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The usual treatment of a Bose-Fermi mixture relies on weak-coupling Gross-Pitaevskii (GP) and density-
functional (DF) Lagrangians, often including the more realistic perturbative Lee-Huang-Yang (LHY) corrections.
We suggest analytic non-perturbative beyond-mean-field Bose and Fermi Lagrangians valid along the crossover
from weak- to strong-coupling limits of intraspecies interactions consistent with the LHY corrections and the
strong-coupling (unitarity) limit for small and large scattering lengths |a|, respectively, and use these to study
the Bose-Fermi mixture. We study numerically mixing-demixing and spontaneous symmetry breaking in Bose-
Fermi mixtures in spherically symmetric and quasi-one-dimensional traps, while the intraspecies Bose and Fermi
interactions are varied from weak-coupling to strong-coupling limits. The LHY correction is appropriate for
medium to weak atomic interactions and diverges for stronger interactions (large scattering length |a|), whereas
the present beyond-mean-field Lagrangian is finite in the unitarity limit (|a| → ∞). We illustrate our results
using the Bose-Fermi 7Li-6Li mixture under a spherically-symmetric and a quasi-one-dimensional trap. The
results obtained with the present model for density distribution of the Bose-Fermi mixture along the crossover
could be qualitatively different from the usual GP-DF Lagrangian with or without LHY corrections. Specifically,
we identified spontaneous symmetry breaking and demixing in the present model not found in the usual model
with the same values of the parameters.
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I. INTRODUCTION

Soon after the observation of Bose-Einstein condensates in
ultracold, ultradilute, harmonically trapped alkali-metal-atom
vapors [1], several groups were able to create and study
trapped superfluid Fermi gas [2] and Bose-Fermi mixture
[3] in a laboratory. Of these, a study of trapped superfluid
Bose-Fermi mixture is of interest because of the rich variety
of phenomena it can exhibit [4,5]. Such a study can provide
information about different intra- and interspecies interactions
acting in this mixture. Phase-separation, a typical feature of
binary superfluids, in mixtures of quantum degenerate gases
has been investigated in Bose-Fermi systems [6,7]. With
the advent of experimental techniques, now it is possible to
change the different inter- and intraspecies interactions in a
superfluid Bose-Fermi mixture by manipulating an external
electromagnetic interaction near a Feshbach resonance [8].
Hence, it is of natural interest to see how the different mixed
and demixed phases of a superfluid Bose-Fermi mixture
change as the inter- and intraspecies interactions are varied.
It is also of interest to see if such phases could spontaneously
break the symmetry of the underlying Lagrangian.

In this paper, we study the mixing-demixing transi-
tion in Bose-Fermi superfluid mixtures in three-dimensional
isotropic and quasi-one-dimensional (quasi-1D) harmonic
traps as the intraspecies Bose and Fermi interactions are
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increased from weak to strong coupling. The hyperfine spin-
1/2 Fermi superfluid is considered to be in a fully paired
(spin-up-down) state [7,9] rather than in a spin-polarized
single hyperfine state [3,6]. We consider the intraspecies in-
teraction for Bose (Fermi) component as repulsive (attractive),
which can be changed continuously from the weak-coupling
limit to unitarity. The interspecies interaction between the
Bose and the Fermi components is considered to be repul-
sive within the weakly coupling region. The strong-coupling
unitary limit, where the gas parameter x = |a|n1/3 → +∞
with a being the s-wave scattering length, and n being the
density, has recently drawn a great deal of attention as it is
characterized by universal laws arising from scale invariance.
This limit is of great interest in different areas, such as, Bose
and Fermi superfluids [10–15], superconductivity [16], string
theory [17], neutron [18] and Bose [19] stars, and quark-gluon
plasma [20], and can be achieved in a laboratory [8] in a
Bose-Fermi superfluid mixture.

The usual mean-field treatment of superfluid Bose-Fermi
mixture [7] is confined to the weak-coupling limit of Bose
and Fermi interactions described by the Gross-Pitaevskii (GP)
[4,21] Lagrangian for bosons and the density-functional (DF)
[5] Lagrangian for fermions. As the interaction strength is
increased, we need a non-perturbative beyond-mean-field de-
scription. Lee, Huang, and Yang (LHY) provided a perturba-
tive Lagrangian for bosons [22] and fermions [23]. Although
the LHY Lagrangian is valid for slightly stronger interactions,
it is not appropriate for very strong interactions in the unitarity
limit, where it diverges. For this investigation, we proposed
minimal analytic forms of Bose and Fermi Lagrangians valid
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from weak-coupling to unitarity with proper LHY [22,23]
and unitarity limits without fitting parameter(s). Most of
previous suggestions for such crossover functions for both
bosons [7,24] and fermions [7,25] were numerical with fitting
parameter(s) and hence did not have the analytic LHY limits.
With the present analytic weak-coupling to unitarity crossover
functions, we write the dynamical beyond-mean-field equa-
tions for the Bose-Fermi system, which we use in this study of
Bose-Fermi mixture in spherically-symmetric and quasi-1D
traps. For a quasi-1D confinement, we use this beyond-mean-
field 3D model rather than a strict 1D model obtained from
a quantum mechanical many-body 1D Hamiltonian. Such a
strict 1D model has novel properties like fermionization of
bosons [26]. The nonlinearities of the strict 1D model are
also different from the present 3D model. For a large finite
transverse trap in the present quasi-1D case, as in experiments,
the present 3D model should be appropriate. How the present
results will approximate the results of the strict 1D model
under infinitely strong transverse trap is an open question
beyond the scope of this study.

In this study, we find that the density distribution of
the Bose-Fermi mixture along the weak- to strong-coupling
crossover could be qualitatively different from that obtained
employing the usual GP-DF Lagrangian with or without the
LHY corrections. For example, we found demixing in the
Bose-Fermi mixture obtained using the present model where
the GP-DF Lagrangian predicted mixing of the components.
We also found spontaneous symmetry breaking in the present
model not found in the GP-DF model.

