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Dynamics of a mobile impurity in a two-leg bosonic ladder
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We analyze the behavior of a mobile quantum impurity, restricted to a one-dimensional motion, in a bath
formed by a two-leg bosonic ladder through a combination of field theory [Tomonaga-Luttinger liquid (TLL)]
and numerical (density-matrix renormalization group) techniques. We compute the Green’s function of the
impurity as a function of time at different momenta. We find a power-law decay at zero momentum, which
signals the breakdown of a quasiparticle description of the impurity motion. We compute the exponent both
for the limits of weak and strong impurity-bath interactions. At small impurity-bath interaction, the impurity
experiences the ladder as a single channel one-dimensional bath, but with an effective coupling reduced by
a factor of

√
2. We compare the numerical results for the exponent at zero momentum with a semianalytical

expression, initially established for the chain, and find excellent agreement without adjustable parameters. We
find an increase of the exponent with increasing transverse tunneling in the bath. At small tunneling, the exponent
is compatible with the TLL prediction, while larger tunneling shows strong deviations. Finally, we show that,
as a function of the momentum of the impurity, two different regimes of decay of the Green’s function exist,
similar to the single chain case. The power-law regime occurs for small momentum, while at large momentum
the Green’s function shows a faster decay, corresponding to the one expected in a polaronic regime. In this last
regime, we compute the lifetime of the polaron numerically. We compute the critical momentum marking the
transition between these two regimes. We compare with analytical predictions based on the structure factor of
the bath and find good agreement with the numerical results. Finally, we discuss the consequences of our results
for cold atomic experiments.
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I. INTRODUCTION

How a quantum environment can affect the properties of a
quantum particle is one of the central problems for quantum
many-body systems. In a solid, where the bath is formed by
phonon excitations, this is at the heart of the polaron problem
[1,2]. For interacting particles, the dressing of one particle by
the excitations of the density induced by the interactions leads
to the Fermi liquid description of an interacting fermion gas
[3,4]. In addition to these types of effects, it was realized by
Caldeira and Leggett that the environment can deeply change
the properties of a quantum degree of freedom in a way that
goes beyond the formation of a polaron with its attendant
redefinition of some physical parameters of the particle, such
as the mass [5,6]. Cold atomic systems provide a remarkable
playground to investigate these issues, and the polaronic ques-
tions were thus intensively studied in this context (see. e.g.,
Ref. [7] and references therein).

One potentially important ingredient is the dimensionality
of the system. It has been shown [8] that for a one-dimensional
bath the influence on the propagation of the particle can be
drastic. The particle motion may become subdiffusive with no
remnant of quasiparticle behavior. The source for the onset
of this dynamical universality class in the one-dimensional
systems is a phenomenon akin to the Anderson orthogonal-
ity catastrophe. Following this result, the phenomenon was
the subject of extensive studies [9–14]. Combining numer-
ical and analytical results [15] showed that depending on
the momentum of the particle a change in regime, from

subdiffusive to polaronic, could occur. Extensions of these
results to fermionic systems [16,17], driven particles [18,19],
spinor impurities [20], or particles coupled to several one-
dimensional systems [21] have since been performed.

On the experimental front, cold atomic systems have
brought an unprecedented level of control to study these
issues for low-dimensional systems [22–25], since they allow
for excellent control of the interaction between the impurity
and the bath, as well as direct measurements of correlation
functions.

How the breakdown of the quasiparticle picture and the
emergence of subdiffusive dynamics would be affected when
either the dimensionality of impurity motion or the dimen-
sionality of the bath increases is an open and interesting ques-
tion. Indeed, in other effects in which orthogonality manifests,
such as the x-ray edge problem [26], it is well known that
in dimensions greater than one the onset of the orthogonality
catastrophe is suppressed as soon as the impurity experiences
recoil (i.e., impurity is mobile). This immediately gives rise
to the question as to how one actually crosses over from the
singular physics of a one-dimensional system to the more
conventional polaronic dynamics [7] that one could naively
expect for two- or three-dimensional baths.

