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Dynamic response of spin-2 bosons in one-dimensional optical lattices
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We investigate the spin-2 chain model corresponding to the small hopping limit of the spin-2 Bose-Hubbard
model using density-matrix renormalization-group and time-evolution techniques. We calculate both static
correlation functions and the dynamic structure factor. The dynamic structure factor in the dimerized phase
differs significantly between parameters near the SU(5)-symmetric point and those deeper in the phase where
the dimerization is strong. In the former case, most of the spectral weight is concentrated in a single excitation
line, while in the latter case, a broad excitation continuum shows up. For the trimerized phase, we find
gapless excitations at momenta k = ±2π/3 in agreement with previous results, although the visibility of
these excitations in the dynamic spin response depends strongly on the specific parameters. We also consider
parameters for specific atoms which may be relevant for future optical-lattice experiments.
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I. INTRODUCTION

After the realization of the Bose-Hubbard model and its
superfluid-Mott insulator transition [1], there have been many
proposals to extend experiments with optical lattices to other
systems [2,3]. One approach is to make use of the hyperfine
spin of alkali-metal atoms to add a spin-1 or spin-2 degree
of freedom to the particles [4,5], as has already been done
in experiments with Bose-Einstein condensates [6–9]. Such
systems are expected to be described by generalizations of
the Bose-Hubbard model with additional spin-dependent in-
teractions. These interactions could give rise to much richer
phase diagrams, which makes the models interesting also from
a theoretical point of view [10–12].

The Mott insulating phases in a deep optical lattice can be
studied more easily in effective models of localized spins [13].
Here we are interested in the spin-2 chain corresponding to
spin-2 bosons in a one-dimensional lattice at unit filling. In a
mean-field approximation this model realizes ferromagnetic,
nematic, and cyclic phases that each break the spin-rotation
symmetry in a different way [11,14]. However, a more reliable
density-matrix renormalization-group (DMRG) study showed
that in one dimension the nematic and cyclic phases are
replaced, respectively, by dimerized and trimerized phases
conserving the spin-rotation symmetry [15]. This is in agree-
ment with the Mermin-Wagner theorem which forbids the
spontaneous breaking of the continuous spin-rotation symme-
try in the case of nematic or cyclic order.

While the phase diagram has been established, the static
and dynamic properties of the spin-2 chain are much less
explored, also in comparison with its spin-1 counterpart. In
particular, the dynamic response should be of interest in the
case where the model could be realized experimentally. For
this reason, the primary objective of this paper is to calcu-
late the dynamic spin structure factor, which gives valuable
insight into the excitation spectrum of this system and should
be accessible in future experiments [16]. We restrict our-
selves to the dimerized and trimerized phases specific to one
dimension.

II. MODEL AND METHOD

Bosonic atoms with a fixed hyperfine spin S = 2 in an
optical lattice are expected to be described by the spin-2
Bose-Hubbard model

ĤB = −t
∑

jσ

(b̂†
jσ b̂ j+1,σ + H.c.) +

∑
j

∑
n=0,2,4

gnP̂n
j , (1)

where b̂†
jσ (b̂ jσ ) are bosonic creation (annihilation) operators

and σ ∈ {−2,−1, 0, 1, 2} is the z projection of the hyperfine
spin. The interaction term consists of projection operators
P̂n

j onto the subspace of states with total spin n at site j. It
describes s-wave scattering between the particles, and the in-
teraction strengths gn are, up to a constant factor, the scattering
lengths for the corresponding channel [14].

We study the limit of small hopping at unit filling and
assume that the interaction strengths are such that the ground
state has a uniform density. The effective spin-2 chain for this
limit in second-order perturbation theory is

Ĥ =
∑

j

∑
n=0,2,4

εnP̂n
j, j+1. (2)

Here P̂n
j, j+1 is the projection operator onto the subspace of

states with total spin n between sites j and j + 1, and εn =
−4t2/gn. We assume εn < 0 since other parameter regions are
not accessible with spin-2 bosons. The phase diagram for this
model obtained in Ref. [15] can be summarized as follows (cf.
Fig. 1): If the term proportional to ε0 is dominant, the system
is in a spontaneously dimerized gapped phase. The ε2 term
instead favors a gapless phase which has a trimerized ground
state for finite systems. Finally, a sufficiently large ε4 term
leads to ferromagnetic order.