The plan of the paper is as follows. In Sec. II, we present
the analytic expressions for energy and chemical potential of
uniform Bose and Fermi superfluids along the weak coupling
to unitarity crossover and derive the nonlinear equations to
study the mixing-demixing transition and spontaneous sym-
metry breaking in Bose-Fermi superfluid mixtures. In Sec. III,
we present the numerical results along the weak- to strong-
coupling crossover for the Bose-Fermi mixture under spheri-
cally symmetric and quasi-1D traps. We compared our results
with those obtained from the usual weak-coupling GP-DF
Lagrangian for the Bose-Fermi mixture and found that the
present results could be qualitatively different. A summary of
our findings is given in Sec. IV.

II. ANALYTICAL MODEL ALONG THE WEAK
TO STRONG COUPLING CROSSOVER

Bose and fully paired Fermi superfluids in the weak-
coupling limit are well described by mean-field GP [21]
and DF [5,27] equations, respectively. These equations for
bosons [4] and fermions [7] are equivalent to the superfluid
hydrodynamic equations. The Bose and Fermi superfluids are
described by a macroscopic order parameter. In the case of
bosons, the order parameter is also the single-particle wave
function in the Hartree approximation of the many-body dy-
namics. In the case of fermions, the macroscopic order param-
eter refers to a fully paired bosonic entity known as Cooper
pair [28]. Hence, the macroscopic hydrodynamic description
of a Fermi superfluid is formulated in terms of paired fermions
in the form of Cooper pairs [28] and not in terms of a single-
particle Fermi wave function [7]. Such a description has led

to excellent results for many collective [29,30] phenomena in
many-fermion superfluids, such as density [31] distribution or
frequency of oscillation [29], where a many-body description
becomes unmanageable.

The macroscopic behavior of a Bose [4] or Fermi [5]
superfluid is governed by the classical Landau [32] equa-
tions of irrotational hydrodynamics with the velocity field
vi = h̄∇Si/2mi, where Si is the phase of the order parameter
φi(r, t ) = √

ni(r, t )eiSi (r,t ) where i = √−1, ni is the density,
mi is the mass of the fundamental entity responsible for super-
fluidity: a bosonic atom or a Fermi pair. Here i = B stands for
bosons and i = P for paired fermions. The continuity equation
and the irrotational flow equation in this case, e.g., [32]

∂ni

∂t
+ ∇ · (nivi ) = 0, (1)

mi
∂vi

∂t
+ ∇

(
Vi + 1

2
miv

2
i − h̄2∇2√ni

2mi
√

ni
+ μi

)
= 0, (2)

are entirely equivalent to the following dynamical equation
for the order parameter φi(r, t )

ih̄
∂φi

∂t
=

(
− h̄2

2mi
∇2 + Vi + μi

)
φi, (3)

where V is an external potential and μi, is the bulk chemical
potential for the uniform Bose or Fermi gas. The quantum
pressure term −h̄2∇2√ni/2mi

√
ni was not present in Eq. (2)

in the original classical flow equations but were introduced
later for an accurate description of the dynamics. This term
leads to the proper kinetic energy term in the Galilean in-
variant [7] dynamical equation (3). For bosons Eq. (3) is
the GP equation. For fermions we can relate the fermion
and pair variables by mP = 2mF ,VP = 2VF , μP = 2μF and
Eq. (3) becomes the following equivalent density functional
(DF) equation

ih̄
∂φF

∂t
=

(
− h̄2

8mF
∇2 + VF + μF

)
φF . (4)

In the strong-coupling regime, the scattering length ai

is much larger than all length scales (|ai| → ∞) and con-
sequently, the system shows universal behavior [10,11,33]
determined by the density ni independent of the parameter ai.
Here i = B stands for bosons and i = F for paired fermions.
By dimensional arguments, the bulk chemical potential of a
uniform Bose or Fermi gas at unitarity is given by [5,7]

lim
|ai|→∞

μi(ni, ai ) = h̄2

mi
ηin

2/3
i , (5)

where ηi is a universal parameter and mi is the mass of an
atom.

In the weak-coupling limit the bulk chemical potential of a
uniform Bose gas is given by [22]

μB(nB, aB) = h̄2

mB

(
4πnBaB + 2παn3/2

B a5/2
B + · · · ), (6)

where α = 64/(3
√

π ), and the first term 4πnBaB on the right-
hand side is the weak-coupling mean-field GP [21] result and
the second term is the perturbative LHY contribution [22],
which becomes important for moderate values of the scat-
tering length aB (>0). The LHY contribution to μB(nB, aB)
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FIG. 1. Dimensionless function f (x) of the zero-temperature
bulk chemical potential (7) versus x. Present: the crossover function
(8) with ηB = 4.7, DG: Hartree calculation of Ding and Greene
[36], GP: GP function f (x) = 4πx, LHY: LHY function f (x) =
4πx + 4παx5/2, num: numerically calculated from energy density
(11) using μB = ∂ (nBEB )/∂nB.

has limited validity as it diverges as aB → ∞ at unitarity,
whereas the correct μB(nB, aB) should remain finite at uni-
tarity as given by Eq. (5). The minimal analytic form of the
nonperturbative bulk chemical potential consistent with the
LHY correction (6) and the unitarity limit (5) and also valid
along the crossover from weak to strong coupling is [34]

μB(nB, aB) ≡ h̄2

mB
n2/3

B f (x), x = aBn1/3
B , (7)

f (x) = 4π
x + αx5/2

1 + α
2 x3/2 + 4πα

ηB
x5/2

. (8)

Equation (7) with Eq. (8) is a Padé approximant to the bulk
chemical potential with the proper weak-coupling LHY and
unitarity limits. The LHY bosonic energy density consistent
with Eq. (6) is

EB(nB, aB) ≡ 1

nB

∫ nB

0
μi(n, aB)dn

= h̄2

mB

(
2πnBaB + 4

5
παn3/2

B a5/2
B + · · ·

)
. (9)

The same at unitarity consistent with Eq. (5) is

EB(nB, aB) = h̄2

mB

3

5
ηBn2/3

B . (10)

These two limiting values can be combined to give the fol-
lowing minimal energy density valid from weak coupling to
unitarity

EB(nB, aB) ≡ h̄2

mB

2πn2/3
B

(
x + 4α

5 x5/2
)

