘̂j , j = 1, . . . , N)
positioned in a regular polygon with interparticle distance d
[see Fig. 1(a)], which possess a single narrow optical reso-
nance around a frequency ω0. Integrating over the electromag-
netic degrees of freedom in the Born-Markov approximation
[1] leads to the dynamics of the atomic excitations governed
by the master equation ρ̇ = −(i/h̄)[H, ρ] + L[ρ] (from now
on h̄ = 1). The Hamiltonian in a frame rotating at ω0 reads

H =
∑

i j;i �= j

�i jσ
eg
i σ

ge
j , (1)
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FIG. 1. Scheme of the system. (a) A single ring with interparticle
distance d , radius R, and angular position given by θ j = 2π ( j −
1)/N . The red arrows show the dipoles’ (arbitrary) orientations ℘̂j .
(b, c) A single wave-packet excitation is transferred between two in-
plane rings separated by the distance a. Panels (b) and (c) correspond
to the site-site and site-edge configurations for tangential dipoles,
respectively.

where σ
ge
j = |g j〉〈e j | is the atomic lowering operator between

the excited and ground states of atom j, and σ
eg
j = (σ ge

j )†. The
Lindblad operator is

L[ρ] = 1

2

∑
i, j

�i j
(
2σ

ge
j ρσ

eg
i − σ

eg
i σ

ge
j ρ − ρσ

eg
i σ

ge
j

)
. (2)

The dipole interaction and collective decay matrices with
elements �i j and �i j , respectively, are given by

�i j = −3π�0

k0
℘̂∗

i · ReG(�ri − �r j, ω0) · ℘̂j, (3)

�i j = 6π�0

k0
℘̂∗

i · ImG(�ri − �r j, ω0) · ℘̂j, (4)

where G(r, ω0) is the Green’s tensor in free space, which acts
on an oscillating unit dipole according to

G(r, ω0) · ℘̂= eik0r

4πr

[
(r̂ × ℘̂) × r̂

+
(

1

k2
0r2

− i

k0r

)
[3r̂(r̂ · ℘̂) − ℘̂]

]
. (5)

Here, r̂ = r/|r| is the position unit vector, k0 = ω0/c is the
wave number associated with the atomic transition, and �0 =
|℘|2k3

0/3πε0 is the spontaneous emission rate of a single
emitter with dipole moment strength |℘|.

After solving for the atomic density matrix, the EM fields
can be obtained from a generalized input-output relation
[10,23], which in the absence of an external field reads

E+(r) = |℘|k2
0

ε0

∑
i

G(r − ri, ω0) · ℘̂iσ
ge
i . (6)

In the following we will restrict ourselves to the single-
excitation manifold so that for the observables of interest
(such as the fields generated by the ring or the excited-state
population) we can neglect the recycling term (first term in
the Lindblad expression). This term accounts for the change
in the ground-state population only. The system’s properties
can then be fully understood via the eigenstates of an effective
non-Hermitian Hamiltonian:

Heff =
∑

i j

(
�i j − i

�i j

2

)
σ

eg
i σ

ge
j (7)

with �ii = 0.

III. RADIATIVE PROPERTIES OF A SINGLE RING

As discussed in [8,10] dipole-dipole interactions dramat-
ically modify the collective decay of an ordered array of
dipoles. The eigenstates of Heff define a set of collective
modes with associated complex eigenvalues, the real and
imaginary parts of which correspond to the collective fre-
quency shifts and decay rates. For a symmetric ring config-
uration where the dipole orientations preserve the rotational
symmetry, e.g., if the dipoles are oriented perpendicularly
to the plane of the ring, or tangentially along the ring, the
collective modes in the single-excitation manifold are perfect
spin waves with well-defined angular momenta, which can be
written as |ψm〉 = σ̃

eg
m |g〉, with

σ̃ eg
m = 1√

N

N∑
j=1

eimθ j σ
eg
j . (8)