The dimerized and trimerized phases both have the full
spin-rotation symmetry in the ground state. In the dimerized
phase, the symmetry under translation by one site is sponta-
neously broken, while the symmetry under bond-centered re-
flection is conserved. This is captured by the order parameter

OD = |〈ĥ j − ĥ j+1〉|/|〈ĥ j + ĥ j+1〉|, (3)
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FIG. 1. Schematic phase diagram of the model (2) as a ternary
plot of the variables (ε0, ε2, ε4)/(ε0 + ε2 + ε4) [15]. The circles
labeled (a)–(f) indicate the model-parameter values used in the
corresponding panels of Fig. 4.

where ĥ j = ∑
n=0,2,4 εnP̂n

j, j+1 is the nearest-neighbor term in
the Hamiltonian acting on the sites j and j + 1. A dimerized
phase also occurs in the model describing spin-1 bosons,
the spin-1 bilinear-biquadratic chain [17]. It has long been
debated for this model whether there is a direct transition to
the ferromagnet or an intermediate disordered nematic phase
exists [18–20]. Recent numerical calculations indicate the
absence of a nematic phase but find a very small dimerization
near the transition [21]. Here we take a similar view for
the spin-2 model, although the distinction between a weakly
dimerized phase and a uniform nematic phase is difficult to
detect numerically.

The name of the trimerized phase originates from the
period-3 structure seen for finite systems in the bond ob-
servables such as nearest-neighbor spin correlations [15]. In
the thermodynamic limit, this structure disappears and the
lattice symmetry is unbroken. Additionally, the excitation
gap vanishes unlike in the dimerized phase. The trimerized
phase does not occur in spin-1 bosons but resembles the
gapless phase in a different parameter region of the bilinear-
biquadratic chain. It was shown numerically to be described
by the SU(3)1 Wess-Zumino-Witten field theory with central
charge c = 2 [22]. In the same work, exact-diagonalization
spectra were provided which exhibit minima at k = ±2π/3.
The excitations at these momenta are expected to become
gapless in the thermodynamic limit, which can serve as a
signature of the phase in the dynamic spin response.

At the point ε0 = ε2 = ε4, where the three phases meet,
the symmetry of the Hamiltonian (2) becomes SU(5) and the
ground state is highly degenerate [11,12]. The degeneracy is
lifted, however, when moving into the dimerized or the trimer-
ized phase. Only a twofold degeneracy due to the broken
translation symmetry remains in the dimerized phase. In the
spinful Bose-Hubbard model, from which the effective Hamil-
tonian (2) is derived, the SU(5)-symmetric point corresponds
to the absence of any spin-dependent interactions.

Accurate numerical results for the ground states of one-
dimensional systems can be obtained with the DMRG which

is based on a matrix product state (MPS) ansatz [23,24].
Here we employ the infinite DMRG (IDMRG) that works
directly in the thermodynamic limit and approximates the
ground state by an infinite MPS (IMPS) [25,26]. Similarly to
the finite-system DMRG, the accuracy of the approximation
is determined by the so-called bond dimension χ . For details
of the numerical method, see Ref. [24]. The IMPS ansatz
is well suited to describe gapped ground states but cannot
capture the power-law decay of correlations in critical phases.
Nevertheless, even for gapless states the correlation functions
are correctly reproduced up to a finite distance that increases
with the bond dimension χ [26]. It is therefore possible to
obtain reliable information about the critical properties with
the IDMRG method [27].