1 + 2α
5 x3/2 + 8πα

3ηB
x5/2

. (11)

Although there is no experimental estimate of the parame-
ter ηB for bosons despite some attempts [10], there are several
microscopic many-body calculations of this parameter lying
in the range from 3 to 9 [35,36]. Of these, Ding and Greene
(DG) [36] performed a microscopic Hartree calculation along
the crossover and in addition to the value of ηB = 4.7, they
provided a reliable estimate of the universal function f (x)
along the crossover. In Fig. 1, we illustrate the present uni-
versal function f (x) of Eq. (8) for ηB = 4.7 and compare
with the same from the microscopic calculation of DG [36]
and also with the GP functional f (x) = 4πx and the LHY

functional f (x) = 4π (x + αx5/2/2). For very small x or for
small values aB, both the GP and LHY functionals are in
reasonable agreement with the present crossover functional as
can be seen in Fig. 1. However, for larger x, near unitarity, the
GP and the LHY contribution cannot describe the actual state
of affairs.

For a fully paired uniform superfluid of spin-1/2 Fermi
gas, the energy density is given by [5,23]

EF (nF , aF ) = 3
5 EF [1 + c1y + c2y2 + · · · ], (12)

c1 = 10

9π
, c2 = 4(11 − ln4)

21π2
, y = kF aF , (13)

with Fermi momentum kF = (3π2nF )1/3, Fermi energy EF =
h̄2k2

F /2mF , and aF (<0) is the scattering length of spin
up-down fermions. In Eq. (12), the first term 3EF /5 is the
DF term [5,7] valid in the Bardeen-Cooper-Schrieffer (BCS)
[37] weak-coupling limit. The next two terms represent the
perturbative LHY contribution [23]. The energy density at
unitarity is written as [7,29]

lim
|aF |→∞

EF (nF , aF ) = 3
5 EF ηF . (14)

The minimal analytic energy density along the weak-coupling
to unitarity crossover consistent with the weak-coupling LHY
limit (12) and the unitarity limit (14) is

EF (nF , aF ) = 3

5
EF

⎡
⎢⎣1 + c1y + (

c2 − 2c2
1

)
y2

1 − 2c1y +
(

c2−2c2
1

)
y2

ηF −1

⎤
⎥⎦. (15)

The following expression for the bulk chemical potential
of a uniform Fermi gas in the weak-coupling LHY limit can
be obtained from Eq. (12):

μF (nF , aF ) ≡ ∂ (nFEF )

∂nF
= EF [1 + d1y + d2y2 + · · · ], (16)

d1 = 4

3π
, d2 = 4(11 − ln4)

15π2
. (17)

A nonperturbative expression for the chemical potential along
the crossover is written in an analogous fashion

μF (nF , aF ) ≡ EF g(y), (18)

g(y) =

⎡
⎢⎣1 + d1y + (

d2 − 2d2
1

)
y2

1 − 2d1y +
(

d2−2d2
1

)
y2

ηF −1

⎤
⎥⎦. (19)

This bulk chemical potential has the correct LHY limit (16)
and the unitarity limit:

lim
|aF |→∞

μF (nF , aF ) = EF . (20)

In this paper we will use Eq. (4) to describe Fermi dynamics
with μF of Eq. (18) correct in the weak- and strong-coupling
limits employing Fermi variables, and not pair variables.
Actually, the chemical potential μF and the associated energy
for fermions was used by von Weizsäcker [38] to describe
properties of atomic nucleus without any superfluid properties
long before the work of Landau [32]. The expression for
chemical potential μF (18) remains valid for any value of
superfluid fraction. Hence, Eq. (4) can be used to describe
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many macroscopic properties of equal mixture of spin-up
and -down fermions, like density distribution and frequency
of oscillation, independent of its superfluid nature. This is
pertinent as for attractive interaction between spin-up and
-down fermions the superfluid fraction could be small [39].
For small values of superfluid fraction, the use of Eq. (4) to
describe superfluid properties of attractive fermions, such as
the generation of vortex lattice in a rotating Fermi superfluid,
may lead to qualitatively wrong result because the unpaired
fermions remain in a normal state and do not contribute
to vortex lattice formation. For describing the formation of
vortex lattice, a more fundamental set of dynamical equations
[40] should be used. The simple DF equation (4) can, however,
be used to describe non-superfluid properties of the Fermi gas,
such as density distribution and phase separation, even for
small values of superfluid fraction. There have been numerous
successful applications of similar crossover models to study
density distribution [29,31] and collective dynamics [30] of a
Fermi gas along the crossover.

There are results of energy density EF (nF , aF ) from sev-
eral theoretical microscopic calculations [41–43,46–50] and
experimental estimates [12,44,45]. Most of the theoretical
and experimental estimates for ηF lie in the range ηF =
0.4 ± .05 [12–15,42,44–50] and in this paper we will employ
ηF = 0.4. In Fig. 2(a), we plot present energy density EF

of Eq. (15) versus (kF aF )−1, its LHY limit (12) and the
theoretical [41–43] estimates of energy density. In Fig. 2(b)
we compare the present result with several other experimental
[12,44,45] and theoretical [46–50] estimates near unitarity. In
Fig. 2(c), we plot the chemical potential (18) versus (kF aF )−1,
its LHY limit (12), and the numerically calculated chemical
potential from the energy density (15). From Fig. 2, we find
that, for large values of (|aF |kF )−1 in the weak-coupling limit
(|aF | → 0), the present crossover results for EF and μF agree
well with the LHY contribution. Along the whole crossover,
the agreement of the present EF (15) and μF (18) with other
estimates is good, and we will use these in the present study
with the crossover model.

There have been previous attempts to parametrize the
chemical potential of a uniform Bose [7,24] and Fermi [7,25]
systems. These previous attempts heavily relied on fitting pa-
rameters and/or the agreement with known experimental and
theoretical data was poor. The present analytic bulk chemical
potentials for uniform bosons (7) and fermions (18) have no
fitting parameters and have excellent agreement with known
data as illustrated in Figs. 1 and 2, and we will use these in
this study.