Here, θ j = 2π ( j − 1)/N is the angular coordinate of site j
and m = 0,±1,±2, · · · , �±(N − 1)/2	 is the (integer) angu-
lar momentum of the mode. In these states the single excita-
tion is completely delocalized over all sites, and its angular
momentum is well defined. The corresponding eigenvalues
are given by

λm = 1

N

∑
j�

eim(θ�−θ j )

(
� j� − i

� j�

2

)
. (9)

Note that, due to the rotational symmetry, the coupling
is invariant under a translation along the ring, i.e., � j� =
� j+1�+1 (and equivalently for � j�). The real and imaginary
parts of these eigenvalues define the collective frequency
shifts and emission rates of the mode Jm = Re{λm} and �m =
−2Im{λm}, respectively. It is easy to see that the spectrum
will be symmetric under the exchange m ↔ −m, that is, λm =
λ−m. We note that the mode m = 0 is always nondegenerate,
whereas the eigenstates with a maximum value of m will be
doubly degenerate if N is odd.

As we decrease the interparticle distance d with respect to
the light’s wavelength λ = 2π/k0, we expect to approach the
Dicke limit [24]. In this limit the emitters are so close that
the range of the interaction is effectively infinite, yielding a
single bright mode decaying at rate N�0, and N − 1 perfectly
dark modes. This happens for the case of dipoles transversally
oriented to the ring, as it is shown in Fig. 2(a), where we
have plotted the collective decay rates as a function of the
decreasing particle separation. For tangential polarization,
instead, there are two bright modes corresponding to m = ±1
with a decay rate N�0/2, while m = 0 is dark by symmetry,
as shown in Fig. 2(b).

We observe the linear scaling of the decay of the most radi-
ant mode with the number of emitters by gradually increasing
the density of emitters in the ring, while keeping its radius
constant. This is shown in Fig. 2(c) for transverse polarization.
In addition, the covered frequency spectrum becomes larger
as the ring gets denser. The polarization orientation will deter-
mine whether the dark or bright modes are lower or higher in
energy. For instance, for transverse polarization, bright modes
are lower in energy, whereas for tangential polarization (closer
to a head-tail configuration of the dipoles) bright modes are
higher in energy.
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FIG. 2. Single ring radiative properties. (a) Collective decay rates
�m (in units of �0) as a function of λ/d , for a ring of N = 8 emitters
with transverse polarization and a single excitation. In the Dicke
limit, λ/d → ∞, only a single bright mode with a decay rate on
the order of N�0 is present, and N − 1 modes are dark. (b) Identical
setup as in panel (a) but for tangential polarization. Two bright modes
arise in the Dicke limit at m = ±1. (c) �m (in units of �0) for a ring of
fixed radius R = 0.15λ with transverse polarization, when increasing
the density of emitters. For the bright mode, � ∼ N�0. (d) Decay rate
(log scale) of the most subradiant eigenmode vs the atom number,
for a ring (blue circles) and an open linear chain (red circles), both
with λ = 3d . The lifetime of the most subradiant mode in the ring
increases exponentially with the atom number.

Moreover, the modes of the ring feature extraordinary
radiative properties in contrast to an open linear chain. For a
growing number of emitters strongly subradiant modes with
exponentially growing lifetimes appear. If we increase the
number of emitters while keeping λ/d constant, the system
will start to locally resemble an infinite chain studied in detail
in [10]. Interestingly, dark modes in an infinite chain corre-
spond to spin waves characterized by a wave number larger
than k0. In this case the eigenmode generates an exponentially
decaying evanescent field transverse to the chain and therefore
the emitters can guide light perfectly, just like an optical fiber.
For a finite chain, these modes retain a small decay rate since
a photon can still scatter off the ends of the chain. However,
by bending and closing the chain to a ring, the excitation
lifetime is drastically increased. For a sufficiently large ring
this approaches an exponential suppression of the decay rate
with the number of emitters [10]. This is in contrast to the
polynomial suppression (∼N−3) observed for an open linear
chain. A comparison of how the smallest decay rate scales
with the atom number in the two cases is shown in Fig. 2(d).