Static correlation functions can be calculated directly from
the IMPS ground state. To obtain the dynamic structure fac-
tors, we use the IMPS as input for a time-evolving block-
decimation simulation [28] with infinite boundary condi-
tions [29]. We spread the time evolution to two separate states
in order to reach longer times and thereby a better resolu-
tion in frequency space [30,31]. Furthermore, we use linear
prediction to extrapolate the calculated dynamic correlation
functions to longer times [32]. This can be done reliably if the
spectrum consists of a small number of sharp excitation peaks.

III. STATIC CORRELATIONS

Figure 2 shows the IDMRG results for the static spin-spin
correlation function

Kzz(r) = 〈
Ŝz

j+r Ŝz
j

〉
(4)

and for the quadrupolar correlation function

Qzz(r) = 〈[(
Ŝz

j+r

)2 − 2
][(

Ŝz
j

)2 − 2
]〉

(5)

in the dimerized phase. The latter is of interest, since
quadrupolar ordering occurs in the nematic phase for similar
parameters in higher-dimensional versions of the model [11].
For simplicity, we consider only parameter points on the
line ε2 = ε4. Since the dimerized phase is gapped, the cor-
relations fall off exponentially at long distances. Near the
SU(5) point ε2/ε0 = 1, however, the correlation length is quite
large, as can be seen in the quadrupolar correlations Qzz(r).
Both functions Kzz(r) and Qzz(r) are more or less smooth
for ε2/ε0 � 1 but develop a period-2 structure when ε2/ε0

is decreased. This is indicative of the dimerization, which
can be more clearly detected by the order parameter OD

defined in Eq. (3) [see Fig. 2(c)]. We find that OD is almost
zero for ε2/ε0 � 0.7 but quickly increases for smaller values.
Similar behavior of the order parameter OD and dominance
of quadrupolar correlations have also been observed in the
spin-1 bilinear-biquadratic chain near the transition between
the ferromagnetic and dimerized phases [20,21].

Results for the trimerized phase are displayed in Fig. 3.
Here we choose ε0 = ε4 and analyze the dependence on 0 �
ε0/ε2 < 1. The spin-spin correlations again fall off smoothly
near the SU(5) point but now show a period-3 structure deeper
in the phase. In contrast to the dimerized phase, the correla-
tions decrease with a power law, as can be seen in the inset
of Fig. 3. Note that the quadrupolar correlation functions do
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FIG. 2. (a) Spin-spin and (b) quadrupolar correlation functions
defined in Eqs. (4) and (5) for the dimerized phase. A bond dimension
of χ = 4000 was used in the IDMRG calculations. The insets display
the same results using a semilogarithmic representation. (c) Dimer-
ization order parameter OD [Eq. (3)] as a function of ε2/ε0.

not decrease noticeably slower than the spin-spin correlations
(not shown).

The DMRG implementation explicitly enforces the U(1)
symmetry of Sz conservation but not the full SU(2) symmetry
of spin rotations. Nevertheless, the ground-state approxima-
tion fulfills the spin-rotation symmetry to high accuracy in the
dimerized phase. In the gapless trimerized phase, the IDMRG
converges to a state with broken spin symmetry. However,
the dipolar and quadrupolar order parameters vanish, i.e.,
〈Ŝα

j 〉 = 0 and 〈Q̂α,β
j 〉 = 0, where Q̂α,β

j = Ŝα
j Ŝβ

j + Ŝβ
j Ŝα

j − 4.
The symmetry breaking shows up only in higher powers of the
spin operators, e.g., 〈(Ŝz

j )
3〉 �= 〈(Ŝx

j )3〉. This is likely related to
the fact that the trimerized phase replaces the cyclic phase in
higher dimensions, where the spin-rotation symmetry breaks
without dipolar and quadrupolar order occurring [11,33].
These discrepancies become smaller with increasing bond
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FIG. 3. Spin-spin correlation function (4) in the trimerized
phase. The inset uses a log-log scale for the same data.

dimension χ and are expected to vanish for χ → ∞. Since we
are mainly interested in the dynamic spin-spin correlations,
the artificial symmetry breaking should not be problematic.

