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Quantum magnetism with ultracold bosons carrying orbital angular momentum
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We show how strongly correlated ultracold bosonic atoms loaded in specific orbital angular momentum states
of arrays of cylindrically symmetric potentials can realize a variety of spin-1/2 models of quantum magnetism.
We consider explicitly the dependence of the effective couplings on the geometry of the system and demonstrate
that several models of interest related to a general XY Z Heisenberg model with external field can be obtained.
Furthermore, we discuss how the relative strength of the effective couplings can be tuned and which phases can
be explored by doing so in realistic setups. Finally, we address questions concerning the experimental readout
and implementation and we argue that the stability of the system can be enhanced by using ring-shaped trapping
potentials.
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I. INTRODUCTION

Ultracold atoms in optical lattices provide a clean and
highly tunable playground to study a plethora of many-body
phenomena [1]. Recent years have witnessed important break-
throughs that have pushed the degree of control over these
systems to a very precise quantitative level and have opened
new routes towards the quantum simulation of previously
unexplored systems in a wide range of fields [2]. In particular,
ultracold atoms have proven to be a very powerful tool for
exploring quantum magnetism in a form originally inspired
by solid-state systems. Remarkable achievements of quantum
simulation of magnetism with ultracold atoms include the
implementation of spin-frustrated lattices [3,4], extensive ex-
perimental studies of the magnetic properties of the Hubbard
model [5–12], or the realization of high-resolution quantum
gas microscopes for bosonic atoms [13,14] that have led to the
observation of antiferromagnetic order in a one-dimensional
(1D) Ising chain [15], bound magnons in the XXZ Heisenberg
model [16], and spin-resolved dynamics [17–20]. There are
also proposals to realize spin models with strongly inter-
acting ultracold bosons excited to p bands [21], and real-
izations of magnetic models with bosons in tilted optical
lattices [15,22–25].

In this paper, we show that strongly interacting ultracold
bosons loaded into orbital angular momentum (OAM) states
of lattices of side-coupled cylindrically symmetric traps can
realize a variety of spin-1/2 models, including the XY Z
Heisenberg model with or without external field. In particular,
we focus on the Mott-insulator regime at unit filling, where
each trap is occupied by a single atom and a direct mapping
between the OAM and spin-1/2 states can be performed. Re-
cently, a proposal to realize such a state by periodically modu-
lating an optical lattice has been made [26]. Alternatively, this
state could be generated by optically transferring OAM [27] to
atoms confined to an arrangement of ring-shaped potentials,
which can be created by a variety of techniques [28–38]
and have proven to support long-lived persistent currents

associated to the OAM states [39,40]. The mechanisms that
yield these effective spin-1/2 models are analogous to the
ones described in [21], where it was shown that the XY Z
Heisenberg model can be realized with ultracold bosons in
the p bands of a two-dimensional optical lattice [41,42],
which are equivalent to the OAM l = 1 states. Our proposal,
however, extends this to lattices made up of general cylin-
drically symmetric potentials such as ring traps and is valid
for higher OAM states. The new degree of control offered by
the flexibility in the arrangements of the traps opens up the
possibility to engineer a wide variety of spin models beyond
the XY Z Heisenberg model and makes it possible to modify
the effective coupling parameters at the level of a single site.

The rest of the paper is organized as follows. In Sec. II, we
describe the general physical system and give details of how
to compute the couplings that govern the effective spin-1/2
model. In Sec. III, we make concrete proposals to implement
different spin-1/2 models of interest by arranging the ring
potentials in different geometries. In Sec. IV, we discuss how
the effective couplings can be tuned experimentally and which
phases of the XY Z model can be explored by doing so. In
Sec. V, we discuss the implementation of lattices of ring
potentials and the readout and stability of OAM states in an
experimental realization. Finally, in Sec. VI, we summarize
the main conclusions of this work.

