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Multimode collective scattering of light in free space by a cold atomic gas
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We have studied collective recoil lasing by a cold atomic gas, scattering photons from an incident laser into
many radiation modes in free space. The model consists of a system of classical equations for the atomic motion
of N atoms where the radiation field has been adiabatically eliminated. We performed numerical simulations
using a molecular dynamics code PEPC (Pretty Efficient Parallel Coulomb Solver) to track the trajectories of
the atoms. These simulations show the formation of an atomic density grating and collective enhancement of
scattered light, both of which are sensitive to the shape and orientation of the atomic cloud. In the case of an
initially circular cloud, the dynamical evolution of the cloud shape plays an important role in the development
of the density grating and collective scattering. The ability to use efficient molecular dynamics codes will be a
useful tool for the study of the multimode interaction between light and cold gases.
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I. INTRODUCTION: SCATTERING OF LIGHT BY ATOMS

One of the most basic light-atom interactions is Rayleigh
scattering. When an ensemble of N randomly distributed sta-
tionary atoms is weakly illuminated by a laser, the atoms scat-
ter independently, and the resultant scattered field intensity
varies as ∼N . For an ensemble of cold atoms which are free
to move, the picture can change drastically due to collective
behavior arising from the optical forces produced during scat-
tering. Each atom is affected by the optical field scattered by
the other atoms. Most studies of collective behaviors involving
cold and ultracold atoms coupled to light have involved optical
cavities [1], but similar phenomena have also been observed
or predicted involving single feedback mirrors, optical fibers,
and simply scattering into vacuum. These collective behaviors
are at the origin of various self-organization phenomena,
e.g., collective cooling [2–4], symmetry breaking, and pattern
formation [5–13].

Superradiant light scattering was first demonstrated using
a cigar-shaped Bose-Einstein condensate (BEC) [14] and later
using a cold thermal gas [15]. In Ref. [14], superradiantly
scattered light was observed to propagate along the major axis
of the atomic cloud, simultaneous with the development of a
matter-wave–density grating in the cloud. Some features of
this phenomenon have been described by single-mode–mean-
field models similar to that of the collective atomic recoil
laser (CARL) [16–27]. These mean-field models are appro-
priate in certain specific cases where there is a well-defined
propagation axis and, consequently, to a good approximation,
a single spatial mode, e.g., in a single-mode cavity or in a
highly elongated sample where the major axis of the sample
defines an “end-fire mode” which dominates the direction of

emission. In general, however, for arbitrary shapes of atomic
ensembles, many spatial modes are involved simultaneously
in the collective scattering process.

The computational effort required to model large systems
of atoms in two-dimensional (2D) and three-dimensional (3D)
geometries is significant. Large efficient publicly accessible
“molecular dynamics” (MD) codes, which solve dynamical
equations of motion for large collections of particles under
the action of various forces (gravitational, electrostatic, and
van der Waals), have become an essential tool in many areas of
science, e.g., plasma physics, astrophysics, and computational
chemistry. Despite the latter fact, to date, MD codes have not
been used in the study of light interacting with cold atomic
gases.

In this paper, we have simulated collective light scattering
from a gas of cold atoms in 2D and 3D using a model which
describes the positions and velocities of the atoms. The model
has been derived from a multimode theory where the vacuum
radiation modes are adiabatically eliminated. The result is
a set of coupled N atoms where each atom is subjected to
the radiation force exerted by all the other atoms present
in the cloud. The form of the equations in this model makes
them suitable for implementation in MD codes, which offers
the possibility of efficient simulation of multimode scattering
involving very large numbers of atoms by exploiting methods
developed for simulating N-body systems involving long-
range interactions, e.g., Barnes-Hut methods [28]. We use
a public MD code, PEPC (Pretty Efficient Parallel Coulomb
Solver) [29] to demonstrate that the collective scattering
process described by our model has similar characteristics
to those observed in Ref. [14], i.e., observation of a density
grating, which is responsible for collective enhancement of
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scattered light intensity. Whereas, for ultracold atoms, the
grating is observed in momentum space [14] with spacing
h̄q = h̄(k0 − k)—where h̄k0 and h̄k are the momenta of the
incident and scattered photon—here, in contrast, the grating
is observed in real space with atoms grouping periodically at
distances which are multiples of 2π/q. The model employed
to depict the evolution of the cloud is presented in Sec. II
along with its implementation in the MD algorithm. It is
possible to see that, by using particular atomic cloud shapes
and orientations, different density grating shapes and scattered
light directions are achieved. These results, for a 2D cloud and
for a specific 3D geometry, are presented in Secs. III A and
III B, respectively.