The Lagrangian density of the localized superfluid Bose-
Fermi mixture is written as [7]

L =
∑

i

[
ih̄

Ni

2
(φiφ̇

∗
i − φ∗

i φ̇i ) + Ni{Vi + Ei(ni, ai )}|φi|2
]

+ NBh̄2

2mB
|∇φB|2 + NF h̄2

8mF
|∇φF |2

+ 1

2
4πaBF NBNF

h̄2

mR
|φB|2|φF |2, (21)

where φi, Ni are the order parameter and number of atoms
of the Bose or Fermi component, mR ≡ mBmF /(mB + mF ) is

FIG. 2. Energy density EF versus (aF kF )−1 along the weak-
coupling BCS to unitarity crossover: (a) Eq. (15) (present) with
ηF = 0.4; Eq. (12) (LHY); quantum Monte Carlo results of Ref. [41];
Ref. [42]; and Ref. [43]. (b) Eq. (15) (present) with ηF = 0.4; exper-
imental results of Refs. [12], [44], and [45], and theoretical results
using fixed-node diffusion Monte Carlo [46], Luttinger-Ward [47],
Nozieres and Schmitt Rink [48], quantum Monte Carlo [49], and
extended t matrix approximation [50] methods. (c) Bulk chemical po-
tential μF versus (aF kF )−1 along the weak-coupling BCS to unitarity
crossover: Eq. (18) (present) with ηF = 0.4; Eq. (16) (LHY); numer-
ically calculated from Eq. (15) using μF = ∂ (nFEF )/∂nF (num).

the reduced mass, aBF is the Bose-Fermi scattering length
to characterize the spin-independent interaction between a
boson and a fermion, and the energies Ei(ni, ai ) are given by
Eqs. (11) and (15) and the density ni ≡ Ni|φi|2.

The Euler-Lagrange equations for a spherically symmetric
trap corresponding to Lagrangian (21) are

ih̄
∂φB(r, t )

∂t
=

[
− h̄2∇2

2mB
+ mBV (r) + μB(nB, aB)

+ 2h̄2πaBF NF

mR
|φF |2

]
φB(r, t ), (22)

ih̄
∂φF (r, t )

∂t
=

[
− h̄2∇2

8mF
+ mFV (r) + μF (nF , aF )

+ 2h̄2πaBF NB

mR
|φB|2

]
φF (r, t ), (23)
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where μB and μF are given by Eqs. (7) and (18), respectively,
valid along the crossover, and the confining trap is taken as

V (r) = 1
2

[
ω2

x (x2 + y2) + ω2
z z2], (24)

where for a spherically symmetric confinement ωx = ωz and
for a quasi-1D confinement ωx � ωz, with ωx and ωz the
trapping frequencies along x and z axes, respectively. In
the absence of the interaction between bosons and fermions
(aBF = 0), Eqs. (22) and (23) reduce to Eqs. (3) and (4) for
bosons and fermions, respectively.

In Eqs. (22) and (23) the Bose and Fermi chemical po-
tentials μB and μF are valid along the crossover from weak
to strong coupling, whereas for Bose-Fermi interaction we
are using its value in the weak-coupling limit as in the GP
equation, as there is no universally accepted form of the
Bose-Fermi interaction in the weak and strong couplings. This
is acceptable if the calculation is limited to only the weak
coupling limit of Bose-Fermi interaction. From Fig. 1, we find
that the GP functional agrees with the crossover formula for
chemical potential for values of the gas parameter x � 0.2 and
the present study will be limited in this domain.

We obtain a set of coupled dimensionless equations from
Eqs. (22) and (23) by expressing length in units of l0 ≡√

h̄/mBωx, time in units of t0 = mBl2
0 /h̄, |φi|2 in units of l−3

0 ,
and energy in units of h̄2/mBl2

0 , etc.,

i
∂φB(r, t )

∂t
=

[
−∇2

2
+ V (r) + n2/3

B f
(
aBn1/3

B

)

+ 2πmBaBF nF

mR

]
φB(r, t ), (25)

i
∂φF (r, t )

∂t
=

[
−mB∇2

8mF
+ mF

mB
V (r) + mBk2

F

2mF
g(aF kF )

+ 2πmBaBF nB

mR

]
φF (r, t ), (26)

V (r) = 1

2

[
(x2 + y2) + ω2

z

ω2
x

z2

]
, (27)

where kF = (3π2NF |φF |2)1/3, and functions f and g are given
by Eqs. (8) and (19).

III. NUMERICAL RESULTS

Equations (25) and (26) do not have analytic solution and
different numerical methods, such as split time-step Crank-
Nicolson [51,52] and Fourier pseudo-spectral [53] methods,
are usually used to obtain their solution. The ground state of
the Bose-Fermi mixture is obtained by solving Eqs. (25)–(26)
in imaginary time [51].

We consider a Bose-Fermi mixture of 7Li and 6Li atoms
in a three-dimensional isotropic trap (ωx = ωz), where we
use the radial symmetry of the system, trapping potential and
emergent solutions, to cast the Eqs. (25)–(26) in terms of a
single spatial coordinate r, i.e., the radial coordinate of the
spherical polar coordinate system. The radial spatial step size
�r and time step �t used to solve the Eqs. (26)–(25) numeri-
cally are 0.05 and 0.0001, respectively, in dimensionless units.

The solutions obtained with the present crossover model
which smoothly connects the weak-coupling regime with the

unitarity regime are compared with the two models applicable
in the weak-coupling regime, i.e., the GP-DF and LHY mod-
els. Before we proceed, let us precisely state what we mean
by these three models. Solutions of Eqs. (25) and (26) with
f (x = aBN1/3

B |φB|2/3) and g(y = aF kF ) given, respectively, by
Eqs. (8) and (19), are termed as solutions obtained by the
present model (denoted by symbol P for present). In the LHY
and GP-DF models, f (x) and g(y) in Eqs. (25) and (26) are
given, respectively, by

f (x) = 4π

(
x + α

2
x5/2

)
, g(y) = 1 + d1y + d2y2; (28)

f (x) = 4πx, g(y) = 1. (29)

We find that the ground state solution of the present model
can be different quantitatively as well as qualitatively from
the LHY and GP-DF models.