II. QUASI-ONE-DIMENSIONAL LADDER
AND EFFECTIVE SPIN-1/2 MODEL

For the sake of clarity, we start by considering in this
section the simplest quasi-one-dimensional lattice in which
an effective spin-1/2 model of quantum magnetism can be
obtained using ultracold atoms carrying OAM, namely, an
array of equivalent ring-shaped potentials. From the analysis
of the second-order processes that we will discuss for this
system, the generalization of the effective spin model to other
quasi-one-dimensional geometries and to two-dimensional
lattices is straightforward.
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FIG. 1. Quasi-one-dimensional ladder of ring potentials (labeled
by the index j) obtained by concatenating unit cells (labeled by
the index i) formed by two rings such that the central angle of the
triangles formed by three neighboring rings is �. The origin of the
phases is taken along the direction 2i ↔ 2i + 1 (indicated with blue
straight arrows), so that the couplings are real along this direction
and all hopping phases appear in the 2i ↔ 2i − 1 links (indicated
with red dashed arrows). The distance between the closest points of
the two nearest-neighbor rings is d .

The quasi-one-dimensional system on which we focus
consists of a gas of M ultracold bosons of mass m trapped
in a ladder of N identical ring-shaped potentials, labeled by
the index j. This can be constructed by concatenating N/2
two-ring unit cells, labeled by the index i, as depicted in
Fig. 1. All of the rings have the same radius R and radial
trapping frequency ω, which defines the natural length scale
σ = √

h̄/mω. The outer parts of the two rings belonging to
the same unit cell are separated by a distance d , and three
consecutive rings form a triangle with a central angle �. The
bosons may occupy the two degenerate eigenstates of total
OAM l � 1 of each ring, | j,±l〉, for which the wave functions
are given by

φ
j
±l (r j, ϕ j ) = 〈�r| j,±l〉 = ψl (r j )e

±il (ϕ j−ϕ0 ), (1)

where (r j, ϕ j ) are the polar coordinates with origin at the cen-
ter of the jth ring and ϕ0 is an arbitrary origin of phases. The
radial part of the wave function, ψl (r j ), can be approximated
by the ground state of the jth ring potential, ψ0(r j ). Under this
approximation, the energy of the modes of OAM l is given by

E (l ) = E0 + Ecl2, (2)

where E0 is the energy of the ground state of the ring and Ec =
h̄2

2m

∫
d2r|ψ0(r)

r |2 is the centrifugal part of the kinetic energy.
We assume that the motion of the bosons is restricted to the
manifold of states of total OAM l , i.e., values of ±l , without
coupling to other OAM manifolds. In this situation, the total
bosonic field operator of the system reads

�̂l =
N∑

j=1

φ
j
+l (r j, ϕ j )â

j
+l + φ

j
−l (r j, ϕ j )â

j
−l , (3)

where â±l are the bosonic annihilation operators associated
with the respective OAM modes. The Hamiltonian of the sys-
tem can be decomposed into its single-particle and interacting
parts,

Ĥl =
∫

d�r�̂†
l

[
− h̄2∇2

2m
+ V (�r)

]
�̂l + g

2

∫
d�r�̂†

l �̂
†
l �̂l�̂l

≡ Ĥ0
l + Ĥ int

l , (4)

where V (�r) is the total trapping potential of the ladder, which
can be approximated by a truncated combination of all the ring
potentials, Vj (r) = 1

2 mω2(R − r j )2, and g is the strength of the
s-wave atom-atom interactions. The kinetic part of the Hamil-
tonian, Ĥ0

l , describes the tunneling dynamics of the states of
total OAM l between neighboring rings as well as between
the two degenerate states within the same ring. This type of
dynamics was studied in detail in [43]. By analyzing the mir-
ror symmetries of the two-ring problem, it can be shown that
there are only three independent coupling amplitudes which
correspond, respectively, to the tunneling within a ring, Jl

1 =
〈 j,±l|Ĥ | j,∓〉, the tunneling to a neighboring ring without
exchange of the OAM circulation, Jl

2 = 〈 j,±l|Ĥ | j + 1,±l〉,
and the tunneling to a neighboring ring with exchange of the
OAM circulation, Jl

3 = 〈 j,±l|Ĥ | j + 1,∓l〉. Assuming that
the central angle takes values � > π/3, one can consider
that only nearest-neighbor sites are coupled. By making this
approximation and choosing the origin of phases to be along
the line that unites the sites 2i ↔ 2i + 1, so that ϕ0 = π − �

along the 2i − 1 ↔ 2i direction, the single-particle terms of
the Hamiltonian take the form