A closer look at the electromagnetic fields generated by
super-radiant or subradiant eigenmodes of a ring by means
of Eq. (6) reveals radically different properties. In Fig. 3 the
fields of the most subradiant eigenmode (left column) and
a super-radiant eigenmode (right column) for a ring with
tangential polarization exhibit remarkably distinct radiation
patterns. In the case of a subradiant mode the field is evanes-
cent (nonpropagating) transverse to the plane that contains the

0

0

x / d

y 
/ d

0

0

x / d

y 
/ d

low high

0

0

x / d

z 
/ d

0

0

x / d

z 
/ d

x 0.05

(a) (b)

(c) (d)

FIG. 3. Single ring radiation patterns. The field intensity of a
single excitation in a ring with tangential polarization (a, c) in the
most subradiant mode with m = N/2 (N even) and (b, d) in the
radiant mode with m = 0. The top panels (a, b) show the field in the
xy plane at fixed z = 1.5R. The bottom panels (c, d) show the field
in the xz plane at fixed y = 1.5R. The white circles represent the
positions of the emitters. The field pattern for the subradiant mode
concentrates outside the ring while it vanishes at the center of the
ring, whereas the radiant field is confined to a subwavelength region
in the center (N = 10, d/λ = 0.4).

ring and vanishes at the center of the ring. The radiant state,
on the other hand, causes strong dipolar emission and shows
a tightly confined maximum at the center of the ring.

IV. TAILORED COLLECTIVE COUPLING OF TWO RINGS

We continue with the study of two coupled rings which
lie in the same plane and are separated by a distance a [see
Figs. 1(b) and 1(c)]. In particular, we study how excitations
are transferred from one ring to another with minimal loss.
While super-radiant states possess the strongest dipole mo-
ments and thus couple strongly to neighboring dipoles, they
also feature a much faster decay.

A. Coupled rings radiation patterns

As a first step we look at the fields radiated by two
rings in close proximity: it was previously shown that the
eigenstates of the effective Hamiltonian and the corresponding
field distributions inherit the angular symmetry of the dipole
rings. However, this is modified for two rings when their
radiated fields overlap. We choose the states of each ring as
an eigenstate characterized by its angular momentum m1,2 as
defined in Eq. (8). The total state of the two rings is then given
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FIG. 4. Coupled rings radiation patterns. The two rings are (a) in
the most subradiant mode (m1 = m2 = N/2) and (b) in a radiant
mode (m1 = m2 = 0). The white circles represent the positions of the
dipoles. The dipole orientation is transverse to the plane containing
the rings (N = 20, d/λ = 0.25, a = 2d , z = λ/2).

by a symmetric superposition of the two and we compute the
field using Eq. (6). Dark and bright states again show very
distinct field distributions. In Fig. 4 we compare the radiated
fields when the two rings are in the most subradiant state,
i.e., m1 = m2 = �(N − 1)/2	 [Fig. 4(a)], and when the two
rings are in a radiant state m1 = m2 = 0 [Fig. 4(b)]. In the
subradiant case, the field concentrates at the contact region
between the two rings. Overall, the field radiated by the
subradiant rings is very weak. These two facts already indicate
that subradiant states offer efficient transport of excitations
since they preferentially radiate from one ring to the other
with small losses. Super-radiant states, however, exhibit large
decay into the center of each ring as well as to the sides.
We can thus expect that losses via spontaneous emission will
dominate.