IV. DYNAMIC SPIN STRUCTURE FACTOR

The dynamic spin structure factor for a periodic chain with
N sites is defined by

S(k, ω) =
∑
n �=0

∣
∣〈n|S̃z

k|0〉∣∣2
δ(ω − (En − E0)), (6)

where S̃z
k = (1/

√
N )

∑
j eik j Ŝz

j and E0 (En) is the energy of
the ground state (nth excited state). Since the Hamiltonian
conserves the spin-rotation symmetry, it is not necessary to
consider the other spin components separately. In our nu-
merical calculations, we consider the thermodynamic limit
N → ∞.

At the SU(5)-symmetric point ε0 = ε2 = ε4, the Hamil-
tonian can be written as Ĥ = (ε0/2)

∑
j (1 + P̂ j, j+1), where

P̂ j, j+1 exchanges the states of sites j and j + 1. We therefore
have elementary excitations with dispersion

ω(k)/|ε0| = 1 − cos(k), (7)

which show up in S(k, ω) as δ peaks. In the following we
will analyze how the dynamic spin response changes when
moving away from this point into either the dimerized or the
trimerized phase, again concentrating on parameters ε2 = ε4

and ε0 = ε4.

A. Dimerized phase

Let us begin by discussing the dimerized phase. It is
reasonable to assume that the dynamic structure factor close to
the SU(5) point shows a dispersion similar to Eq. (7). On the
other hand, the excitation spectrum at the point ε2 = ε4 = 0 is
known exactly and it differs significantly from the one at the
SU(5) point. In particular, it is built from pairs of excitations,
which lead to a continuum in S(k, ω). Their dispersion is
given by [34]

ω(k)/|ε0| =
√

A + B sin2(k), (8)
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FIG. 4. Dynamic structure factor S(k, ω) [Eq. (6)] in the (a)–
(c) dimerized and (d)–(f) trimerized phases. The parameters used
are indicated in the phase diagram of Fig. 1. In (c) the exact onset
of the excitation continuum according to Eq. (8) is marked by the
dashed line. The energy unit is |ε0| for the dimerized and |ε2| for
the trimerized phase. All spectral functions are convolved with a
Gaussian function with σ = 0.075 using the same energy scale.

where A ≈ 0.290 and B ≈ 9.725. Our IDMRG results indi-
cate that the ground state for ε2 = 0 is strongly dimerized,
nearly consisting of fully decoupled pairs of nearest-neighbor
singlets. In fact, the exact dispersion (8) roughly agrees with a
simple estimate based on a decoupled site moving as a domain
wall through such a fully dimerized state.

Determining numerically the dynamic structure factor
S(k, ω), we can demonstrate how the excitation spectrum
changes between the two limits [Figs. 4(a)–4(c)]. Near the
SU(5) point, up to at least ε2/ε0 = 2/3, the dynamic struc-
ture factor S(k, ω) is indeed dominated by a single exci-
tation line, although a broad continuum below it is also
visible. The dispersion becomes linear at small momenta but
otherwise stays qualitatively similar to the cosine form of
Eq. (7). It is in fact very similar to the dispersion ω(k) ∝√

[1 − cos(k)]2 + A sin2(k) resulting from a generalized spin-
wave analysis around a nematically ordered mean-field state
of a spin-1 chain [35,36], even though our ground state has no
nematic order and we consider a spin-2 model.

Going to smaller values of ε2/ε0, the dynamic response
changes more significantly. The energy gap becomes notice-
ably larger and the spectral weight gets spread over a wide

FIG. 5. Dynamic structure factor for parameters calculated using
the scattering lengths of Ref. [37], namely, (ε0, ε2, ε4)/(ε0 + ε2 +
ε4) ≈ (0.43, 0.33, 0.24) and (0.36,0.34,0.30) for 23Na and 87Rb,
respectively. Energy units and Gaussian broadening are as in Fig. 4.

excitation continuum, particularly for |k| > π/2. The onset of
the continuum in the limit ε2 = 0 is in excellent agreement
with the exact dispersion (8). Comparing with Fig. 2, we find
that the change in S(k, ω) coincides with an increase in the
dimerization strength OD.