In this paper, we address this issue by looking at an
impurity propagating in a ladder. We still confine the impurity
to move one dimensionally, but the bath has now a transverse
extension. This allows separating the effects of the dimension-
ality of the bath from the ones of the impurity motion. The
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case of the impurity with transverse motion will be examined
elsewhere. We mostly focus on the case of a two-leg ladder but
will also discuss some of the consequences of increasing the
number of legs, to bridge the gap towards a two-dimensional
bath. We analyze this problem using a combination of analyti-
cal and numerical techniques in a spirit similar to the one used
for the single chain [15], and compare the results of the ladder
bath to the known results for the single chain.

The plan of the paper is as follows. Section II presents the
model, the various observable studied, and the bosonization
representation that will be at the heart of the analytical anal-
ysis. Section III presents the two main analytical approaches
that are used, namely a field theory representation based on
the bosonization technique and a linked cluster expansion
representation. Section IV presents the numerical density
matrix renormalization group (DMRG) [27,28] analysis of
this problem, and the results for the Green’s function of the
impurity. Section V discusses these results both in connection
with the single chain results and in view of the possible
extensions. Finally, Sec. VI concludes the paper and presents
some perspectives in connection with experiments. Technical
details can be found in the Appendixes.

II. MOBILE IMPURITY IN A TWO-LEG
BOSONIC LADDER

A. Model

We consider a mobile impurity moving in a two-leg
bosonic ladder. In this study, we restrict the motion of the
impurity to be strictly one dimensional; other cases will be
considered elsewhere [29]. This model is thus the simplest
basic model for exploring the dynamics of a one-dimensional
impurity in an environment that is no longer purely 1D itself.

The model we consider is depicted in Fig. 1. The full
Hamiltonian is given by

H = HK + Hlad + U
∑

j

ρ1, jρimp, j . (1)

U is the interaction strength between the particles in the ladder
and the impurity.

FIG. 1. Impurity in a two-leg bosonic ladder: solid magenta
circles represent the bath particles and the red circle represents
the impurity. The bath particles move along the legs (between the
legs) with hopping tb (t⊥) and have a contact interaction U1 (U2)
between themselves (see text). The impurity motion is restricted
to the upper leg and its amplitude is timp (see text). The impurity
and the bath particles interact by a contact interaction U . We have
taken the tb = 1, and all the interaction parameters are defined in the
unit of tb. U1 = U1/tb, U2 = U2/tb, timp = timp/tb, and t⊥ = t⊥/tb are
dimensionless parameters.

The impurity kinetic energy is given by the tight-binding
Hamiltonian

HK = −timp

∑
j

(d†
j+1d j + H.c.), (2)

where d j (d†
j ) are the destruction (creation) operators of the

impurity on site j. The density of the impurity on site j is

ρimp, j = d†
j d j . (3)

The ladder Hamiltonian Hlad is given by

Hlad = H0
1 + H0

2 − t⊥
∑

j

(b†
1, jb2, j + H.c.), (4)

where ba, j (b†
a, j) are the destruction (creation) operators of a

boson of the bath on chain a and site j. The b operators obey
the standard bosonic commutation relation rules. The single
chain Hamiltonian is the Bose-Hubbard one:

H0
i = −tb

∑
j

(b†
j+1b j + H.c.) + Ui

2

∑
j

ρi, j (ρi, j − 1)

−μi

∑
j

ρi, j . (5)

In the following, we use the tunneling rate tb of the bath
bosons as the unit of energy.

The form (1) is convenient for the numerical study. To
make an easy connection with the field theory analysis, we
can also consider the same problem in a continuum. In this
case, the Hamiltonian becomes

H = P2

2M
+ Hlad + U

∫
dx ρ1(x)ρimp(x), (6)

where P and M are respectively the momentum and mass of
the impurity. The density of the impurity is

ρimp(x) = δ(x − X ), (7)

where X is the position of the impurity, canonically conjugate
to P so that [X, P] = ih̄. We set from now on h̄ = 1.