Ĥ0
l = Jl

1

N∑
j=1

â j†
+l â

j
−l (1 + e−i2l�)

+ Jl
2

N/2∑
i=1

â2i†
+l

(
â2i+1

+l + â2i−1
+l

) + â2i†
−l

(
â2i+1

−l + â2i−1
−l

)

+ Jl
3

N/2∑
i=1

â2i†
+l

(
â2i+1

−l + e−i2l�â2i−1
−l

)

+ Jl
3

N/2∑
i=1

â2i†
−l

(
â2i+1

+l + ei2l�â2i−1
+l

) + H.c. (5)

Assuming that only on-site interactions take place, the inter-
acting part of the Hamiltonian can be written as

Ĥ int
l = U

2

N∑
j=1

n̂ j
+l

(
n̂ j

+l − 1
) + n̂ j

−l

(
n̂ j

−l − 1
) + 4n̂ j

+l n̂
j
−l , (6)

with U = g
∫

d�r|ψ0(r)|4.
We now focus on the scenario in which the ladder is at

unit filling, M = N , and the interaction strength is positive
and much larger than the tunneling energies, U 
 |Jl

2|, |Jl
3|.

In this particular situation, the system is in a Mott-insulator
phase, in which the most energetically favored states are those
where all rings are occupied by a single boson. Due to the
OAM degree of freedom, the ladder has 2N such states, which
correspond to all possible configurations of singly occupied
rings with positive or negative OAM circulation of the boson.
We can perform a direct mapping between these states and
a spin-1/2 configuration by identifying a spin up (down) for
each ring with a boson in the state of positive (negative)
OAM circulation, i.e., | j,+l〉 → |↑〉 j ; | j,−l〉 → |↓〉 j . Fur-

thermore, we can define the spin-flip operators σ±
j = a j†

±l a
j
∓,

which can be expressed in terms of the x and y Pauli matrices
as σ±

j = 1
2 (σ x

j ± iσ y
j ). We also define the z Pauli matrix as
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FIG. 2. Sketch of some of the second-order processes that take
place in the Mott-insulator regime and their associated amplitudes.
(a) Second-order processes not involving any flipping of the spins.
(b) Second-order processes leading to the flipping of one spin at site
2i. (c) Second-order processes leading to the simultaneous flipping
of the spins at sites 2i and 2i + 1 (upper figure) and at sites 2i and
2i − 1 (lower figure).

σ z
j = a j†

+l a
j
+l − a j†

−l a
j
−l and the spin-up and -down projectors

P↑
j = a j†

+l a
j
+l , P↓

j = a j†
−l a

j
−l .

The physics of the ladder in the Mott-insulator phase can be
described by an effective model that incorporates interaction
terms between the neighboring spins induced by the kinetic
part of the Hamiltonian, Ĥ0

l , which we treat as a perturbation.
This follows the same form as the usual reduction of Hub-
bard, Bose-Hubbard, and related models in the Mott-insulator
regime to spin models. More details on the derivation of the
effective model can be found in Appendix. The new element
here comes from the tunneling phase, which can lead to
nontrivial dependence of the effective model on the geometry
of the lattice. The resulting effective Hamiltonian contains
four types of processes. As sketched in Fig. 2, there are
three different kinds of second-order processes induced by
the effective interaction: those in which the final states of the
rings j and j ± 1 have 0, 1, or 2 spins flipped with respect
to the initial state. Furthermore, there is a first-order process

which corresponds to the flipping of a single spin due to the
self-coupling. Next, we compute separately the amplitudes
corresponding to each of these different processes.