B. Trimerized phase

Let us now discuss the dynamic structure factor in the
trimerized phase [Figs. 4(d)–4(f)]. According to a previous
analysis, this phase is characterized by gapless excitations
with spin S = 0, 1, 2 at momenta k = ±2π/3 [22]. Numer-
ically, we find that for ε0/ε2 = 2/3, the spectral weight is still
concentrated in a single line with a dispersion similar to that
found in the dimerized phase. Further away from the SU(5)
point, for ε0/ε2 = 1/2, a continuum of excitations appears at
lower energies. In particular, the gap closes at k = 2π/3 as
anticipated in Ref. [22]. Moving towards the limit ε0 = 0, the
response at k = 2π/3 becomes more pronounced.

C. Relation to experiments

The parameters describing an optical lattice system will
depend on the scattering lengths of the particles. With the
values given in Ref. [37], one expects that 23Na atoms develop
a dimerized state and 87Rb atoms a trimerized state [15]. We
have included results for these parameters as examples for the
two phases. One should note, however, that experiments have
found a very short lifetime for 23Na gases in the manifold with
hyperfine spin S = 2, which makes an actual realization of
the corresponding spin Hamiltonian unlikely [38]. Systems of
87Rb atoms are more promising [39], although the model (2)
has not implemented so far. There are different estimates for
the scattering length of 87Rb in the literature [5,39], but the
deviations are rather small and we do not expect them to
notably affect the dynamic response function.

For the 23Na parameters [Fig. 5(a)], the dynamic struc-
ture factor S(k, ω) seems to exhibit signatures of both the
weak and the strong dimerization limit, i.e., there is a clear
excitation line but also significant spectral weight in the
continuum below it. In agreement with this, the dimerization
order parameter takes an intermediate value OD ≈ 0.14. For
87Rb [Fig. 5(b)], we do not see the low-energy excitations at
k = 2π/3 characteristic of the trimerized phase. Instead, the
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dynamic structure factor resembles that at the SU(5)-
symmetric point with dispersion (7). Perhaps this is not sur-
prising since, as shown in Fig. 1, the 87Rb parameters lie close
to the SU(5) point.

V. CONCLUSION

We have used time-dependent matrix product state tech-
niques to study the dynamic structure factor of a spin-2 chain
describing spinful bosons in optical lattices. The spectra in the
dimerized and trimerized phases are known to be qualitatively
different. While the dimerized phase is gapped, the trimerized
one has gapless excitations at momenta k = ±2π/3. In the
dynamic spin structure factor, however, these differences be-
come apparent only deeper into the respective phases. Near
the SU(5) point, where dimerized, trimerized, and ferromag-
netic phases meet, the observed spectra are quite similar,
with a single dominant excitation line and, in the dimerized
phase, only a very small gap. As parameters further away
from this point correspond to relatively strong spin-dependent

interactions in the underlying spin-2 Bose-Hubbard model,
they may be difficult to realize experimentally. Using the
scattering lengths of Ref. [37], we have carried out simula-
tions for 87Rb and 23Na. The dynamic structure factor for the
potentially feasible 87Rb systems indeed shows only a single
branch with a dispersion similar to the one at the SU(5) point.

So far we have considered only systems at zero temperature
in the limit of a deep optical lattice. In a real experiment,
however, temperature and hopping will be finite and it would
be interesting to see how this affects the system’s properties.
While it is possible to do this with matrix product state
techniques, the required computational effort would be sig-
nificantly higher than in the present work.

The DMRG simulations were performed using the ITENSOR

library [40].

ACKNOWLEDGMENT

F.L. was supported by Deutsche Forschungsgemeinschaft
(Germany) through Project No. FE 398/8-1.

[1] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Nature (London) 415, 39 (2002).