In the continuum, the ladder Hamiltonian (4) becomes

Hlad = H0
1 + H0

2 − t⊥
∫

dx[ψ†
1 (x)ψ2(x) + H.c.] (8)

and the single chain Hamiltonian is

H0
i = 1

2m

∫
dx|∇ψi(x)|2 + Ui

2

∫
dx ρi(x)2

−μi

∫
dx ρi(x). (9)

m is the mass of the bosons, μi is the chemical potential, and
Ui is the intrachain interaction of leg i = 1, 2. ψ (x)† [ψ (x)] is
the creation (annihilation) operator at position x.

B. Observables

To characterize the dynamics of impurity in the ladder bath,
we mostly focus on the Green’s function of the impurity.
We study it both analytically and numerically via DMRG,
each time considering the zero temperature case. The Green’s
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function of the impurity is defined as

G(p, t ) = 〈d̂p(t )d̂†
p (t = 0)〉, (10)

where 〈· · · 〉 denotes the average in the ground state of the
bath, and with zero impurities present. O(t ) denotes the usual
Heisenberg time evolution of the operator

O(t ) = eiHt O e−iHt (11)

and the operator d̂p is the operator destroying an impurity with
momentum p given by

d̂p =
∑

j

eipr j d j, (12)

with r j = a j on the lattice and the corresponding integral

d̂p =
∫

dx eipxd (x) (13)

in the continuum.

C. Bosonization representation

To deal with the Hamiltonian defined in the previous
section, it is convenient to focus on the relevant low-energy,
long-wavelength properties using the so-called bosonization
representation. This representation is well documented in the
literature by now, and we recall here only the salient points to
fix the notations.

The single-particle operators are represented in terms of
two conjugate operators φ(x) and θ (x), capturing collective
excitations of density and phase, respectively, via the formulas
[26]

ρα (x) = ρ0,α − ∇φα (x)

π
+ ρ0

∑
p�=0

e2ip[πρ0,αx−φα (x)], (14)

where ρ0,α is the average density on the chain α = 1, 2. The
creation operator of a particle in the bath in terms of θ and φ

is given to lowest order by

ψ†
α (x) = ρ

1/2
0,α e−iθα (x). (15)

The conjugate field operators φ1,2 and θ1,2 obey[
φ(x1),

∇θ (x2)

π

]
= iδ(x1 − x2). (16)

Using the above representation, and assuming that the
filling of the chains is not commensurate with the underlying
lattice, allows rewriting the Hamiltonian of each chain as [26]

H0
α = 1

2π

∫
dx

[
uαKα (∂xθα )2 + uα

Kα

(∂xφα )2

]
, (17)

where uα and Kα are the so-called Tomonaga-Luttinger liq-
uid (TLL) parameters. Here, uα is the velocity of density
excitations (i.e., sound) in the chain, while Kα encodes the
effect of interactions and controls the decay of the correlation
functions. Their values can be directly related to the bare
parameters of the given microscopic Hamiltonian [26,30].
For example, for the Lieb-Lininger model [31] of bosons
in the continuum with contact interaction K = ∞ when the
interaction is zero and K = 1 when the contact repulsion is

infinite. For the two-leg bosonic ladder the TLL parameters
can be found in [32].

Using the bosonization framework, the low-energy approx-
imation of interleg tunneling is

−2t⊥ρ0

∫
dx cos[θ1(x) − θ2(x)]. (18)

This makes it convenient to use the symmetric and antisym-
metric combinations of the fields

θs,a = θ1 ± θ2√
2

(19)

and analogous expressions for the fields φs(φa). The new
fields remain canonically conjugate and allow one to re-
express the Hamiltonian of the bath as

Hlad = Hs + Ha, (20)

with

Hs = 1

2π

∫
dx

[
usKs(∂xθs)2 + us

Ks
(∂xφs)2

]
,

Ha = 1

2π

∫
dx

[
uaKa(∂xθa)2 + ua

Ka
(∂xφa)2

]