B. Ring-to-ring coupling

In order to support these intuitive findings, we proceed by
quantifying the dispersive as well as the dissipative coupling
between the rings. To this end, consider that the terms in the
effective Hamiltonian [Eq. (7)] corresponding to the coupling
between the two rings can be written in the angular momen-
tum basis as

H1,2
eff =

∑
m1,m2

(
Jm1,m2 − i

�m1,m2

2

)
σ̃

eg
m1,1

σ̃
ge
m2,2

. (10)

Here, Jm1,m2 = Re{λm1,m2} is the dispersive coupling and
�m1,m2 = −2Im{λm1,m2} is the dissipative coupling, and

λm1,m2 = 1

N

∑
i ∈ R1,

j ∈ R2

(
�i j − i

�i j

2

)
ei(m1θi−m2θ j ). (11)

As a shorthand notation, we have defined two sets of indices,
one for the sites in the first ring, R1 = {1, 2, . . . , N}, and one
for the sites in the second ring, R2 = {N + 1, . . . , 2N}.

In Figs. 5(a) and 5(b), we show the dispersive and dissi-
pative couplings as a function of the angular momentum of
the two rings m1 and m2. We use the configuration shown
in Fig. 1(b) with a fixed separation between the two rings
a = 0.15λ and tangential polarization. The white dashed line
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FIG. 5. Ring-to-ring coupling. (a) Absolute value of the disper-
sive (Jm1,m2 ) coupling. (b) Absolute value of the dissipative (�m1,m2 )
coupling. (c) Ratio ηm1,m2 on a logarithmic scale for spin-wave states
with angular momenta m1 and m2. The rings lie in the same plane
separated by a = 0.15λ as shown in Fig. 1(b). The dashed white
line denotes the light line (free-space wave vector) beyond which
the modes are mainly subradiant. Subradiant states primarily couple
to subradiant states. Moreover, η is maximal for pairs of subradiant
states with opposite angular momenta. (d) The maximum value
of ηm1,m2 obtained with m1 = m2 = N/2, as a function of the ring
separation a (N = 10, d/λ = 0.1).

in Figs. 5(a)–5(c) encloses the region where states are pre-
dominantly radiant, such that 2πm/N < k0d for both m =
m1 and m2. Physically, this corresponds to the light line,
or states generating fields that follow the dispersion relation
of light in vacuum propagating along a very large ring, for
which the curvature is negligible. We observe that subradiant
states mainly couple dispersively to other subradiant states,
whereas radiant states couple to other radiant states with a
large dissipation. In Fig. 5(c) we show, as a figure of merit
that quantifies how efficiently two modes in the two rings
are coupled (and thus how efficiently an excitation can be
transferred between them), the ratio

ηm1,m2 ≡ J2
m1,m2

4�2
m1,m2

+ (�m1 + �m2 + �m1,m2 )2
, (12)

with �m1,m2 = |Jm1 − Jm2 |. Remarkably, we find that in the
subradiant sector η is non-negligible for states where m1 =
±m2 only. Moreover, we find that it is several orders of
magnitude larger for m1 = −m2, that is, for two guided modes
that propagate in opposite directions in the two rings. This
result indicates that in the subradiant regime the physics is
well captured by a two-mode model consisting of the two
states with m and −m.

We also note that the efficiency in the coupling strongly
depends on the particular configuration of the dipoles. As the
separation between the rings increases, the maximum value of
η displays oscillations with an overall decay. This is shown in
Fig. 5(d), where we have evaluated ηmax = ηm1=N/2,m2=N/2 for
N = 10 as a function of the rings’ separation a. Interestingly,
a different configuration such as the site-edge arrangement
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FIG. 6. Scaling of the ratio between dispersive and dissipative
couplings with the rings’ separation. The parameter ηmax = ηN/2,N/2

is plotted for two coupled rings with d/λ = 0.1 and tangential
polarization, as a function of the rings’ separation a. The dashed
blue and solid red lines are for N = 10 and 20, respectively. For
comparison, we plot the same quantity for two coupled linear chains
with N = 20 and tangential polarization (dot-dashed green line) and
the squared ratio between dispersive and dissipative emission for the
case of two coupled single atoms (dotted black line), separated by the
distance a. In both cases the ratio scales with distance as ∼1/k3

0a3, in
stark contrast to the coupled rings case, for which it saturates at short
distances. The inset shows the dissipative coupling (solid lines) and
single ring decay rate (dotted lines) for the two coupled rings and the
cases N = 10 (blue upper lines) and 20 (red lower lines). All plots
are shown in a log-log scale.

illustrated in Fig. 1(c) can lead to a dramatically different
result. In this case, we see that due to the symmetry the
fields created by the two rings in the m = N/2 mode interfere
completely destructively, resulting in a coupling which is
exactly zero.