[2] C. Gross and I. Bloch, Science 357, 995 (2017).
[3] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M.

Greiner, Nature (London) 472, 307 (2011).
[4] E. Demler and F. Zhou, Phys. Rev. Lett. 88, 163001 (2002).
[5] D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85, 1191

(2013).
[6] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P.

Chikkatur, and W. Ketterle, Nature (London) 396, 345 (1998).
[7] H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke, S. van

Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock,
Phys. Rev. Lett. 92, 040402 (2004).

[8] M.-S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M.
Fortier, W. Zhang, L. You, and M. S. Chapman, Phys. Rev. Lett.
92, 140403 (2004).

[9] T. Kuwamoto, K. Araki, T. Eno, and T. Hirano, Phys. Rev. A
69, 063604 (2004).

[10] R. V. Pai, K. Sheshadri, and R. Pandit, Phys. Rev. B 77, 014503
(2008).

[11] R. Barnett, A. Turner, and E. Demler, Phys. Rev. Lett. 97,
180412 (2006).

[12] H. Yang and H. Katsura, Phys. Rev. Lett. 122, 053401 (2019).
[13] A. Imambekov, M. Lukin, and E. Demler, Phys. Rev. A 68,

063602 (2003).
[14] K. Eckert, Ł. Zawitkowski, M. J. Leskinen, A. Sanpera, and M.

Lewenstein, New J. Phys. 9, 133 (2007).
[15] P. Chen, Z.-L. Xue, I. P. McCulloch, M.-C. Chung, and S.-K.

Yip, Phys. Rev. A 85, 011601(R) (2012).
[16] D. Baillie and P. B. Blakie, Phys. Rev. A 93, 033607 (2016).
[17] M. N. Barber and M. T. Batchelor, Phys. Rev. B 40, 4621

(1989).
[18] A. V. Chubukov, Phys. Rev. B 43, 3337 (1991).
[19] K. Buchta, G. Fáth, O. Legeza, and J. Sólyom, Phys. Rev. B 72,

054433 (2005).

[20] A. Läuchli, G. Schmid, and S. Trebst, Phys. Rev. B 74, 144426
(2006).

[21] S. Hu, A. M. Turner, K. Penc, and F. Pollmann, Phys. Rev. Lett.
113, 027202 (2014).

[22] P. Chen, Z.-L. Xue, I. P. McCulloch, M.-C. Chung, C.-
C. Huang, and S.-K. Yip, Phys. Rev. Lett. 114, 145301
(2015).

[23] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[24] U. Schollwöck, Ann. Phys. (NY) 326, 96 (2011).
[25] I. P. McCulloch, arXiv:0804.2509.
[26] G. Vidal, Phys. Rev. Lett. 98, 070201 (2007).
[27] S. Ejima, T. Yamaguchi, F. H. L. Essler, F. Lange, Y. Ohta, and

H. Fehske, SciPost Phys. 5, 59 (2018).
[28] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[29] H. N. Phien, G. Vidal, and I. P. McCulloch, Phys. Rev. B 86,

245107 (2012).
[30] T. Barthel, New J. Phys. 15, 073010 (2013).
[31] F. Lange, S. Ejima, and H. Fehske, Phys. Rev. B 97, 060403(R)

(2018).
[32] S. R. White and I. Affleck, Phys. Rev. B 77, 134437

(2008).
[33] F. Zhou and G. W. Semenoff, Phys. Rev. Lett. 97, 180411

(2006).
[34] A. Klümper, J. Phys. A: Math. Gen. 23, 809 (1990).
[35] V. M. Matveev, Zh. Eksp. Teor. Fiz. 65, 1626 (1973) [Sov. Phys.

JETP 38, 813 (1974)].
[36] N. Papanicolaou, Nucl. Phys. B 305, 367 (1988).
[37] C. V. Ciobanu, S.-K. Yip, and T.-L. Ho, Phys. Rev. A 61,

033607 (2000).
[38] A. Görlitz, T. L. Gustavson, A. E. Leanhardt, R. Löw, A. P.