− 2ρ0t⊥
∫

dx cos[
√

2θa(x)]. (21)

Because of the presence of the cosine term the antisymmetric
part of the Hamiltonian (the so-called sine-Gordon Hamilto-
nian) will be massive when Ka > 1/4. As a result the field
θa is locked to the minima of the cosine indicating the phase
coherence across the two legs of the ladder. The phase being
locked, the density fluctuation in the antisymmetric sector
has fast decaying correlations instead of the usual power law
of the TLL. The symmetric sector remains massless with
power-law correlations. A numerical calculation of the TLL
parameters for the massless phase can be found in [32].

III. ANALYTICAL SOLUTIONS

Let us now investigate the full Hamiltonian (6) [or (1)] to
be able to compute the Green’s function of the impurity (10).

Using (14) the interaction term Hcoup with the impurity is
expressed, as a function of the bosonized variables as

Hcoup = −U√
2π

∫
dx[∇φa(x) + ∇φs(x)]ρimp(x)

+ 2Uρ0

∫
dx cos{

√
2[φa(x) + φs(x)]

− 2πρ0x} ρimp(x), (22)

where we have retained only the lowest harmonics in the
oscillating terms, with higher-order terms being a priori less
relevant.

Since the antisymmetric sector is gapped, with a gap 
a

due to the ordering in the field θa, the correlation functions
involving φa decrease exponentially at large distance or time
interval. We thus a priori need to distinguish the cases for
which U � 
a, for which the interaction with the impurity is
not able to create excitations in the antisymmetric sector, from
the case U 	 
a. We examine these two cases in turn.
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A. U � �a

In this case, the coupling with the impurity cannot create
excitations in the antisymmetric sector. The backscattering
term containing cos{√2[φa(x) + φs(x)]} is thus irrelevant.
This term can potentially generate a cos[2

√
2φs(x)] term by

operator product expansion (OPE) but such term would only
become relevant for Ks < 1, which is outside the range of
allowed TLL parameters for the bosonic problem we consider
here.

Thus, as for the case of a single impurity [8], the forward
scattering term gives the dominant contribution

−U√
2π

∫
dx ∇φs(x)ρimp(x), (23)

in which we have kept only the part corresponding to the
massless sector.

In this regime, the impurity behaves in the ladder system as
it would be in a single chain with effective parameters (us, Ks),
but with a renormalized coupling

U2 = U√
2
. (24)

Note, however, that for a microscopic interaction U1 = U2 the
TLL parameters (us, Ks) will generally not be equal to the
ones of a single chain with the corresponding interaction due
to the presence of the irrelevant operators coming from the t⊥
term. The Green’s function of the impurity (10) can thus be
readily computed by the same techniques used for the single
chain case [8,15]. Using a linked cluster expansion (LCE),
a resummed second-order perturbation series applicable at
small bath-impurity interactions, as detailed in Appendix A,
we find that, when p < us

2timp
, the difference of energies of the

impurity εp − εp+q intersects the bath dispersion us|q| only at
q = 0. As shown in Appendix A this leads to a power-law
decay of the Green’s function (10)

|G(p, t )| = e
− KsU2

4π2u2
s

(
1+ 12t2

imp p2

u2
s

)
ln(|t |)

. (25)

This case will be discussed in detail in Sec. IV B.
On the contrary, for p > us

2timp
, εp − εp+q intersects the bath

dispersion us|q| at nonzero q’s. In that case the Green’s func-
tion decays exponentially, as the impurity enters the so-called
quasiparticle (QP) regime [15], where εp = −2timp cos(p).
This case will be discussed in Sec. IV C.

The dynamical structure factor S(k, ω) of one leg of the
ladder is given by

S(x, ω) = 〈GSb|ρ1(x)
1

ω + iη − Hlad
ρ1(0)|GSb〉,

S(k, ω) =
∫

dx S(x, ω) exp(−ikx), (26)

where η → 0+ and ρ1(x) is the density operator in leg 1 of the
ladder at position x.