II. MODEL OF COLLECTIVE SCATTERING

We consider a collection of N two-level atoms driven by
a laser field with frequency ω0 = ck0, propagating along the
z axis with wave-number k0 = k0ẑ and Rabi frequency �0 =
dE0/h̄, where E0 is the electric field and d is the atomic dipole.
The laser field is far detuned from the atomic frequency ωa

with �0 = ω0 − ωa � � and � = d2k3
0/2πε0h̄ as the atomic

linewidth. In the far-detuned limit and for a dilute gas, absorp-
tion and multiple scattering can be neglected. In this limit,
the incident light in mode k0 is scattered into the vacuum
mode k. The scattered optical field in mode k interferes
with incident mode k0 to create a dipole force proportional
to the photon momentum transfer h̄(k0 − k). When summed
over the different vacuum modes, the resulting equations for
atomic positions r j and momenta p j are (see the Appendix)
as follows:

ṙ j = p j

M
, (1)

ṗ j = �h̄k0

(
�0

2�0

)2 ∑
m �= j

{
(ẑ − r̂ jm)

sin[k0(r jm − z jm)]

k0r jm

− r̂ jm
cos[k0(r jm − z jm)]

(k0r jm)2

}
, (2)

where M is the atomic mass, r jm = r j − rm, and r̂ jm =
r jm/r jm. Each atom, labeled j, is coupled to all the other m
atoms (where m �= j) by an oscillating force with components
along direction ẑ of the incident field and direction r̂ jm toward
the other atoms. Furthermore, the force has a finite range,
consisting of terms which decrease with distance between the
atoms as 1/r jm or 1/r2

jm.
The intensity of scattered light in direction k is

Is(k) = I1N2|M(k, t )|2, (3)

where I1 = (h̄ω0�/8πr2)(�0/2�0)2 is the single-atom
Rayleigh scattering intensity and

M(k, t ) = 1

N

N∑
j=1

ei(k0−k)·r j (t ) (4)

is the “optical magnetization,” or “bunching factor.” It de-
scribes the strength of the density grating formed by the mov-
ing atoms, ranging from zero when the atomic positions are
uniformly distributed to unity when the atoms are periodically
packed into a length less than 2π/|k0 − k|. These equations

generalize the CARL model, obtained for atoms interacting
with a single mode in an optical ring cavity [17] to many
modes in vacuum. Here, the incident photons are scattered in
the 3D vacuum, and superradiant scattering occurs along cer-
tain directions determined by the atomic spatial distribution.
In particular, for an elongated atomic distribution along the z
axis of the incident field, collective scattering occurs along the
backward direction k = −k0.

The present model assumes a scalar radiation field, dis-
regarding polarization effects. This approximation can result
in an inaccurate description of the scattered light and/or the
radiation force among the atoms, particularly, in the case of
a 3D atomic distribution. However, a full derivation of the
vectorial light model (not presented here) shows that the scalar
light model describes correctly the long-range contribution—
i.e., the first term of the force on the right-hand side term
of Eq. (2)—for a pump linearly polarized in a direction
perpendicular to the scattering plane. Differences between the
vectorial and the scalar light models arise only in the short-
range terms of the radiation force, which are less important in
the collective recoil regime considered here. A detailed study
of collective scattering using the vectorial light model will be
the subject of a future publication.

Simulation algorithm

Due to the form of Eqs. (1) and (2), it is possible to simulate
collective light scattering using a MD code. We used the PEPC

[8], which is commonly used for simulating N-body systems
where the forces involved are described by an inverse-square
law, e.g., Coulomb forces in plasmas and gravitational forces.
In order to model collective scattering of light by atoms, we
implemented Eq. (2) as the force acting on each atom and
observed the trajectories of the particles. Since the equations
only depend on the positions of the particles, the force for each
iteration was calculated using the position Verlet algorithm,
which updates the position of each atom according to

rn+1 = 2rn − rn−1 + an�t2, (5)

where an is the acceleration at time-step n. The Verlet in-
tegrator provides good numerical stability as well as other
properties that are important in physical systems, such as time
reversibility and preservation of the symplectic form in phase
space. The form of the model equations shows a singularity
when the particles are close to each other. This becomes an
important issue during the simulation since it results in strong
forces appearing abruptly, causing the particles to be ejected
from the cloud, i.e., two atoms repel one another violently
when they get too close to each other. We solved this problem
using the idea of Plummer [30], which is used in gravitational
force simulations, and involves making the replacement,

r jm →
√

r2
jm + ε2, (6)

where ε is a small parameter introduced in order to avoid
singularities in the equations. This parameter does not change
the general behavior of the system when the particles are well
separated. It just allows the particles to pass each other as if
they were experiencing an elastic collision characterized by
the parameter (ε), which, in some sense, acts as a numerical
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scattering length. This collision could be interpreted as a
repulsion generated due to van der Waals forces between a
pair of atoms.