We find that without the interspecies interaction (aBF = 0)
the density of both components is maximum at the center
resulting in a mixed phase. With the increase of repulsive
interspecies interaction the density of one of the components
may reduce at the center. With further increase of interspecies
repulsion the density of one of the components could be zero
at the center and when that happens we will call the resultant
Bose-Fermi state a demixed state.

We first consider a Bose-Fermi 7Li-6Li mixture with NB =
50000, NF = 1000, aF = 0, aBF = 1500a0 for different aB. In
Fig. 3 we plot component densities |φi(r)|2 for the three mod-
els normalized as 4π

∫
r2dr|φi(r)|2 = 1. For aB = 500a0,

there is a good agreement between the component densities
obtained from the three models as is shown in Fig. 3(a), which
indicates that the system is in the weak-coupling regime. As
aB is increased progressively to (b) 1400a0 and (c) 2000a0, in
both the LHY and GP-DF models, the system slowly changes
from demixed state to mixed state with the transition first
occurring for the LHY model, viz. Figs. 3(a)–3(b), and then
for the GP-DF model, viz. Figs. 3(b)–3(c); whereas in the
present model the system remains always demixed. On further
increase in aB, the system remains demixed as per the present
model as shown in Fig. 4(a) for aB = ∞. However, a large
aBF (=1500a0) is necessary for demixing in the present model
and for a slightly smaller aBF (=1000a0), we have mixing in
the present model, viz. Fig. 4(b). Hence the qualitative differ-
ence among the results of the present model on one hand and
the LHY and the GP-DF models on the other hand as found
in Fig. 3, as aB is changed from weak to strong coupling,
is caused by a relatively large value of aBF (=1500a0) used
in numerical simulation. If we used the value aBF = 1000a0

instead, keeping all other parameters unchanged, we verified
that there will not be any qualitative difference in the results
of the three models: as aB is increased from weak to strong
coupling in all three models there will be transition from
demixed to mixed configuration (figure not presented). The
same will be true for the physical value aBF = 40a0 for the
Bose-Fermi scattering length in the 7Li-6Li system [54].

Here we are using a large value of aBF in the range
1000a0 ∼ 1500a0, and are using a mean-field GP-type Bose-
Fermi repulsion valid for small values of the gas parameter
xBF ≡ aBF (nBF )1/3 � 0.2, where nBF is the geometric mean
of Bose and Fermi densities. From Figs. 3 and 4, we find that
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FIG. 3. Densities of Bose (|φB|2) and Fermi (|φF |2) compo-
nents in a harmonically trapped 7Li-6Li mixture from a solution of
Eqs. (25)-(26) by imaginary-time propagation: present (P) crossover
model, Eqs. (8) and (19); LHY (LHY) model, Eq. (28); and GP-DF
(GP) model, Eq. (29); for aB = (a) 500a0, (b) 1400a0, and (c)
2000a0. The other parameters, NB = 50000, NF = 1000a0, aF = 0,
and aBF = 1500a0, are the same for (a)–(c).

the typical average values of |φi|2 are less than 0.0005 and
the densities are ni = Ni|φi|2 with NB = 50000, NF = 1000
and aBF = 1500a0; consequently, xBF ≈ 0.12 < 0.2, where
the GP approximation for Bose-Fermi interaction is valid.
In these figures the bosonic gas parameter with NB = 50000
and aB = 1500a0 is larger than 0.2, thus requiring the present
crossover formula for a proper description of dynamics.

Keeping NF and aF fixed, the NB-aB phase plots showing
the parameter domains of mixed and demixed states are illus-
trated in Figs. 5(a) and 5(b) for aBF = 1500a0 and 1000a0,
respectively. The demixed (mixed) states for the present, GP-
DF, and LHY models appear on the left (right) side of the
respective lines.

Let us consider another case with NB=1000, NF =50000,
aB = 500a0, aBF = 1500a0, while aF is progressively de-
creased. In this case, for −2000a0 � aF < 0, the three models
lead to qualitatively similar demixing with the Bose com-
ponent forming a core with the Fermi component forming a
shell surrounding it as shown in Fig. 6(a) for aF = −2000a0.
The results of the GP-DF model are independent of aF , and

FIG. 4. Same as in Fig. 3 for parameters (a) aB = ∞, aBF =
1500a0 and (b) aB = ∞, aBF = 1000a0 for the present (P) crossover
model, other parameters are the same as in Fig. 3.

hence in Fig. 6 we do not show the results of this model.
As aF is decreased slightly to aF = −2100a0, we find a
Bose component forming a shell outside a Fermi core at the
center as per the present model as is shown in Fig. 6(b) for
aF = −2100a0. Upon further reduction of aF to −8000a0,
the Bose shell moves further away from the center of the trap
according to the present model, whereas LHY model ends up
in the mixed phase as is shown in Fig. 6(c).

If we perform the analysis illustrated in Fig. 6 for
aBF = 1000a0, the interspecies repulsion is weaker and in the

FIG. 5. NB-aB phase plots illustrating the mixing and demixing
domains from the present (P) crossover, GP-DF (GP), LHY (LHY)
models for (a) NF = 1000, aF = 0, and aBF = 1500a0 and (b) NF =
1000, aF = 0, and aBF = 1000a0. The demixed (mixed) states with
the three models lie towards the left (right) of the respective lines.
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FIG. 6. Densities of Bose (|φB|2) and Fermi (|φF |2) compo-
nents in a harmonically trapped 7Li-6Li mixture from the present
(P) crossover model, Eqs. (25)-(26), and the LHY (LHY) model,
Eq. (28) for aF = (a) −2000a0, (b) −2100a0, and (c) −8000a0.
The other parameters, NB = 1000, NF = 50000a0, aB = 500a0, and
aBF = 1500a0, are the same for (a)–(c).

FIG. 7. Same as in Fig. 6 for NB = 1000, NF = 50000, aBF =
1000a0, aB = 1000a0, and (a) aF = 0, and (b) aF = −10000a0.