To go beyond the bosonized evaluation of the structure
factor of the bath used in Appendix A, we also show in
Fig. 2 the imaginary part of the dynamical structure factor
defined in Fig. 2 computed using DMRG at t⊥ = tb = 1,

bond dimension χ = 600, and zero temperature, together
with δε(q) = εp − εp+q, for different p values at timp = 1. As

FIG. 2. Dynamical structure factor for leg 1 of the two-leg hard-
core boson ladder at one-third filling (shaded area). Superimposed
colored curves show the change in the impurities kinetic energy
when emitting an excitation with momentum q into the bath, δε(q) =
εp − εp+q, for different values of p. In ascending order by maximal
value these are red (p = 0), green (0.1π ), cyan (0.2π ), magenta
(0.3π ), red (0.4π ), cyan (0.5π ), magenta (0.7π ), and yellow (π ).
Dotted lines (p = 0, 0.1π, 0.2π ) denote where δε(q) intersects with
areas of finite weight of the dynamical structure factor only at q = 0.
Solid lines and dotted line at p = 0.3π denote the higher p values for
which it intersects also at nonzero q’s. This change in regime causes
the impurity to go from subdiffusive to quasiparticle behavior (see
text).

would be expected, we find that for small q the dispersion of
bath is well fitted with the linear dispersion used in the TLL
representation us|q| (green line, us = 1.8). More importantly,
the results in Fig. 2 deliver an expanded understanding of the
transition between subdiffusive and quasiparticle dynamics.
As discussed in more detail in Sec. IV C and Fig. 8, we
find that, as also established via LCE previously, as long as
δε(q) intersects with the full structure factor-derived excita-
tion spectrum only at q = 0, dynamics is subdiffusive (p =
0, 0.1π, 0, 2π ). But the transition to QP dynamics actually
sets in once δε(q) intersects at q �= 0 with the area where
the ladder excitation spectrum has finite weight (i.e., for
(p = 0.3π, 0.4π, 0.5π, 0.7π, π ). This goes well beyond the
transition criterion derived via LCE, as there we could only
use the linearized low-energy component of the excitation
spectrum.

B. U � �a

We now consider the more complicated opposite case for
which the interaction with the impurity, which couples to the
field φ1, can potentially induce excitations across the antisym-
metric gap for the field θ1. In order to deal with this case, we
essentially follow the method introduced by Lamacraft for the
case of the single chain [12].

We first make a transformation to a frame of reference
which moves with the impurity, and this can be imposed by
a unitary transformation UX = ei(P1+P2 )X , where P1 and P2

denote the momentum operators of first and second ladder leg,
respectively, and X denotes the impurity’s position operator.
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By using (6) and (7), the effective Hamiltonian in the new
frame of reference is given by

Heff = UX HU †
X

= (P − P1 − P2)2

2M
+ Hlad + Uρ1(0), (27)

where ρ1(0) is the density of leg 1 at x = 0. In the new effec-
tive Hamiltonian, the position operator X has disappeared and
P is thus a conserved quantity. As U → ∞, U is replaced by
an effective forward scattering potential Uφ (roughly the phase
shift corresponding to the potential U ) [12] and ρ1(x = 0) =
− ∫

dx δ(x)∇φs (x)+∇φa(x)√
2π

. The forward scattering can thus be

absorbed in the quadratic terms 1
2π

u
K

∫
dx(∇φ(x))2 (for s and

a fields) and creates a discontinuity in the fields φs and φa of
the form [12]

φs|0−
0+ = KsUφ√

2us

,

φa|0−
0+ = KaUφ√

2ua

. (28)

The dominant term in the total current is given by

P1 + P2 =
∫

dx ρ0

√
2∇θs(x), (29)

where in the above formula the origin must be excluded if
the field has a discontinuity. For P = 0 the minimization of H
imposes that the field θs remains continuous at x = 0. These
two sets of conditions for the fields φ and θ can be imposed
on otherwise continuous fields by the unitary transformation

UP=0 = exp

(
iθs(0)

KsUφ√
2πus

)
exp

(
iθa(0)

KaUφ√
2πua

)
. (30)

The impurity Green’s function at zero momentum is thus
given by

|G(0, t )| = 〈U †
P=0,tUP=0,0〉

=
〈
exp

(
−iθs(t )

KsUφ√
2πus

)
exp

(
iθs(0)

KsUφ√
2πus

)〉

=
〈
exp

(
−iθa(t )

KaUφ√
2πua

)
exp

(
iθa(0)

KaUφ√
2πua

)〉

= |t |−Ks/4
(

Uφ

πus

)2

.