The equations have been scaled in order to work with
dimensionless variables. Positions have been scaled, such as
r′ = k0r; the momentum variable as p′ = pp−1

0 , where p0 =
h̄k0 is the momentum of a single photon; and the time variable,
such as t ′ = ωrt , where ωr = h̄k2

0/2M is the recoil frequency.
Introducing these variables into the equations of motion (1)
and (2), we obtain equations,

ṙ′
j = 2p′

j, (7)

ṗ′
j = A

∑
m �= j

{
(ẑ − r̂ jm)

sin[r′
jm − z′

jm]

r′
jm

− r̂ jm

cos[r′
jm − z′

jm]

(r′
jm)2

}
,

(8)

with

A = �

ωr

(
�0

2�0

)2

, (9)

and r′
jm →

√
r′

jm + ε′2 where the singularity-avoiding param-
eter becomes ε′ = k0ε.

The value of the singularity-avoiding parameter used in our
simulations was ε′ = 10−2. This implies that the atoms in our
simulation have an effective scattering length of ∼10−2λ0,
where λ0 = 2π/k0 is the laser wavelength. Regarding other
important variables, we have used ωr ≈ 104 s−1 as the recoil
frequency, � ≈ 107 s−1 for the atomic decay rate, and we have
selected A = 1.0 for simplicity. By choosing these values,
we roughly achieve that �0 ≈ 15�0, hence, fulfilling the
necessary conditions of the model. For both simulations in
2D, we have adopted a time-step δt ′ = 0.15×10−3 with 2000
steps, which makes a total simulation time of t = 0.3ω−1

r .
Instead, for the simulations in 3D, the selected step is δt ′ =
0.25×10−3 with 7000 steps, which, in turn, corresponds to a
total time of t = 1.75ω−1

r .

III. RESULTS

A. Simulations of the scattering from a 2D atomic cloud

In this section, we restrict ourselves to a simplified con-
figuration where the atomic distribution is two dimensional,
consisting of two geometries: an ellipse (Secs. III A 1 and
III A 2) and a circle (Sec. III A 3) with both distributions
being contained on the (x, z) plane. It is well known from
experimental studies of superradiance and superfluorescence,
both in excited atomic systems of effectively stationary atoms
[31] and in BECs [14,15,32], that the geometry of the atomic
cloud or sample can have a significant effect on the spatial
distribution of the emitted field. We will demonstrate that
the spatial distribution of both the scattered radiation and
the associated atomic density distribution, which is produced
during collective scattering of light, are also strongly affected
by the geometry of the atomic cloud.

FIG. 1. Schema of the three different configurations used in our
simulations. (a) Elliptical- (cigar-) shaped gas of atoms with a major
axis directed parallel to the propagation direction of the laser. (b)
Elliptical gas with the major axis orientated perpendicular to the
propagation direction of the laser. (c) Circular-shaped atomic gas.

1. Pump propagation parallel to the major axis of an elliptical
cloud: Backscattering and one-dimensional grating formation

The first case we examine is that of an elliptical atomic
cloud illuminated by an optical pump field whose propagation
direction is parallel to the major axis of the cloud as shown
schematically in Fig. 1(a). Figure 2(a) shows the initial ran-
dom distribution of atoms in the atomic cloud. As a conse-
quence of the optical forces arising from Rayleigh scattering,

FIG. 2. Simulation of collective scattering of a pump laser prop-
agating parallel to the major axis of an elliptical 2D atomic cloud:
(a) Initial atomic density distribution showing N ≈ 5000 particles
distributed randomly. (b) Density grating formation due to collective
scattering at t = 0.135ω−1

r . The corresponding bunching factors
|M(k, t )| are shown in (c) at t = 0 and in (d) at t = 0.135ω−1

r .
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this initially random spatial distribution of atoms develops
a strong periodic modulation along the z direction with a
spatial period ≈λ/2 as shown in Fig. 2(b). Consequently,
the atomic cloud undergoes the spontaneous formation of a
one-dimensional (1D) density grating, analogous to the ones
occurring in CARL or a free-electron laser (FEL). Observing
Fig. 2(d), we conclude that the 1D grating forms because light
is predominantly backscattered due to the geometry of the
atomic cloud, which leads to scattering along the cloud’s ma-
jor axis in both ±z directions. Light which is forward scattered
in the +z direction will not produce an optical force on an
atom as there is no change in the photon momentum during
scattering. We remember that we have neglected the effect of
the scattering force in the limit of large detuning �0 � �

(see Appendix), which eventually pushes the atoms in the
direction of the pump [33]. Conversely, light backscattered
along the −z direction produces an optical force on an atom as
the optical field propagation direction and, consequently, mo-
mentum changes during the scattering process. This change in
momentum of the optical field is taken up by an atom, moving
it and modifying the atomic density. The backscattered light
interferes with the pump field to form a 1D optical potential
with a spatial period of ≈π/k0, that has an amplitude and a
position which evolve dynamically and consistently with the
developing atomic density modulation.