A. Processes involving no spin flips

The first type of second-order processes that we consider
is those in which the initial and final states coincide, i.e., no
spins are flipped. In Fig. 2(a), we show two examples of such
processes, one in which a boson at ring j = 2i tunnels to j =
2i + 1 and back and another one in which it tunnels to j =
2i − 1. In spite of the fact that along the direction 2i ↔ 2i − 1
there are hopping phases in the tunneling terms that exchange
angular momentum, in the total second-order processes they
cancel out because there have to be two opposite flips in order
to come back to the initial state. Thus, the total amplitude
of these processes is the same regardless of the direction of
the interaction. For each pair of interacting rings, there are
in total 16 different second-order processes not involving any
total spin flip, which correspond to the four possible two-ring
spin configurations and the four possible doubly occupied
virtual states that mediate the interaction. Adding up all the
amplitudes of these processes and using the spin notation, we
find that the part of the effective Hamiltonian corresponding
to these processes reads

Ĥ0flip
j↔ j±1 = −3

[(
Jl

2

)2 − (
Jl

3

)2]
2U

σ z
j σ

z
j±1 − 5

[(
Jl

2

)2 + (
Jl

3

)2]
2U

I.

(7)

We note that these amplitudes do not depend on the position
of the ring j inside the unit cell where it belongs.

B. Processes involving one spin flip

The first possibility to flip a single spin in the ring j is
by the action of the self-coupling Jl

1. The total amplitude for
this process is (1 + ei2l�)σ−

j + (1 + ei2l�)σ+
j = Jl

1[σ x
j (1 +

cos 2l�) + σ
y
j sin 2l�].

Additionally, a single spin can be flipped by means of
second-order processes. In Fig. 2(b), we show two examples
of second-order processes that lead to the flipping of a spin at
the ring j = 2i, i.e., one with a virtual interaction occurring at
j = 2i + 1 and another one mediated by the ring j = 2i − 1.
In this case, the amplitudes of the processes depend on the
direction of the interaction: when they occur along j = 2i ↔
2i + 1 they are real, whereas along the line j = 2i ↔ 2i − 1
a net hopping phase appears. Adding up all the amplitudes
of the 12 different second-order processes that lead to the
flipping of a single spin, we find

Ĥ1flip
j =

(
Jl

1 − 3Jl
2Jl

3

U

)[
σ x

j (1 + cos 2l�) + σ
y
j sin 2l�

]
. (8)

Again, the total amplitude does not depend on the position
of j inside the unit cell because all rings are coupled to a
ring along each of the two directions with different hopping
phases. For values of the central angle such that l� = π/2
(mod 2π ), the single spin-flip amplitude vanishes, and for

l� = 0, π (mod 2π ), it becomes Ĥ1flip
j = (2Jl

1 − 6Jl
2Jl

3
U )σ x

j .
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C. Processes involving two spin flips

Finally, in Fig. 2(c), we show two examples of second-
order processes that lead to the simultaneous flipping of
two spins. As in the case of single-spin-flip processes, along
the j = 2i ↔ 2i − 1 interaction direction, there are no total
cancellations of the hopping phases. Thus, the sum of the
amplitudes of these processes depends on the direction along
which the bosons interact. Adding up the eight possible pro-
cesses that lead to the simultaneous flipping of two spins in
the final states, we find

Ĥ2flip
2i↔2i+1 = −

(
Jl

2

)2 + (
Jl

3

)2

2U
σ x

2iσ
x
2i+1

−
(
Jl

2

)2 − (
Jl

3

)2

2U
σ

y
2iσ

y
2i+1, (9)

Ĥ2flip
2i↔2i−1 = −

(
Jl

2

)2 + cos 4l�
(
Jl

3

)2

2U
σ x

2iσ
x
2i−1

−
(
Jl

2

)2 − cos 4l�
(
Jl

3

)2

2U
σ

y
2iσ

y
2i−1

− cos 4l�
(
Jl

3

)2

2U

(
σ x

2iσ
y
2i−1 + σ

y
2iσ

x
2i−1

)
. (10)

For central angles such that l� = π/2, π/4 (mod 2π ), the
two-spin-flip processes have equal amplitude along the two
directions.

III. XY Z MODELS

By tuning the central angle �, the amplitudes of the
second-order processes can be modified in order to engineer a
range of quantum magnetic models. Next, we give examples
of specific geometric arrangements of the ring potential ladder
that lead to interesting effective spin-1/2 models.