(31)

To compute the above correlation function corresponding to
field θa we have expanded cos(

√
2θa) up to second order, and

exploited that the correlation function of the antisymmetric
mode saturates to a finite value for time greater than the
inverse of gap in the antisymmetric sector. The symmetric

mode decays as a power law with an exponent α = Ks
4 ( Uφ

πus
)
2
.

For hard-core bosons in one dimension Uφ

πus
= 1, and thus the

overall exponent in (31) is

α = Ks/4. (32)

However, as will be discussed in more details in Sec. IV B 2,
the case of the ladder is more complicated since Uφ can
potentially depend on t⊥.

IV. NUMERICAL SOLUTION

A. Method

To obtain the Green’s function of the impurity for the
ladder problem quantitatively, we compute a numerical so-
lution of the lattice model defined in Sec. II A, by a method
analogous to the one used for the single chain [15]. We
use DMRG to compute the ground state of the bath and
time-dependent DMRG (t-DMRG) to compute the Green’s
function of the impurity.

For t-DMRG, we use a supercell approach to map the three
species of bosons (A, B,C) onto a one-dimensional chain. Leg
1 and leg 2 of the ladder are represented by species A and B,
respectively, and the impurity is represented by C. The total
number of quantum particles in leg A and leg B is conserved,
and the total number of particles in species C is conserved
separately and equal to 1. In the supercell approach, the local
Hilbert space is of size 2 × 2 × 2 = 8 for the case of hard-core
bosons and of 3 × 3 × 2 = 18 for soft-core bosons if the
maximum allowed occupancy per species A, B is 2. We thus
restrict ourselves to relatively large repulsions (of the order
of U1 = U2 = 10 for soft-core bosons and U1 = U2 = ∞ for
hard-core ones) in each leg for the bath so that the restriction
of the Hilbert space is not a serious limitation. The interaction
between the bath and the impurity can, however, take any
value.

We consider a system for which the density in each leg
is ρ0 = 1/3, to avoid the possibility of entering to a Mott
insulating state in the ladder in which the symmetric sector
would be gapped as well. The longitudinal hopping of the
leg 1, leg 2, and the impurity hopping are taken equal value,
tb = timp = 1. We fix the size of the system to L = 101 sites
per leg.

In t-DMRG, the singular value decomposition of a matrix
of the order of (dχ ) × (dχ ) is needed [33] for a sweep
through a bond between two lattice sites, where d is the
local Hilbert space dimension and χ is bond dimension which
encodes the amount of entanglement in the system. At each
time step, (L − 1) such operations are performed. As the
local Hilbert space can become large for soft-core bosons, we
are limited to moderate values of χ to maintain reasonable
computational times. We further use bond dimensions χ =
300, 500, 400, 600 for hard-core boson and χ = 400 for soft-
core boson. Further details are provided in Appendix B.