Chikkatur, S. Gupta, S. Inouye, D. E. Pritchard, and W. Ketterle,
Phys. Rev. Lett. 90, 090401 (2003).

[39] A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel, and I.
Bloch, New J. Phys. 8, 152 (2006).

[40] http://itensor.org/.

023623-5

https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1038/nature09994
https://doi.org/10.1038/nature09994
https://doi.org/10.1038/nature09994
https://doi.org/10.1038/nature09994
https://doi.org/10.1103/PhysRevLett.88.163001
https://doi.org/10.1103/PhysRevLett.88.163001
https://doi.org/10.1103/PhysRevLett.88.163001
https://doi.org/10.1103/PhysRevLett.88.163001
https://doi.org/10.1103/RevModPhys.85.1191
https://doi.org/10.1103/RevModPhys.85.1191
https://doi.org/10.1103/RevModPhys.85.1191
https://doi.org/10.1103/RevModPhys.85.1191
https://doi.org/10.1038/24567
https://doi.org/10.1038/24567
https://doi.org/10.1038/24567
https://doi.org/10.1038/24567
https://doi.org/10.1103/PhysRevLett.92.040402
https://doi.org/10.1103/PhysRevLett.92.040402
https://doi.org/10.1103/PhysRevLett.92.040402
https://doi.org/10.1103/PhysRevLett.92.040402
https://doi.org/10.1103/PhysRevLett.92.140403
https://doi.org/10.1103/PhysRevLett.92.140403
https://doi.org/10.1103/PhysRevLett.92.140403
https://doi.org/10.1103/PhysRevLett.92.140403
https://doi.org/10.1103/PhysRevA.69.063604
https://doi.org/10.1103/PhysRevA.69.063604
https://doi.org/10.1103/PhysRevA.69.063604
https://doi.org/10.1103/PhysRevA.69.063604
https://doi.org/10.1103/PhysRevB.77.014503
https://doi.org/10.1103/PhysRevB.77.014503
https://doi.org/10.1103/PhysRevB.77.014503
https://doi.org/10.1103/PhysRevB.77.014503
https://doi.org/10.1103/PhysRevLett.97.180412
https://doi.org/10.1103/PhysRevLett.97.180412
https://doi.org/10.1103/PhysRevLett.97.180412
https://doi.org/10.1103/PhysRevLett.97.180412
https://doi.org/10.1103/PhysRevLett.122.053401
https://doi.org/10.1103/PhysRevLett.122.053401
https://doi.org/10.1103/PhysRevLett.122.053401
https://doi.org/10.1103/PhysRevLett.122.053401
https://doi.org/10.1103/PhysRevA.68.063602
https://doi.org/10.1103/PhysRevA.68.063602
https://doi.org/10.1103/PhysRevA.68.063602
https://doi.org/10.1103/PhysRevA.68.063602
https://doi.org/10.1088/1367-2630/9/5/133
https://doi.org/10.1088/1367-2630/9/5/133
https://doi.org/10.1088/1367-2630/9/5/133
https://doi.org/10.1088/1367-2630/9/5/133
https://doi.org/10.1103/PhysRevA.85.011601
https://doi.org/10.1103/PhysRevA.85.011601
https://doi.org/10.1103/PhysRevA.85.011601
https://doi.org/10.1103/PhysRevA.85.011601
https://doi.org/10.1103/PhysRevA.93.033607
https://doi.org/10.1103/PhysRevA.93.033607
https://doi.org/10.1103/PhysRevA.93.033607
https://doi.org/10.1103/PhysRevA.93.033607
https://doi.org/10.1103/PhysRevB.40.4621
https://doi.org/10.1103/PhysRevB.40.4621
https://doi.org/10.1103/PhysRevB.40.4621
https://doi.org/10.1103/PhysRevB.40.4621
https://doi.org/10.1103/PhysRevB.43.3337
https://doi.org/10.1103/PhysRevB.43.3337
https://doi.org/10.1103/PhysRevB.43.3337