FIG. 8. NF -|aF | phase plots for NB = 1000, aB = 500a0 and il-
lustrating (a) the mixing and demixing domains for the present (P)
model with aBF = 1000a0, (b) crossover between the demixed state
with bosons (fermions) forming the core (shell) to the demixed state
with bosons (fermions) forming the shell (core) for present model
with aBF = 1500a0, and (c) the demixing and mixing domains for
the LHY (LHY) model with aBF = 1500a0.

weak-coupling limit (aF = 0), we have overlapping states for
all models as shown in Fig. 7(a). Again we do not show the
results of the GP-DF model as it does not change with aF .
In the strong-coupling limit (aF = −10000a0), the present
model results in the demixed state, whereas the LHY model
remains in the mixed state, viz. Fig. 7(b).

The mixing-demixing phenomena illustrated in Figs. 6 and
7 leads to the NF -|aF | phase plots of Fig. 8. In Fig. 8(a)
the fixed parameters are NB = 1000, aB = 500a0 and aBF =
1000a0. In this case mixing-demixing transition takes place
only for the present model for NF � 270. In Fig. 8(b), with
fixed parameters NB = 1000, aB = 500a0, aBF = 1500a0, the
present model, which results in a demixed ground state, pre-
dicts a position-swapping transition with the Bose component
forming the core which is surrounded by the fermionic shell
below a critical NF for a given value of aF (as is shown
in Fig. 6(a)). Above this critical NF , the Fermi component
moves to the core with the Bose component forming the
shell around it as in Fig. 6(c). These two qualitatively dif-
ferent states are marked as B(in) and B(out), respectively,
in Fig. 8(b). For the same fixed parameters NB = 1000, aB =
500a0, aBF = 1500a0, the LHY model leads to the demixing-
mixing transition as one increases NF at the fixed value of aF

as is shown in Fig. 8(c).
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FIG. 9. Reduced density di(z) of the binary Bose-Fermi mix-
ture for (a) NB = 100, NF = 50000, aB = 4000a0, aF = −4000a0,

aBF = 1500a0, (b) NB = 50000, NF = 100, aB = 4000a0, aF =
−4000a0, aBF = 1500a0 for the present (P) and GP-DF (GP) models.
Here ωz = 0.1ωx .

Next we consider a quasi-1D 7Li-6Li Bose-Fermi mixture
[55] along the z axis with strong traps in the x − y plane (ωx =
10ωz) and consider a few illustrative examples to show the
qualitatively different ground state solutions obtained from the
present model as compared to the GP-DF and LHY models.
The spatial step size �x = �y = �z and time step �t used
to solve Eqs. (25)-(26) numerically are 0.15 and 0.005625,
respectively, in dimensionless units. In such a quasi-1D Bose-
Fermi mixture, the essential collective dynamics and mixing-
demixing transition take place in the z direction. Hence for
quasi-1D 7Li-6Li Bose-Fermi mixtures, we will illustrate
only the reduced 1D density along the z direction di(z) =∫

dxdy|φi(x, y, z)|2. Apart from mixing-demixing transition
in the z direction, we also find spontaneous symmetry-broken
states in the quasi-1D 7Li-6Li Bose-Fermi mixtures. Two
examples of spontaneous symmetry breaking in the present
model are shown in Figs. 9(a)–9(b) for the reduced 1D density
along the z direction where one of the components moved
away from the center breaking the parity symmetry. In this
case the results of the GP-DF and LHY models lie very close
to each other and the result of only the former model is
shown. In Fig. 9 there is a demixing in the present crossover
model with the density of one of the components being zero
at the center while the other component having a density
maximum at the center. The densities of the LHY model
remain overlapping and parity symmetric.

In addition to the spontaneous symmetry broken states of
Fig. 9, it is also possible to have partially to fully demixed
states in quasi-1D Bose-Fermi mixtures. For this purpose, we
consider (a) ωx = 10ωz and (b) ωx = 100ωz, where the spatial
step size �x = �y = �z and time step �t used to solve the
Eqs. (25)-(26) numerically are taken to be 0.1 and 0.0025,
respectively. For both (a) and (b), we consider NB = 1000,
NF = 100, aB = 500a0, aF = −20000a0, and aBF = 1500a0.

FIG. 10. Reduced density di(z) of the binary mixture for NB =
1000, NF = 100, aB = 500a0, aF = −20000a0, aBF = 1500a0 with
(a) ωz = 0.1ωx and (b) ωz = 0.01ωx for the present (P) and GP-DF
(GP) models.

The reduced 1D density di(z) obtained in these two cases
with the present and GP-DF models are shown in Figs. 10(a)
and 10(b); it is evident that the bosons stay in the cen-
tral region and the fermions are expelled symmetrically in
two directions. With the present model, the ground state
is partially demixed with ωx = 10ωz, viz. Fig. 10(a) and
fully demixed with ωx = 100ωz, viz. Fig. 10(b). In the GP-
DF models, there is partial demixing that becomes more
pronounced as the trap becomes more confined along the
radial direction; the same is the case with LHY model
(not shown in the figure).

IV. SUMMARY

Here we have demonstrated spontaneous symmetry break-
ing and a mixing-demixing transition in a trapped superfluid
Bose-Fermi mixture along the crossover from weak-coupling
to unitarity for both intraspecies Bose and Fermi interactions.
For Bose-Fermi interspecies interaction, we have used the
weak-coupling GP interaction. The usual description of the
superfluid Bose-Fermi mixture employs the weak-coupling
GP Lagrangian for the bosons and DF Lagrangian for the
fermions. The interaction term in the GP Lagrangian is es-
sentially the same as the many-body Hartree interaction term;
that in the DF Lagrangian is the total kinetic energy of the
fermions in the Fermi sea. Usual treatment of the Bose-Fermi
mixture employing the GP Lagrangian for bosons and DF
Lagrangian for fermions is termed the GP-DF formulation.
To study the Bose-Fermi mixture along the weak-to-strong
coupling crossover, we suggested analytic non-perturbative
Lagrangians for intraspecies Bose and Fermi interactions with
correct LHY limit(s) in the weak-coupling domain and with
correct unitarity limit(s) in the strong-coupling domain. These
analytic Lagrangians have a single parameter: the universal
parameter(s) ηi at unitarity for bosons and fermions. In this
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study we have used the most precise value(s) of this universal
parameter, which should be updated in future applications,
if possible. The Euler-Lagrange equations of the Bose-Fermi
mixture describe the dynamics and have been used in this
study.