The forward lobe of the scattered intensity in Fig. 2(c)
is the result of the diffraction by the atoms in the initial
distribution. For a uniform ellipse with semiaxes Rx and Rz,
the bunching factor |M(θ, φ)| is

|M(θ, φ)| =
2J1

[
k0

√
R2

x sin2 θ cos2 φ + R2
z (1 − cos θ )2

]
k0

√
R2

x sin2 θ cos2 φ + R2
z (1 − cos θ )2

,

(10)

where we assumed k = k0(sin θ cos φ, sin θ sin φ, cos θ ),
k0 = k0ẑ, and J1(x) is the first-order Bessel function. The
majority of the emission is within the diffraction angle
�θ ∼ 1/(k0Rx ).

2. Pump propagation perpendicular to the major axis
of an elliptical cloud: off-axis scattering

We now consider the case where the optical pump field
propagates perpendicular to the major axis of the elliptical
atomic cloud as shown schematically in Fig. 1(b). The initial
random distribution of atoms in the atomic cloud is shown
in Fig. 3(a). In this case, the initially random distribution
of atoms again develops a strong periodic modulation and
forms a density grating, but in contrast to the previous
case of Sec. III A 1, this grating is now no longer restricted
to the z axis but is a 2D structure on the (x, z) plane.
Figures 3(c) and 3(d) show that the 2D grating forms because
the geometry of the atomic cloud, which leads to significant
scattering perpendicular to the pump propagation direction
along the major axis of the atomic cloud in both ±x directions.
Scattering of light along the ±x directions will produce an
optical force on an atom directed at approximately ∓45◦
to the z axis. This can be understood using a photon pic-
ture of a scattering event which involves an incident photon

FIG. 3. Simulation of collective scattering of a pump laser prop-
agating perpendicular to the major axis of a 2D elliptical atomic
cloud: (a) Initial atomic density distribution showing N ≈ 5000
particles distributed randomly. (b) Density grating formation due to
collective scattering at t = 0.159ω−1

r . The corresponding bunching
factors |M(k, t )| are shown in (c) at t = 0 and in (d) at t = 0.159ω−1

r .

with momentum (h̄k0)ẑ and results in a scattered photon of
momentum ±(h̄k0)x̂. This results in a net momentum change
of the atom of h̄k0(ẑ ∓ x̂), i.e., directed at approximately ∓45◦
to the z axis, depending whether the photon is emitted upward
or downward, respectively. This scattered light interferes with
the pump field to form a dynamically evolving 2D optical
lattice potential [19]. An atomic density distribution similar to
that shown in Fig. 3(b) was observed by Inouye et al. [14] for
the case of an elongated elliptical BEC, illuminated by a pump
beam propagating perpendicular to its major axis. Whereas,
in the experiment of Ref. [14], the grating is observed in
momentum space after the interaction with the pump laser;
here, the grating is observed in real space.

3. Scattering from a circular atomic distribution

We now consider the light scattering from the circular 2D
distribution shown in Fig. 1(c). Since now there is not any
preferred scattering direction, we would expect to observe
no density grating in this case. Instead, we can still see the
formation of a 2D grating due to a periodic modulation. Ob-
serving the polar plot that represents the bunching parameter
for this configuration, Figs. 4(c) and 4(d), we can see that,
at a certain time, the cloud scatters light in two directions at
approximately ±45◦ from the backward direction. This can
be interpreted taking into consideration the deformation of the
initially round distribution. It can be observed in Fig. 4(b) that
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FIG. 4. Simulation of collective light scattering from a 2D
circular atomic cloud: (a) Initial atomic distribution showing
N ≈ 5000 particles distributed randomly. (b) Atomic distribution at
t = 0.22ω−1

r . The corresponding bunching factors |M(k, t )| are
shown in (c) at t = 0 and in (d) at t = 0.22ω−1

r .

the atoms close to the z axis and on the right edge of the initial
distribution are pushed forward by the pump laser, making
the atomic cloud form an “egglike” shape. Since scattered
light is preferentially amplified along the longest propagation
path in the cloud, this path results in being along the edges
of the egglike shape formed after an initial transient time.
If we look at the deformed shape in Fig. 4(b) as if it was a
triangle with two equal angles (located at the negative plane
of the z axis) and a third one (placed on the positive z axis)
that would identify the angle between the two scattered light
directions. Naming θ the angle of the scattered light direction
with respect to the z axis, we still interpret a scattering event
using a photon picture: The incident photon with momentum
qin = h̄k0ẑ is scattered in the directions ±θ as a photon
of momentum q± = h̄k0[ẑ cos θ ± x̂ sin θ ], respectively. The

atomic recoil momentum is

�p = qin − q± = h̄k0[ẑ(1 − cos θ ) ∓ x̂ sin θ ], (11)

with an angle φ with respect to the z axis given by

tan φ = ∓ sin θ

1 − cos θ
. (12)

The previous cases of horizontal and vertical ellipses, shown
in Figs. 2 and 3, correspond to θ = π and θ = π/2, respec-
tively. For the case of circular distribution, we estimated from
Fig. 4(d), the scattering angle to be θ ≈ 135◦. Using this value
in Eq. (12), we obtained two crossed lattices, respectively.
oriented at φ = ∓22.5◦ with respect to the z axis, in qual-
itative agreement with Fig. 4(b). The shape deformation of
the atomic distribution observed here is similar to the elec-
trostrictive effect described in Ref. [34] for a BEC illuminated
by laser light. We postpone the study of this rather surprising
effect to a more extended 2D and 3D investigation, which will
take into account also the vectorial character of the scattered
light.