A. XY Z model without external field

For central angles �l
s = (2s + 1)π/2l , with s ∈ N, the

single-spin-flip term vanishes and the two-spin-flip term be-
comes isotropic. Summing over all the sites and processes and
neglecting the constant term that appears in the zero-spin-flip
terms, we arrive at the following effective Hamiltonian of the
Mott-insulator regime:

Ĥ l
eff(�

l
s) =

N∑
j=1

Jl
xxσ

x
j σ

x
j+1 + Jl

yyσ
y
j σ

y
j+1 + Jl

zzσ
z
j σ

z
j+1, (11)

where Jl
xx = −[(Jl

2)2 + (Jl
3)2]/2U , Jl

yy = −[(Jl
2)2 − (Jl

3)2]/
2U , and Jl

zz = −3[(Jl
2)2 − (Jl

3)2]/2U . The Hamiltonian (11)
is equivalent to the one of the Heisenberg XY Z model, which
is a prominent model of quantum magnetism and is exactly
solvable [44].

B. XY Z model with external field

For values of the central angle �̄l
s = 2�l

s, the single-spin-
flip amplitude contains only σx one-body terms and the two-
spin-flip term remains isotropic. Thus, for these particular

FIG. 3. Ladder of ring potentials with four sites per unit cell. The
origin of phases is taken along the direction Ai ↔ Bi ↔ Ci (indicated
with blue straight arrows), so that the couplings are taken real along
this direction and all hopping phases appear in the Ci ↔ Di ↔ Ai+1

links (indicated with red dashed arrows). The distance between the
closest points of the two nearest-neighbor rings is d .

values of �, the effective model of the ladder becomes

Ĥ l
eff

(
�l

s

) =
N∑

j=1

Jl
xxσ

x
j σ

x
j+1 + Jl

yyσ
y
j σ

y
j+1 + Jl

zzσ
z
j σ

z
j+1

+ hl
N∑

j=1

σ x
j , (12)

with hl = 2Jl
1 − 6Jl

2Jl
3/U . The Hamiltonian (12) corresponds

to a XY Z Heisenberg model with an external field hl along
the x direction. In the system of p-orbital bosons described
in [21], the external magnetic field is created by the imbalance
between the px and py interaction strengths and on-site ener-
gies, while in the ladder of rings loaded with OAM states that
we consider here, it arises as a consequence of the geometry
of the system.

C. XY Z model with staggered fields

By tuning the geometry of the ring potential lattice, it is
also possible to obtain effective models in which the spin-1/2
Hamiltonian is not uniform across all sites. As an example
of a system in which this can be engineered, we consider the
ladder with four sites per unit cell depicted in Fig. 3 loaded
with bosons in the OAM manifold l = 1. At sites Ai and Ci,
the one-spin-flip terms cancel. The Bi and Di sites behave as
if they belonged to a simple ladder of central angle π , but
since they are coupled to rings in perpendicular directions, a
relative phase will appear between them. Choosing the origin
of phases along the line Ai ↔ Bi ↔ Ci, the effective spin
Hamiltonian of this system reads

Hl=1
eff (� = π/2) =

∑
j

J1
xxσ

x
j σ

x
j+1 + J1

yyσ
y
j σ

y
j+1 + J1

zzσ
z
j σ

z
j+1

+ h1
∑

i

σ x
Bi

− σ x
Di

. (13)

In the model (13), the external magnetic fields appear in a
staggered pattern only at the Bi and Di sites.

IV. CONTROL OVER PARAMETERS AND QUANTUM
PHASES THROUGH THE TRAP GEOMETRY

In this section, we describe how the effective parameters
of the spin-1/2 models can be tuned by modifying the size
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of the ring potentials and the separation between them. We
also discuss the different phases of the XY Z model without
external field (11) that can be explored with the system and
we analyze their robustness against deviations of the central
angle of the ladder from the values �l

s that yield the effective
model (11). Although we focus on the case of l = 1 OAM
states, our considerations can be generalized to other OAM
manifolds in a straightforward manner.

A. Control of the effective model parameters

In a two-ring system, it is possible to compute the values
of the tunneling parameters {J1

1 , J1
2 , J1

3 } by calculating numer-
ically the energies of the OAM eigenstates of the system,
which are related to the hopping strengths via a four-state
model [43]. This procedure determines the dependence of
the relative values of the couplings on the ring radius R and
the separation between rings d [45]. For small values of the
inter-ring distance d ∼ σ , J1

3 is several times larger than J1
2 .