C. Scaling of couplings with the rings’ separation

Finally, we conclude this section by discussing a feature
that makes the coupled rings geometry unique. For two cou-
pled rings prepared in a subradiant state, the ratio between
dispersive and dissipative couplings saturates to a constant
value when decreasing the distance between them, in stark
contrast to the case of two coupled single atoms or two
coupled linear atomic chains.

For two single atoms separated by the distance a that
are polarized perpendicularly with respect to the line that
connects them, the ratio between dispersive and dissipa-
tive couplings scales at short distances as ≈3�0/4k3

0a3

(≈ −3�0/2k3
0a3 if the polarization is parallel instead). For two

atomic arrays prepared in the most subradiant state m = N/2
(N even), the squared ratio is directly given by ηmax (the total
dissipative emission is taken as 2�m + �m,m).

As shown in Fig. 6, ηmax saturates to a constant value at
short enough distances, in contrast to the ratio for two coupled
single atoms, which continuously decreases when increasing
their distance. The special behavior for the coupled rings is
due to the exponential suppression of the single ring decay,
which at short enough distances becomes smaller than the
inter-ring dissipative coupling, as shown in the inset of the

same figure. In this region the total dissipation is dominated
by the dissipative coupling, which scales with distance in the
same way as the dispersive coupling, thus leading to a constant
value of the ratio. In the same figure, we show that this is not
the case for two coupled linear chains, which follow the same
scaling as the two coupled single atoms.

V. EFFICIENT EXCITATION TRANSFER BETWEEN TWO
RINGS

According to the above results for coupling and decay
one can expect that for a subradiant excitation in one ring
the energy oscillates between the two rings for a very long
time before it finally decays. This relates to eigenstates of the
system, which are fully delocalized in one ring as opposed to
looking at single excited sites.

We proceed by investigating the energy transport efficiency
between two rings, as a function of the degree of localization
of the initial wave packet. We consider a partially localized
wave packet initially prepared in the form

∣∣�ν
i,k

〉 = 1√
n

∑
j∈Ri

eiνθ j e− |r j −rk |2
2σ2 σ

eg
j |g〉 , (13)

with σ 2 = R2�θ2. This corresponds to a Gaussian popula-
tion distribution centered at site k in the ith ring with an
angular spread �θ (wave-packet width R · �θ ) and central
momentum ν. The constant n accounts for the normalization.
A completely delocalized wave packet of this form represents
the eigenstate given by ν while a wave packet with zero spread
amounts to the atom at the site k being excited only.

For a mode guided by the first ring with momentum m,
it is only natural that it will invert its direction upon being
transported to the second ring. This is a more intuitive picture
of the previous result that the coupling is optimal between
modes with opposite m. Thus, for a finite width wave packet,
we expect that it is transferred into a wave packet with
the same shape but central momentum −m. Therefore, we
evaluate the fidelity F (t ) of transferring this wave packet to
the second ring as

F (t ) = max
k

{∣∣ 〈�ν
2,k

∣∣�(t )
〉 ∣∣2}

, (14)

with ν = −m and where we maximize over the site index k in
the second ring since we do not know the (center) position of
the wave packet created there at all times. The wave function
|�(t )〉 is given by the time evolution with Heff with the initial
condition |�(0)〉 = |�m