The ground state of the bath |GSb〉 is computed by using
DMRG. We then add an impurity in the center of leg 1, at
time t = 0,

|ψ (t = 0)〉 = d†
L+1

2

|GSb〉. (33)

We then evolve the state |ψ (t = 0)〉 as a function of time (t )
with the full Hamiltonian (1) by using t-DMRG and compute

|ψ (t )〉 = e−iHt d†
L+1

2

|GSb〉. (34)

We then take the overlap with the state

d†
L+1

2 −x
|GSb〉, (35)

which yields the sought-after impurity Green’s function in
time and space, up to a phase factor of eiEGSb t , where EGSb is
the ground-state energy of the bath. A Fourier transformation
then yields the Green’s function in time and momentum.
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FIG. 3. Modulus of the Green’s function of the impurity (see
text) |G(p = 0, t )| at zero momentum of the impurity. Parameters
for the interchain hopping, impurity hopping, and impurity-bath
interaction in the ladder are respectively t⊥ = 1, timp = 1. Left (right)
column corresponds to U = 1 (U = 2). The upper panel shows
|G(0, t )| of softcore bosons with U1 = U2 = 10 and the lower panel
hardcore bosons for χ = 400.

B. Results at zero momentum

We examine first the Green’s function of the impurity
G(p, t ) for the case of zero momentum p = 0. For a single
chain, this limit is known to lead to a power-law decay of the
Green’s function [8,12,15].

Examples of the decay of |G(0, t )| are shown in Fig. 3, both
for soft-core bosons and hard-core bosons. The numerical
data shows a decay of the correlation function with time. Such
a decay is expected from the general arguments of Sec. III.
As discussed in Appendix B, the bond dimension controls
the maximum time at which the decay of the correlation can
be computed reliably with the t-DMRG procedure. In our
case, the time of the order t ∼ 7 for soft-core and t ∼ 7 for
hard-core bosons presents the limit for reliable data.

1. Interaction dependence

To analyze the data we use the analytic estimates of Sec. III
which suggest a power-law decay of the Green’s function:

|G(p = 0, t )| ∝
(

1

t

)α

. (36)

We fit the numerical data as detailed in Appendix B, which
confirms the power-law decay of the correlations and allows
extracting the exponent α. This exponent is shown in Fig. 4
for the case of hard-core bosons.

The good agreement between the numerical exponent of
Fig. 4 with the LCE formula in (25) confirms the analytic
prediction of Sec. III that one can indeed view the ladder
with a small impurity-bath interaction U as a single TLL
with an effective Ks and us but with an effective interaction
U/

√
2. The simple decoupling of the Hamiltonian into the

0.2 0.4 0.6 0.8 1
U

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

α

fit Ks=.8145 us=1.8
fit Ks=.835 us=1.86
DMRG data

FIG. 4. Green’s function exponent at p = 0 for hardcore bosons
as function of small U at t⊥ = timp = 1. The black curve is the
exponent extracted from correlation functions computed from t-
DMRG results with χ = 600. The green and red curves are the
LCE exponent extracted from (25), αLCE = KsU 2

4π2u2
s
, for the pair of val-

ues (Ks = 0.835, us = 1.86), (Ks = 0.8145, us = 1.8), respectively.
These values correspond well to the TLL parameters for a ladder of
hard-core bosons (see text).

symmetric and antisymmetric sector of (21) would naively
suggest that (Ks, us) = (K, v) of a single chain, but for large
U1 = U2 interactions and sizable t⊥, irrelevant operators can
lead to a sizable renormalization of the parameters. So, in
general, the parameters (Ks, us) for the ladder are not identical
to the ones of a single chain with the same interaction,
also leading to a modification of the exponent. This is in
particular the case for hard-core bosons, for which the single
chain parameter is K = 1 [26], while for the ladder [32] one
has Ks < 1 Our calculations yield Ks = 0.8145 and us = 1.8.
Given the accuracy of determination of the TLL parameters
this compares well with the values obtained in Ref. [32],
which are Ks = 0.835 and us = 1.86 (cf. also Fig. 19 of [32]).
We note that the single chain value of K < 1 would have
meant that the backscattering on the impurity terms could
become relevant. For the ladder case, however, because the
antisymmetric sector is gapped, such terms remain irrelevant
even for Ks < 1.