As shown in Fig. 4(b), which corresponds to a ring of R = 5σ ,
in the most extreme limit of this regime the couplings of the
effective model fulfill the relation Jxx ≈ −Jyy = −Jzz/3. For
rings of smaller radius, as the ring of R = 2.5σ corresponding
to Fig. 4(a), J1

2 and J1
3 are more similar at small values of d ,

and therefore the ratio |Jzz|/|Jxx| is smaller. However, for both
values of R, there is a range of inter-ring separations for which
the condition 3Jyy = Jzz > −Jxx holds.

In this parameter regime, the XY Z model without ex-
ternal field (11) is in an antiferromagnetic phase in the z
direction [46]. As d is increased, J1

3 and J1
2 become more

similar, until the critical point Jzz = −Jxx is reached. This
point, which is signaled with dashed vertical lines in Figs. 4(a)
and 4(b), marks the transition to a ferromagnetic phase in the
x direction [46]. In the limit of very large d , J1

3 = J1
2 and,

therefore, Jzz = Jyy = 0.
The behavior of the ratio J1

1 /J1
3 as a function of d is shown

in Fig. 4(c) for rings of R = 2.5σ and R = 5σ . For small
values of d , J1

1 has the same sign as J1
3 and is of the same

order or higher. As d is increased, J1
1 /J1

3 decreases until zero,
and then it remains small and negative. As shown in the inset
of Fig. 4(c), this behavior of the J1

1 /J1
3 ratio translates into

the effective field h1 being positive at small values of d , and
as d is increased, decreasing to a minimum negative value
and, finally, remaining negative and with an approximately
constant value.

B. Example properties of the obtainable quantum phases

In order to analyze numerically the phases of ladders with
different central angles �, we have performed exact diagonal-
ization in chains of up to N = 16 spins with periodic boundary
conditions (PBC). If a quantum critical point exists, we expect
that the energy gap 
 between the ground and first-excited
state scales with the system size as 
 ∼ 1

N [22]. Therefore, we
have searched for the critical point by plotting, for ladders of
different sizes, the quantity 
N as a function of the inter-ring
separation d and looking at the point where all the lines
intersect. In order to directly confirm the presence of the
transition point between the z-antiferromagnetic and the x-
ferromagnetic phases, we have also computed, for a ladder

(a)

(b)

(c)

FIG. 4. Dependence of the effective couplings of the XY Z
model (11) on the inter-ring separation d for (a) rings of R = 2.5σ

and (b) rings of R = 5.0σ . The dashed vertical lines mark the value
of d for which the transition of the XY Z model without external
field (11) between the z-antiferromagnet and the x-ferromagnet oc-
curs. (c) Dependence of the ratio J1

1 /J1
3 on the inter-ring separation.

The inset shows the dependence of h1 on the inter-ring separation
taking U/J1

3 = 20 for all values of d .

of N = 16 spins with PBC, the ground-state correlations
between two fixed spins as a function of d .

In Fig. 5(a), we show the results of these two analyses for
a ladder formed by rings of R = 2.5σ , filled with bosons in
l = 1 OAM states, and with a central angle � = π

2 , which is
described by the XY Z model without external field (11). The
upper plots show the dependence of 
N on d for different
system sizes. As expected, all the lines intersect at the value
of d for which |Jzz| = |Jxx|, where the phase transition occurs.
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(a)

(b)

FIG. 5. Upper plots in (a) and (b): dependence of the energy
difference between the ground and first-excited states on the inter-
ring distance d for ladders of different sizes formed by rings of radius
R = 2.5σ . Lower plots in (a) and (b): correlations between spins 1
and 9 in a ladder of N = 16 spins with PBC formed by rings of
R = 2.5σ . In (a), the central angle of the ladder is � = π

2 and, in
(b), � = 0.48π .

As shown in the lower plot, in the z-antiferromagnetic phase,
the zz correlation is higher than the xx one. As d increases,
the zz correlation decays and the xx one increases, until they
reach the same value at an inter-ring distance that coincides
with the corresponding one for the critical point.