B. Three-dimensional simulation of scattering

In this section, we relax the assumption of a 2D distribution
of atoms and consider a full 3D case. The computational effort
required to model large systems of atoms in 3D is substan-
tially greater than in 2D, so the efficiency of the computational
methods used becomes more significant. Equations (7) and (8)
are explicit equations whose solution does not require inver-
sion of large matrices nor the use of a mesh, which is attractive
from the viewpoint of run time of numerical simulations. In
addition, use of a code such as PEPC to solve Eqs. (7) and (8)
offers the potential for improved scalability to large 3D sim-
ulations involving extremely large numbers of over a “brute-
force” solution of Eqs. (7) and (8). This is due to the fact
that PEPC is designed to use tree algorithms (e.g., Ref. [18])
originally designed for astrophysical N-body simulations,
which reduce the computational effort or run time associated
with the calculations from O(N2) to O[N ln(N )]. As an
illustrative example, we study a 3D atomic sample, analogous
to the system configuration considered in Sec. III A 1 with the

FIG. 5. Numerical simulations in 3D: (a) Initial disposition of particles in a cloud of particles. (b) One-dimensional grating formation in
the case of laser propagation parallel to the major axis of the cloud of atoms at t = 0.21ω−1

r . In the simulation, we have used N ≈ 10 000
particles distributed randomly in space.
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pump propagation parallel to the major axis of the cloud with
a cigar-shaped distribution—see Fig. 5(a). Again, we have the
atoms initially randomly distributed within the cloud. After a
time t = 0.21ω−1

r , we observe the formation of a longitudinal
density grating along the z axis, depicted in Fig. 5(b), similar
to the one observed in the 2D simulation. We outline again
that the scalar model of light used for the 3D simulations gives
only an approximated description of the scattering so that a
full vectorial model is required for an accurate description
of the scattering. However, preliminary results show that,
for a very elongated atomic cloud and the pump propagating
along the major axis of the cloud, the scalar model describes
correctly the long-range term of the exact force but not its
short-range terms. Since we assume a dilute system where
multiple scattering is negligible, short-range terms in the
force play a minor role, and the collective recoil scattering
is dominated by long-range interactions. For these reasons,
the scalar model is able to reproduce the mean features of the
collective atomic recoil lasing in free space.

Finally, we make some comment about the scaling laws
with N and the size of the atomic cloud. In our 3D simulation,
the number of atoms is N = 104, and the semiaxis of the
ellipsoidal are k0Rx = k0Ry ∼ 5 and k0Rz ∼ 15, correspond-
ing to a volume of V ∼ 6λ3

0 which, for λ0 = 780 nm as
for the Rb atoms, conforms to a rather unrealistic density
of n ∼ 1015 atoms/cm3 and a resonant optical thickness of
b ∼ N/(k2

0RxRy) ∼ 400, which is large but not unreachable.
Hence, it is important to know how the superradiant scattering
rate scales with N and the atomic system size. It results from
a single-mode theory [19] that the superradiant scattering
rate is �SR ∼ (�0/�0)

√
�ωrN/(k0Rx )2, i.e., it scales with

the square root of the optical thickness. Hence, a realistic
atomic cloud with N ∼ 106 and transverse size k0Rx ∼ 50
would have the same optical thickness and, hence, the same
superradiant rate of the simulation shown in Fig. 5. For
�0/�0 = 1/15, N = 106, k0Rx = 50, ωr ∼ 104 rad/s, and
� = (2π ) 6 MHz, then �SR ∼ 106 1/s, which is much more
than the two-photon recoil 4ωr and so satisfying the condition
for the classical regime of superradiant scattering [35]. The
initial velocity spread is negligible if 2kσv � �SR or, equiva-
lently, T0 � h̄�2

SR/(8kBωr ), where T0 = Mσ 2
v /kB is the initial

temperature and kB is Boltzmann’s constant. For Rb atoms and
�SR = 106 1/s, the initial temperature must be much less than
100 μK.