1,k′ 〉, and k′ as indicated later.
In Fig. 7(a) we show the maximal fidelity during the time

evolution as a function of the ring separation as well as of the
width of the initial wave packet for two rings with N = 20. We
start out with a wave packet centered at the site that is farthest
from the second ring, i.e., k′ = �N/2�. The momentum is
chosen to be m = �N/4� such that all modes the packet is
made up of have momenta of the same sign. As one can
see, the fidelity is rather low as long as the width is small,
i.e., the excitation is localized at one site almost perfectly.
However, for a comparably small width in real space, the wave
packet is sufficiently localized in momentum space in order to
exhibit coherent transport. The fidelity grows to values larger
than 90% quickly as the width increases, indicating a reliable
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FIG. 7. Fidelity of wave-packet transport between two rings.
(a) A scan of the maximal fidelity (over time) as a function of the ring
separation and the wave-packet width for two rings of N = 20 atoms.
For a sufficiently large wave-packet size and a separation comparable
to the interparticle distance d = 0.1λ, the transfer fidelity is almost
unity. (b) The larger the width in real space and the localization in
momentum space the better the transport. The separation between
the rings is a = 0.15λ. For both panels (a) and (b) the dipoles are
oriented tangentially.

transport of a subradiant wave packet from the first ring to
the next. Additionally, the transport is best if the separation
between the rings is comparable to the interparticle distance.
This is due to the change of the energetic shifts of neighboring
atoms with their separation: if the atoms at the points where
the rings are closest are too far from (or too close to) one
another, the shifts vary greatly, effectively detuning these
atoms from the rest. Excitations can then no longer propagate.

In Fig. 7(b) we plot the fidelity of the same wave packet
being transported as a function of time. The wave packet
oscillates between the two rings with the same period for both
finite and infinite width. The amplitude, however, damps out
considerably faster for the case of a finite width. Nevertheless,
a large fidelity is achieved even if the initial state is not a
perfect eigenstate of the system. For comparison, we show in
the same plot the result for an identical wave packet but with
a momentum of m = �N/6�, which lies close to the light line
and corresponds to a radiant state.

For completeness, we also compare the previous result with
m = �N/4� and �θ = π/4, with the transport fidelity be-
tween two single atoms and two coupled linear atomic chains.
For two single atoms, the initial state corresponds to the first
atom excited, i.e., |�(t = 0)〉 = σ

eg
1 |g〉. For the two coupled

linear chains, we consider again the wave packet given by
Eq. (13) with the same central momentum, k′ = �N/4� and
σ = N/4, and evaluate the fidelity from Eq. (14) with ν = m.
The maximum fidelity in time for the three cases is shown in
Fig. 8, as a function of the distance a between rings, chains,
or atoms. This plot clearly shows that for distances a � d the
fidelity is largest for the case of two coupled rings.

VI. CONCLUSIONS

We have shown that the peculiar radiative properties of
excitons in a single ring of dipole coupled emitters lead to
special field distributions resembling a circular waveguide
field for a subradiant state and a tightly confined intensity for
a super-radiant state.

0 5 10
0

0.5

1

a / d

FIG. 8. Comparison of the maximum fidelity of wave-packet
transport for different array geometries. The maximum fidelity over
time is plotted for two coupled rings with N = 20 (red circles), two
coupled linear chains with N = 20 (green circles), and two coupled
single atoms (black line), as a function of separation distance a. The
dashed red line is the result for the transport of a subradiant spin
wave with angular momentum equal to the central one of the wave
packet. The polarization is chosen to be tangential, and d/λ = 0.1
for the atomic arrays.

Consequently for another ring in its vicinity optimal co-
herent coupling occurs between subradiant states of each
ring. An excitation that is sufficiently delocalized and moving
with a velocity along one ring that closely corresponds to
the momentum of an eigenstate that is subradiant can be
transported to another ring with a large fidelity. This reli-
able coherent transport takes place for a comparably small
delocalization already and culminates in damped Rabi-like
oscillations between the rings once the excitation is spread
over the entire first ring.

Note that beyond the two-level approximation analogous
bright and dark states also appear in more complex level
structures with several decay channels [25]. Hence much
of the physics discussed here should also hold in rings of
particles with a more complex internal structure.

Note added. Recently, we became aware of related work
on coupling between two planar arrays using collective dark
states [26].
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