In Fig. 5(b), we perform the same analysis for a ladder
as in Fig. 5(a), but with a central angle � = 0.48π . In the
upper plot, we observe that there are two points where the

N lines intersect. The one that occurs for a smaller value
of d corresponds to a point where the zz and xx correlations
become equal. Therefore, it marks the transition between
the z-antiferromagnetic and the x-ferromagnetic phases. This
transition occurs at a smaller value of d than in the ladder
with a central angle � = π

2 because of the presence of the
magnetic field along the x direction. For values of the central
angle more deviated from π

2 , the presence of the magnetic
field destroys the z-antiferromagnetic phase and the transition
does not occur. The other point where the 
N curves intersect
occurs at a longer value of d which coincides with the point
where the external magnetic field vanishes [see the inset of
Fig. 4(b)]. Therefore, it corresponds to a global change of
orientation of the spins in the x-ferromagnetic phase.

V. CONSIDERATIONS FOR EXPERIMENTAL
IMPLEMENTATIONS

A. Realization of the ring lattices

The arrays of ring traps considered in the previous sections
could be created by means of several different techniques.
Since they were first proposed a few years ago [31,36], time-
averaged adiabatic potentials have proven to be a powerful
tool to trap ultracold atoms in on-demand potential land-
scapes [32,37,38]. Recently, it has also been shown that digital
micromirror devices allow one to create trapping potentials
with arbitrary shapes [47], and in particular a double ring trap
has been realized [35]. Both of these already demonstrated
approaches could be adapted to create lattices of ring poten-
tials. Conical refraction, which is a phenomenon that occurs
when a focused light beam passes along an optic axis of a
biaxial crystal, has also been used to trap ultracold atoms in
ring geometries [34]. With this technique, arrays of ring po-
tentials could be generated by reproducing with microlenses
the intensity pattern of a laser beam traversing a single crystal.
Alternatively, the combination of split lenses and spatial light
modulators [48] could also be used to implement arrays of
light rings with any desired geometry.

B. Experimental readout of the spin states

Making use of a scheme of two-photon stimulated Raman
transitions in the Lamb-Dicke regime analogous to the one
discussed in [21], the OAM states of a single site could be
addressed separately. By tuning the frequencies of the lasers,
sideband transitions between the ground state of the ring
potential and the ±l OAM states could be induced. Once
the OAM states are encoded in the internal atomic states, a
quantum gas microscope [13,14] could be used to read the
spin states of the effective models with single-site resolution.

In order to select a specific OAM mode, two different
approaches could be followed. As pointed out in [21], one
option would be to choose the laser beams such that their
wave-vector difference is oriented along the x or y direction.
In that manner, the lasers would only interact with states that
have nodes along the x or y axes, which can be expressed as
symmetric or antisymmetric superpositions of OAM modes.
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Alternatively, with the aid of, e.g., spatial light modulators,
one could also make a small adiabatic deformation of the
ring trap in order to break cylindrical symmetry and induce
an energy splitting between the dressed OAM states such that
they can be independently resolved.

C. Collisional stability of the OAM states

An important question concerning the feasibility of the
experimental realization of the system is whether collisional
processes may cause transitions between states with different
OAM that invalidate the assumption that all the atoms always
remain in the same OAM manifold [49]. These collisional
processes are described in the Born approximation by the
operator

Û = g

2

∫
d�r�̂†�̂†�̂�̂, (14)

where �̂ = ∑∞
l=0 �̂l is the full bosonic field operator of

the lattice, given by the sum of all the field operators of
the different OAM manifolds (3). In order to analyze the
stability of the OAM states under the most relevant collisional
processes, it is enough to restrict ourselves to the examination
of two-boson states in a single ring. This is because the
collisional interactions are strongly dominated by on-site pro-
cesses. In the strongly interacting regime, the role of tunneling
is significantly reduced. In the opposite limit where atoms
are delocalized, we would have to consider the full Bloch
bandwidths for energy conservation in a collisional process
taking atoms to other OAM states.