IV. CONCLUSIONS

We have presented a model which describes collective
scattering of light in 2D and 3D due to a gas of cold atoms
in vacuum that depends only on the positions of the atoms,
making it suitable for implementation using a MD simulation
code. Using the public MD code PEPC, we were able to follow
the trajectories of the atoms and calculate the spatial and tem-
poral evolutions of the intensity of the scattered light. The 2D
simulations show that the evolution of collective scattering by
an elliptical atomic cloud is sensitive to the orientation of the
cloud relative to the pump field propagation direction. When
the major axis of the cloud is aligned parallel to the pump
propagation direction, the simulation showed the formation of
a 1D grating in the density of the atoms, analogous to that
occurring in CARL or a FEL, which enhances the backscat-
tered light. In contrast, when the major axis of the cloud is
oriented perpendicular to the pump propagation direction, a
2D pattern formation, similar to that observed in superradiant
scattering experiments of Ref. [14], was observed; in both
cases, the collectively scattered radiation propagates predom-
inantly along the major axis of the cloud. In the intermediate
case of a circular cloud, it was demonstrated that the force
produced by the collective scattering process is electrostrictive
in nature, leading to elongation of the cloud along the pump
propagation direction, simultaneous with the development of
a 2D grating. As an example of the capabilities of the code
and the method we used, we have also been able to produce
3D simulations of the collective scattering process. As the
importance of polarization effects can be significant for 3D
scattering, an extension of the present scalar model of light
scattering to a vectorial model, simulating the 3D collective
scattering from different atomic distributions and orientations
of the pump, is in preparation.
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APPENDIX: DERIVATION OF THE MOTION EQUATIONS

1. Multimode collective recoil equations

We consider the Hamiltonian of N two-level atoms with atomic frequency ωa and dipole d , interacting with a laser field and
the vacuum radiation modes,

H =
N∑

j=1

p2
j

2M
+ h̄

N∑
j=1

[
�∗

0

2
σ−

j ei �0t−ik0·r j + Hc.

]
+ h̄

N∑
j=1

∑
k

gk
[
a†

kσ
−
j ei �kt−ik·r j + σ+

j ake−i �kt+ik·r j
]
. (A1)

Here �0 = dE0/h̄ is the Rabi frequency of the laser with electric-field E0, wave-vector k0, and frequency ω0 with detuning
�0 = ω0 − ωa. The quantum radiation modes in vacuum with wave-vectors k and frequency ωk are described by the operators
ak with �k = ωk − ωa with coupling rate gk = d[ωk/(2h̄ε0Vph)]1/2, and Vph is the quantization volume of the radiation field. We
disregard polarization and short-range effects using a scalar model for the radiation field. The internal dynamics of the two-level
atoms are described by the operators σ z

j = |e j〉〈e j | − |g j〉〈g j |, σ+
j = |e j〉〈g j |, and σ−

j = |g j〉〈e j |. Furthermore, we also consider
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the dynamics of the external degrees of freedom, where r j and p j are operators. The Heisenberg equations are as follows:

ṙ j = p j

M
, (A2)

ṗ j = −∇r j H = ih̄k0

[
�∗

0

2
σ−

j ei �0t−ik0·r j − H.c.

]
+ ih̄

∑
k

kgk
[
a†

kσ
−
j ei �kt−ik·r j − H.c.

]
, (A3)

σ̇−
j = i�0

2
e−i �0t+ik0·r j σ̂ z

j + i
∑

k

gkσ
z
j ake−i �kt+ik·r j , (A4)

σ̇ z
j = i�∗

0ei �0t−ik0·r j σ−
j + 2i

∑
k

gka†
kσ

−
j ei �kt−ik·r j + H.c., (A5)

ȧk = −igk

N∑
j=1

σ−
j ei �kt−ik·r j . (A6)

Introducing σ j = σ−
j ei �0t and neglecting the population of the excited state (assuming weak field and/or large detuning �0) so

that σ z
j ≈ −1,

ṙ j = p j

M
, (A7)

ṗ j = ih̄k0

[
�∗

0

2
σ je

−ik0·r j − H.c.

]
+ ih̄

∑
k

kgk
[
a†

kσ je
i(ωk−ω0 )t−ik·r j − H.c.

]
, (A8)

σ̇ j = (i�0 − �/2)σ j − i�0

2
eik0·r j − i

∑
k

gkake−i(ωk−ω0 )t+ik·r j , (A9)

ȧk = −igkei(ωk−ω0 )t
N∑

j=1

σ je
−ik·r j , (A10)

where we added the spontaneous emission decay term −(�/2)σ j with � = d2k3/2πε0 h̄ as the spontaneous decay rate. Assuming
� � ωrec, where ωrec = h̄k2/2M is the recoil frequency, we can adiabatically eliminate the internal degree of freedom, taking
σ̇ j ≈ 0 in Eq. (A9),

σ j ≈ �0

2(�0 + i�/2)
eik0·r j + 1

�0 + i�/2

∑
k

gkake−i(ωk−ω0 )t+ik·r j . (A11)