In this study, we considered spherically symmetric and
quasi-1D traps. In both cases, we compared the results of
the present model valid along the crossover with those of
the usual weak-coupling GP-DF and LHY models and found
that the two types of treatments may lead to qualitatively
different results. For example, in spherically symmetric traps
we identified cases of demixing in Bose-Fermi mixture using
the present crossover model not found in the weak-coupling
GP-DF and LHY models. In quasi-1D traps, we found sponta-
neous symmetry breaking in the present crossover model not

found in GP-DF and LHY models. Hence we conclude that
the perturbative LHY model is unable to properly describe the
Bose-Fermi mixture away from the weak-coupling limit.
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Adhikari, and A. Balaž, Comput. Phys. Commun. 204, 209
(2016); L. E. Young-S., P. Muruganandam, S. K. Adhikari, V.
Loncar, D. Vudragovic, and A. Balaž, ibid. 220, 503 (2017).

[53] P. Muruganandam and S. K. Adhikari, J. Phys. B 36, 2501
(2003).

[54] S. Laurent, M. Pierce, M. Delehaye, T. Yefsah, F. Chevy, and
C. Salomon, Phys. Rev. Lett. 118, 103403 (2017).

[55] S. K. Adhikari and L. Salasnich, New J. Phys. 11, 023011
(2009).