https://doi.org/10.1103/PhysRevB.43.3337
https://doi.org/10.1103/PhysRevB.72.054433
https://doi.org/10.1103/PhysRevB.72.054433
https://doi.org/10.1103/PhysRevB.72.054433
https://doi.org/10.1103/PhysRevB.72.054433
https://doi.org/10.1103/PhysRevB.74.144426
https://doi.org/10.1103/PhysRevB.74.144426
https://doi.org/10.1103/PhysRevB.74.144426
https://doi.org/10.1103/PhysRevB.74.144426
https://doi.org/10.1103/PhysRevLett.113.027202
https://doi.org/10.1103/PhysRevLett.113.027202
https://doi.org/10.1103/PhysRevLett.113.027202
https://doi.org/10.1103/PhysRevLett.113.027202
https://doi.org/10.1103/PhysRevLett.114.145301
https://doi.org/10.1103/PhysRevLett.114.145301
https://doi.org/10.1103/PhysRevLett.114.145301
https://doi.org/10.1103/PhysRevLett.114.145301
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
http://arxiv.org/abs/arXiv:0804.2509
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.21468/SciPostPhys.5.6.059
https://doi.org/10.21468/SciPostPhys.5.6.059
https://doi.org/10.21468/SciPostPhys.5.6.059
https://doi.org/10.21468/SciPostPhys.5.6.059
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevB.86.245107
https://doi.org/10.1103/PhysRevB.86.245107
https://doi.org/10.1103/PhysRevB.86.245107
https://doi.org/10.1103/PhysRevB.86.245107
https://doi.org/10.1088/1367-2630/15/7/073010
https://doi.org/10.1088/1367-2630/15/7/073010
https://doi.org/10.1088/1367-2630/15/7/073010
https://doi.org/10.1088/1367-2630/15/7/073010
https://doi.org/10.1103/PhysRevB.97.060403
https://doi.org/10.1103/PhysRevB.97.060403
https://doi.org/10.1103/PhysRevB.97.060403
https://doi.org/10.1103/PhysRevB.97.060403
https://doi.org/10.1103/PhysRevB.77.134437
https://doi.org/10.1103/PhysRevB.77.134437
https://doi.org/10.1103/PhysRevB.77.134437
https://doi.org/10.1103/PhysRevB.77.134437
https://doi.org/10.1103/PhysRevLett.97.180411
https://doi.org/10.1103/PhysRevLett.97.180411
https://doi.org/10.1103/PhysRevLett.97.180411
https://doi.org/10.1103/PhysRevLett.97.180411
https://doi.org/10.1088/0305-4470/23/5/023
https://doi.org/10.1088/0305-4470/23/5/023
https://doi.org/10.1088/0305-4470/23/5/023
https://doi.org/10.1088/0305-4470/23/5/023
http://www.jetp.ac.ru/cgi-bin/e/index/e/38/4/p813?a=list
https://doi.org/10.1016/0550-3213(88)90073-9
https://doi.org/10.1016/0550-3213(88)90073-9
https://doi.org/10.1016/0550-3213(88)90073-9
https://doi.org/10.1016/0550-3213(88)90073-9
https://doi.org/10.1103/PhysRevA.61.033607
https://doi.org/10.1103/PhysRevA.61.033607
https://doi.org/10.1103/PhysRevA.61.033607
https://doi.org/10.1103/PhysRevA.61.033607
https://doi.org/10.1103/PhysRevLett.90.090401
https://doi.org/10.1103/PhysRevLett.90.090401
https://doi.org/10.1103/PhysRevLett.90.090401
https://doi.org/10.1103/PhysRevLett.90.090401
https://doi.org/10.1088/1367-2630/8/8/152
https://doi.org/10.1088/1367-2630/8/8/152
https://doi.org/10.1088/1367-2630/8/8/152
https://doi.org/10.1088/1367-2630/8/8/152
http://itensor.org/