The first term describes the dipole excitation induced by the driving field, whereas the second term is the excitation induced by
the scattered field. By inserting it in Eq. (A10), the field equation, we obtain

ȧk = −i
gk�0

2(�0 + i�/2)
ei(ωk−ω0 )t

N∑
j=1

ei(k0−k)·r j − i
gk

�0 + i�/2

N∑
j=1

∑
k′

gk′ak′ei(ωk−ωk′ )t−i(k−k′ )·r j . (A12)

The first term describes the single-scattering process where the momentum transfer to the atoms is from the incident field to the
vacuum field. The second term describes multiple-scattering processes where a photon is exchanged between mode k and all the
other modes k′. We limit our analysis to single-scattering processing, neglecting the second term in Eq. (A12). We also insert
Eq. (A11) in the force equation (A8),

ṗ j = − ih̄

�0 − i�/2

[
k0

�0

2
eik0·r j +

∑
k

kgkakeik·r j−i(ωk−ω0 )t

][
�∗

0

2
e−ik0·r j +

∑
k

gka†
ke−ik·r j+i(ωk−ω0 )t

]
+ H.c. (A13)

The first and second terms in the first squared brackets describe the absorption of an incident photon with momentum h̄k0 and a
scattered photon with momentum h̄k, respectively. The second squared brackets are the response of the atom, i.e., the induced
polarization of the atoms to the total radiation. Explicitly, we write

ṗ j =
[

��2
0

4�2
0 + �2

]
h̄k0 + 2i�0

4�2
0 + �2

∑
k

h̄(k0 − k)gk
[
�∗

0ake−i(k0−k)·r j−i(ωk−ω0 )t − H.c.
]

+ �

4�2
0 + �2

∑
k

h̄(k0 + k)gk
[
�∗

0ake−i(k0−k)·r j−i(ωk−ω0 )t + H.c.
]

+ 1

�2
0 + �2/4

∑
k

∑
k′

gkgk′ â†
kâk′ei(k′−k)·r j [i�0h̄(k − k′) + (�/2)h̄(k + k′)]. (A14)
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Note that the first term is the radiation pressure exerted by the incident light (which is constant for a plane wave); the second and
third terms describe the momentum transfer due to the exchange of photons between the incident and the scattered light. The
last term is the contribution due to the exchange between two scattered vacuum photons of momentum h̄k and h̄k′. Again, since
we neglect multiple-scattering events, we drop the last term. Then, we assume �0 � � so that the first and the third terms of
Eq. (A14) are negligibly small, thus, achieving

ṗ j ≈ i

2�0

∑
k

h̄(k0 − k)gk
[
�∗

0ake−i(k0−k)·r j−i(ωk−ω0 )t − H.c.
]
. (A15)

The force on the atoms is the usual dipole (or gradient) force where the momentum transfer is maximum for backscattering
emission (i.e., k = −k0). In conclusion, the multimode equations describing the collective recoil are as follows:

ṙ j = p j

M
, (A16)

ṗ j = ih̄g
∑

k

(k0 − k)
[
Ake−i(k0−k)·r j − A†

kei(k0−k)·r j
]
, (A17)

Ȧk = −ig
N∑

j=1

ei(k0−k)·r j − iδkAk, (A18)

where Ak = ake−iδkt , δk = ωk − ω0, and g = gk0 (�0/2�0); we assumed gk ≈ gk0 and �0 real.

2. Collective recoil equations in free space

In free space, the light is scattered in the 3D vacuum modes. Following Ref. [16], we eliminate the scattered field by integrating
Eq. (A18) to obtain

Ak(t ) = Ak(0)e−i(ωk−ω0 )t − igN
∫ t

0
ρk0−k(t − τ )e−i(ωk−ω0 )τ dτ, (A19)

with

ρq(t ) = 1

N

N∑
j=1

eiq·r j (t ). (A20)

The first term in Eq. (A19) gives the free electromagnetic field, i.e., vacuum fluctuations, and the second term is the radiation
field due to Rayleigh scattering. If Eq. (A19) is substituted into Eq. (A17) for p j , we obtain

ṗ j = h̄g2N
∑

k

(k0 − k)
∫ t

0
dτ

[
ρk0−k(t − τ )e−i(k0−k)·r j e−i(ωk−ω0 )τ + H.c.

]
, (A21)

where the first term of Eq. (A19) has been neglected. Then, transforming the sum over k into an integral and using Eq. (A20),
we attain the coming expression,

ṗ j = h̄g2 Vph

8π3

∑
m �= j

[
e−ik0·(r j−rm )

∫ t

0
dτ eiω0τ

∫
dk(k0 − k)eik·(r j−rm )e−ickτ + H.c.