The operator (14) only yields nonzero matrix elements
between states with the same total OAM. Since the separation
between the OAM energy levels is anharmonic [see Eq. (2)],
the allowed transitions between two-boson states that are not
within the same OAM manifold are always off-resonant. For
rings of radius of the order of a few σ , the smallest possible
energy difference between the states, which is of the order
of Ec, is one order of magnitude bigger than the transition
matrix element between them, which is of the order of U .
Therefore, the system is not destabilized by collisions that
take two atoms in a given OAM manifold to other OAM states.
Moreover, since we are assuming that the gas of ultracold
atoms is in the Mott-insulator phase at unit filling, the ground
state has only very small contributions from states with more
than one atom per site. Therefore, the occurrence of these
collisional processes is suppressed in the first place by the
population distribution of the many-body states in the ground
state [50].

VI. CONCLUSIONS

We have shown that ultracold bosons carrying OAM in ar-
rays of cylindrically symmetric potentials realize a variety of
spin-1/2 models of quantum magnetism in the Mott-insulator
regime at unit filling. By means of second-order perturbation
theory, we have computed explicitly the dependence of the
effective couplings on the relative angle between the traps
and demonstrated that several models of interest such as the
XY Z model with uniform or staggered external fields can be
obtained. We have discussed how the relative strength of the

effective coupling parameters can be tuned and which phases
of the XY Z model without external field can be observed in
a realistic setup by performing this tuning. Furthermore, we
have analyzed the effect of small changes of the relative angles
between the traps on these phases. We have also discussed
single-site addressing techniques that allow one to retrieve
the state of each individual spin. Finally, we have analyzed
the collisional stability of the system and concluded that the
anharmonic energy spacing between OAM states introduced
by the ring geometry extends the lifetime of the Mott state.
Therefore, the scheme presented in this work serves as a
versatile toolbox for the quantum simulation of magnetic
models and has a feasible experimental implementation.
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APPENDIX: DERIVATION OF THE
EFFECTIVE HAMILTONIAN

To derive the effective Hamiltonian, we define a projector
M̂ to the Mott space of singly occupied sites as well as the
projector to the space orthogonal to this one, Ô = 1 − M̂.
In terms of these operators, the Schrödinger equation (Ĥ0

l +
Ĥ int

l ) |�〉 = E |�〉 can be decomposed as [21](
ÔĤ0

l Ô + ÔĤ0
l M̂ + ÔĤ int

l Ô + ÔĤ int
l M̂

) |�〉 = EÔ |�〉 ,

(A1)

(
M̂Ĥ0

l Ô + M̂Ĥ0
l M̂ + M̂Ĥ int

l Ô + M̂Ĥ int
l M̂

) |�〉 = EM̂ |�〉 .

(A2)

The terms M̂Ĥ int
l M̂, ÔĤ int

l M̂, and M̂Ĥ int
l Ô are all identically

zero: the first two for computing two-body interactions in
single-occupied rings and the last one for computing overlaps
between orthogonal spaces. Taking this fact into account, we
can combine Eqs. (A1) and (A2) to write

ĤeffM̂ |�〉 = EM̂ |�〉 , (A3)

where the effective Hamiltonian reads

Ĥeff = −M̂Ĥ0
l Ô

1

ÔĤ int
l Ô − E

ÔĤ0
l M̂ + M̂Ĥ0

l M̂. (A4)

The physical action of the first term of the effective
Hamiltonian is to connect a Mott state to a state of
the orthogonal space through the tunneling term of the
original Hamiltonian, associate an energy to this state in the
orthogonal space according to (ÔĤ int

l Ô − E )−1, and then
take the state back to the Mott subspace. All the second-order
processes induced by this term occur via intermediate states
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in which all the rings are singly occupied except for one
ring, say j, that is empty, and the ring j ± 1, that is doubly
occupied. Therefore, we restrict the orthogonal subspace
to these states, which can be compactly represented by the
three possible two-spin states for the doubly occupied rings,
namely, {|↑↑〉 j±1 , |↓↓〉 j±1 , |↑↓〉 j±1}. Furthermore, since
we are in the Mott-insulator regime, we can assume that

(ÔĤ int
l Ô − E )−1 ≈ (ÔĤ int

l Ô)−1. In the subspace of states
where only a single ring has double occupation, this operator
takes the form (ÔĤ int

l Ô)−1 = diag{1/U, 1/U, 1/2U }. The
second term of the effective Hamiltonian, M̂Ĥ0

l M̂, takes
into account the first-order processes that occur within the
subspace of singly occupied states, which are due to the
self-coupling amplitude Jl
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