023626-10

https://doi.org/10.1134/S1054660X07020211
https://doi.org/10.1134/S1054660X07020211
https://doi.org/10.1134/S1054660X07020211
https://doi.org/10.1134/S1054660X07020211
https://doi.org/10.1103/PhysRevA.72.023621
https://doi.org/10.1103/PhysRevA.72.023621
https://doi.org/10.1103/PhysRevA.72.023621
https://doi.org/10.1103/PhysRevA.72.023621
https://doi.org/10.1103/PhysRev.50.955
https://doi.org/10.1103/PhysRev.50.955
https://doi.org/10.1103/PhysRev.50.955
https://doi.org/10.1103/PhysRev.50.955
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1103/PhysRevA.99.033614
https://doi.org/10.1103/PhysRevA.99.033614
https://doi.org/10.1103/PhysRevA.99.033614
https://doi.org/10.1103/PhysRevA.99.033614
https://doi.org/10.1088/1367-2630/aadabe
https://doi.org/10.1088/1367-2630/aadabe
https://doi.org/10.1088/1367-2630/aadabe
https://doi.org/10.1088/1367-2630/aadabe
https://doi.org/10.1007/s10909-017-1820-0
https://doi.org/10.1007/s10909-017-1820-0
https://doi.org/10.1007/s10909-017-1820-0
https://doi.org/10.1007/s10909-017-1820-0
https://doi.org/10.1088/1361-6455/50/3/035301
https://doi.org/10.1088/1361-6455/50/3/035301
https://doi.org/10.1088/1361-6455/50/3/035301
https://doi.org/10.1088/1361-6455/50/3/035301
https://doi.org/10.1088/1367-2630/18/5/053014
https://doi.org/10.1088/1367-2630/18/5/053014
https://doi.org/10.1088/1367-2630/18/5/053014
https://doi.org/10.1088/1367-2630/18/5/053014
https://doi.org/10.1103/PhysRevA.94.043614
https://doi.org/10.1103/PhysRevA.94.043614
https://doi.org/10.1103/PhysRevA.94.043614
https://doi.org/10.1103/PhysRevA.94.043614
https://doi.org/10.1103/PhysRevA.90.053621
https://doi.org/10.1103/PhysRevA.90.053621
https://doi.org/10.1103/PhysRevA.90.053621
https://doi.org/10.1103/PhysRevA.90.053621
https://doi.org/10.1103/PhysRevA.88.063621
https://doi.org/10.1103/PhysRevA.88.063621
https://doi.org/10.1103/PhysRevA.88.063621
https://doi.org/10.1103/PhysRevA.88.063621
https://doi.org/10.1016/j.aop.2012.03.006
https://doi.org/10.1016/j.aop.2012.03.006
https://doi.org/10.1016/j.aop.2012.03.006
https://doi.org/10.1016/j.aop.2012.03.006
https://doi.org/10.1103/PhysRevC.95.054306
https://doi.org/10.1103/PhysRevC.95.054306
https://doi.org/10.1103/PhysRevC.95.054306
https://doi.org/10.1103/PhysRevC.95.054306
https://doi.org/10.1103/PhysRevC.97.041301
https://doi.org/10.1103/PhysRevC.97.041301
https://doi.org/10.1103/PhysRevC.97.041301
https://doi.org/10.1103/PhysRevC.97.041301
https://doi.org/10.1142/S0217979218502302
https://doi.org/10.1142/S0217979218502302
https://doi.org/10.1142/S0217979218502302
https://doi.org/10.1142/S0217979218502302
https://doi.org/10.1140/epjb/e2014-50161-x
https://doi.org/10.1140/epjb/e2014-50161-x
https://doi.org/10.1140/epjb/e2014-50161-x
https://doi.org/10.1140/epjb/e2014-50161-x
https://doi.org/10.1088/0953-4075/46/3/035302
https://doi.org/10.1088/0953-4075/46/3/035302
https://doi.org/10.1088/0953-4075/46/3/035302
https://doi.org/10.1088/0953-4075/46/3/035302
https://doi.org/10.1103/PhysRevLett.95.030404
https://doi.org/10.1103/PhysRevLett.95.030404
https://doi.org/10.1103/PhysRevLett.95.030404
https://doi.org/10.1103/PhysRevLett.95.030404
https://doi.org/10.1038/s41598-018-27146-1
https://doi.org/10.1038/s41598-018-27146-1
https://doi.org/10.1038/s41598-018-27146-1
https://doi.org/10.1038/s41598-018-27146-1
https://doi.org/10.1103/PhysRevLett.103.025302
https://doi.org/10.1103/PhysRevLett.103.025302
https://doi.org/10.1103/PhysRevLett.103.025302
https://doi.org/10.1103/PhysRevLett.103.025302
https://doi.org/10.1103/PhysRevA.81.063613
https://doi.org/10.1103/PhysRevA.81.063613
https://doi.org/10.1103/PhysRevA.81.063613
https://doi.org/10.1103/PhysRevA.81.063613
https://doi.org/10.1103/PhysRevA.84.033618
https://doi.org/10.1103/PhysRevA.84.033618
https://doi.org/10.1103/PhysRevA.84.033618
https://doi.org/10.1103/PhysRevA.84.033618
https://doi.org/10.1016/j.aop.2012.09.005
https://doi.org/10.1016/j.aop.2012.09.005
https://doi.org/10.1016/j.aop.2012.09.005
https://doi.org/10.1016/j.aop.2012.09.005
https://doi.org/10.1103/PhysRevA.89.041602
https://doi.org/10.1103/PhysRevA.89.041602
https://doi.org/10.1103/PhysRevA.89.041602
https://doi.org/10.1103/PhysRevA.89.041602
https://doi.org/10.1103/PhysRevA.95.053602
https://doi.org/10.1103/PhysRevA.95.053602
https://doi.org/10.1103/PhysRevA.95.053602
https://doi.org/10.1103/PhysRevA.95.053602
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1007/BF01337700
https://doi.org/10.1007/BF01337700
https://doi.org/10.1007/BF01337700
https://doi.org/10.1007/BF01337700
https://doi.org/10.1103/PhysRevLett.95.230405
https://doi.org/10.1103/PhysRevLett.95.230405
https://doi.org/10.1103/PhysRevLett.95.230405
https://doi.org/10.1103/PhysRevLett.95.230405
https://doi.org/10.1103/PhysRevLett.91.030401
https://doi.org/10.1103/PhysRevLett.91.030401
https://doi.org/10.1103/PhysRevLett.91.030401
https://doi.org/10.1103/PhysRevLett.91.030401
https://doi.org/10.1103/PhysRevA.70.043602
https://doi.org/10.1103/PhysRevA.70.043602
https://doi.org/10.1103/PhysRevA.70.043602
https://doi.org/10.1103/PhysRevA.70.043602
https://doi.org/10.1103/PhysRevLett.93.200404
https://doi.org/10.1103/PhysRevLett.93.200404
https://doi.org/10.1103/PhysRevLett.93.200404
https://doi.org/10.1103/PhysRevLett.93.200404
https://doi.org/10.1103/PhysRevLett.100.030401
https://doi.org/10.1103/PhysRevLett.100.030401
https://doi.org/10.1103/PhysRevLett.100.030401
https://doi.org/10.1103/PhysRevLett.100.030401
https://doi.org/10.1103/PhysRevX.7.041004
https://doi.org/10.1103/PhysRevX.7.041004
https://doi.org/10.1103/PhysRevX.7.041004
https://doi.org/10.1103/PhysRevX.7.041004
https://doi.org/10.1126/science.1214987
https://doi.org/10.1126/science.1214987
https://doi.org/10.1126/science.1214987
https://doi.org/10.1126/science.1214987
https://doi.org/10.1103/PhysRevA.83.041601
https://doi.org/10.1103/PhysRevA.83.041601
https://doi.org/10.1103/PhysRevA.83.041601
https://doi.org/10.1103/PhysRevA.83.041601
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1209/epl/i2006-10023-y
https://doi.org/10.1209/epl/i2006-10023-y
https://doi.org/10.1209/epl/i2006-10023-y
https://doi.org/10.1209/epl/i2006-10023-y
https://doi.org/10.1103/PhysRevA.78.023625
https://doi.org/10.1103/PhysRevA.78.023625
https://doi.org/10.1103/PhysRevA.78.023625
https://doi.org/10.1103/PhysRevA.78.023625
https://doi.org/10.1103/PhysRevA.93.013610
https://doi.org/10.1103/PhysRevA.93.013610
https://doi.org/10.1103/PhysRevA.93.013610
https://doi.org/10.1103/PhysRevA.93.013610
https://doi.org/10.1103/PhysRevA.95.043625
https://doi.org/10.1103/PhysRevA.95.043625
https://doi.org/10.1103/PhysRevA.95.043625
https://doi.org/10.1103/PhysRevA.95.043625
https://doi.org/10.1016/j.cpc.2009.04.015
https://doi.org/10.1016/j.cpc.2009.04.015
https://doi.org/10.1016/j.cpc.2009.04.015
https://doi.org/10.1016/j.cpc.2009.04.015
https://doi.org/10.1016/j.cpc.2012.03.022
https://doi.org/10.1016/j.cpc.2012.03.022
https://doi.org/10.1016/j.cpc.2012.03.022
https://doi.org/10.1016/j.cpc.2012.03.022
https://doi.org/10.1016/j.cpc.2016.03.015
https://doi.org/10.1016/j.cpc.2016.03.015
https://doi.org/10.1016/j.cpc.2016.03.015
https://doi.org/10.1016/j.cpc.2016.03.015
https://doi.org/10.1016/j.cpc.2017.07.013
https://doi.org/10.1016/j.cpc.2017.07.013
https://doi.org/10.1016/j.cpc.2017.07.013
https://doi.org/10.1016/j.cpc.2017.07.013
https://doi.org/10.1088/0953-4075/36/12/310
https://doi.org/10.1088/0953-4075/36/12/310
https://doi.org/10.1088/0953-4075/36/12/310
https://doi.org/10.1088/0953-4075/36/12/310
https://doi.org/10.1103/PhysRevLett.118.103403
https://doi.org/10.1103/PhysRevLett.118.103403
https://doi.org/10.1103/PhysRevLett.118.103403
https://doi.org/10.1103/PhysRevLett.118.103403
https://doi.org/10.1088/1367-2630/11/2/023011
https://doi.org/10.1088/1367-2630/11/2/023011
https://doi.org/10.1088/1367-2630/11/2/023011
https://doi.org/10.1088/1367-2630/11/2/023011