]
, (A22)

in which we used the Markov approximation so that r j (t − τ ) ≈ r j (t ). The integral over k, in the latter equation, can be
manipulated as follows:∫

dk(k0 − k)eik·(r j−rm )e−ickτ = 4πk0

∫ ∞

0
dk k2 sin(kr jm)

kr jm
e−ickτ + 4iπ r̂ jm

∫ ∞

0
dk k3

[
cos(kr jm)

kr jm
− sin(kr jm)

(kr jm)2

]
e−ickτ (A23)

being r jm = r j − rm, r jm = |r jm|, and r̂ jm = r jm/r jm. Since k ≈ k0, we can replace k by k0 in the integrals; we also extend the
lower integration limit to −∞, reaching the next expression,∫

dk(k0 − k)eik·(r j−rm )e−ickτ ≈ 4πk3
0

ẑ
k0r jm

∫ ∞

−∞
dk sin(kr jm)e−ickτ + 4iπk3

0
r̂ jm

k0r jm

∫ ∞

−∞
dk

[
cos(kr jm) − sin(kr jm)

k0r jm

]
e−ickτ

= 4π2k3
0

c

{
ẑ

ik0r jm
[δ(τ − r jm/c) − δ(τ + r jm/c)] − r̂ jm

ik0r jm
[δ(τ − r jm/c) + δ(τ + r jm/c)]

− r̂ jm

(k0r jm)2
[δ(τ − r jm/c) − δ(τ + r jm/c)]

}
, (A24)
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where we assumed k0 = k0ẑ and used the following two integrals:∫ ∞

−∞
dk sin(kR)e−ickτ = π

ic
[δ(τ − R/c) − δ(τ + R/c)],

∫ ∞

−∞
dk cos(kR)e−ickτ = π

c
[δ(τ − R/c) + δ(τ + R/c)]. (A25)

By inserting Eq. (A24) into Eq. (A22), together with the definitions of g and �, we are able to derive the final expression for the
force,

ṗ j = �

2
h̄k0

(
�0

2�0

)2 ∑
m �= j

[
eik0(r jm−z jm )

(
(ẑ − r̂ jm)

ik0r jm
− r̂ jm

(k0r jm)2

)
+ H.c.

]

= �h̄k0

(
�0

2�0

)2 ∑
m �= j

{
(ẑ − r̂ jm)

sin[k0(r jm − z jm)]

k0r jm
− r̂ jm

cos[k0(r jm − z jm)]

(k0r jm)2

}
. (A26)

3. Radiation field

The scattered radiation field amplitude is

Es(r, t ) = i
Vph

(2π )3
ei(k0·r−ω0t )

∫
�k

dk EkAk(t )ei(k−k0 )·r (A27)

being Ek = (h̄ωk/2ε0Vph)1/2 the single-photon electric field. Using Eq. (A19), neglecting the fluctuation term and transforming
the sum over k into an integral as performed before, we obtain

Es(r, t ) = Vph

(2π )3
ge−iω0t

N∑
j=1

∫ t

0
dτ eiω0τ eik0·r j (t−τ )

∫ ∞

0
dk kEk

sin[k|r j (t − τ ) − r|]
|r j (t − τ ) − r| e−ickτ . (A28)

The scattered intensity will be centered about the incidence laser frequency ω0. The quantity ck varies little around k = ω0/c for
which the time integral in τ is not negligible. We can, therefore, replace k by ω0/c and extend the lower limit in the k integration
by −∞,

Es(r, t ) = Vph

2π2
gk0Ek0 e−iω0t

N∑
j=1

∫ t

0
dτ eiω0τ+ik0·r j (t−τ )

∫ ∞

−∞
dk

sin(k|r j − r|)
|r j − r| e−ickτ . (A29)

By using Eq. (A26), we obtain

Es(r, t ) = dk3
0

4πε0

�0

2�0

N∑
j=1

eik0Rj

ik0Rj
ei(k0·r j−ω0t )�(t > Rj/c), (A30)

where Rj = |r j − r| and r j is evaluated at the retarded time t − Rj/c. Assuming r � r j , we can write Rj ≈ r − ir̂ · r j with
r̂ = r/r, and

Es(k, t ) ≈ dk2
0

4πε0

�0

2�0

ei(k0r−ω0t )

ir

N∑
j=1

ei(k0−k)·r j , (A31)

where k = k0r̂. We have obtained the expression of the Rayleigh scattering field in the far-field limit, i.e., a spherical wave
proportional to the factor form, depending on the geometrical configuration of the scattering particles. For small clouds, we can
neglect the retarded time Rj/c. In conclusion, the scattered intensity spatial distribution in the far-field limit is

Is(k) = I1N2|M(k, t )|2, (A32)

in which I1 = (h̄ω0�/8πr2)(�0/2�0)2 is the single-atom Rayleigh scattering intensity and

M(k, t ) = 1

N

N∑
j=1

ei(k0−k)·r j (t ) (A33)

is the optical magnetization or bunching factor.
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