For larger values of the impurity-bath interaction U one
cannot rely on the LCE expression anymore. The numerically
computed exponent is shown in Fig. 5. The quadratic growth
of the exponent with the interaction of Fig. 4 is replaced by
a more complex behavior and a saturation of the exponent at
large U . For the single chain the interaction dependence of the
exponent could be captured by an analytic expression [15]. In
order to adapt this expression to the case of the ladder we use
the modified interaction U/

√
2 suggested by the bosonization

formula of Sec. III and the TLL parameters of the ladder
which leads to

α = 2 f

π2

(
arctan

[
2
√

2 f u2
s

U
√

Ks

]
− π

2

)2

. (37)
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U

0
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0.1

0.15

0.2
α

DMRG data
Ks =.8145, us=1.8
Ks=.835, us=1.86

FIG. 5. Exponent α controlling the power-law decay of |G(p =
0, t )| as a function of the interaction between the bath and the
impurity U . The bath has t⊥ = timp = 1 and is made of hard-core
bosons at 1/3 filling for each leg. The black circles are the numerical
data. The red line is a fit to (37) (see text) with f = 0.39. The good
agreement between the data and the formula (37) shows that, as for
a single chain, this formula correctly describes the behavior of the
impurity in the ladder for a wide range of interactions.

Here, f = 2α[U → ∞], and we use the independently cal-
culated exponent at U = ∞ (see next section) to obtain f =
0.39 for plotting the analytical curves in Fig. 5. We stress that
the excellent agreement between DMRG data and analytical
prediction Eq. (37) shown in Fig. 5 is thus without fitting
parameters, unlike that in Ref. [15], which had been lacking
an independent way of obtaining f quantitatively.

2. Hard-core bath-impurity repulsion

Let us now turn to the case for which the repulsion between
the impurity and particles of the bath is very large U → ∞.
Various decays of the Green’s function are shown in Fig. 6. As
is clear from the numerical data, the power-law decay is still
present in this limit and persists for all the measured values of
t⊥ in the ladder. A fit of the numerical data provides access to
the exponent as a function of interchain hopping, as shown in
Fig. 7.

We first note that the value of the exponent for U = ∞ at
t⊥ = 1, α = 0.195 is in good agreement with the one given
by the formula (32) in which the interaction U would be
replaced by its phase shift as for the single chain [12] where
U → Uφ = vπ in the formula KsU 2

4π2u2
s
. Larger values of t⊥ show

a marked increase of the exponent as is evident from Fig. 4.
This trend of the exponent with t⊥ is surprising and is a priori
not compatible with this extrapolation. In such a limit, the
exponent would be proportional to Ks, which decreases when
t⊥ increases at variance with the numerical data. This shows
that there is a dependence on t⊥ of the exponent besides the
one hidden in the t⊥ dependence of the TLL parameters. How
to compute this dependence analytically remains a challenge
for the moment.

0.1 1 10 100
t

1

|G
(0

,t)
|

t⊥=1
t⊥=2
t⊥=3
t⊥=4

FIG. 6. Green’s function of the impurity at zero momentum on
a log-log scale for the ladder of hard-core bosons and for infinite
repulsion between impurity and bath particles. t⊥ = 1, 2, 3, 4 and
tb = timp = 1. The t-DMRG has been performed for χ = 600. The
power-law decay of the correlation is present for all measured values
of t⊥.

C. Momentum dependence of the exponent

We now turn to the momentum dependence of the Green’s
function, which, as for the single chain, is much more difficult
to obtain analytically.

We show in Fig. 8 the decay of the Green’s function for
various momenta p of the impurity. The top panel, for small
momentum of the impurity, shows a power-law decay of the
Green’s function, similar to the one for zero momentum, albeit
with a renormalized exponent. However, above a momentum

0 1 2 3 4 5 6 7
t⊥

0.1

0.15

0.2

0.25

0.3

0.35

0.4

α

FIG. 7. Exponent of the Green’s function of an impurity with a
hard-core repulsion with a bath of hard-core bosons at filling 1/3
as a function of t⊥ at timp = 1, U → ∞, and p = 0. Circles are the
numerical data for χ = 600 and the line is a guide to the eyes.
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0.1 1
t

1
|G

(p
,t)

|

p=0
p=0.1 π
p=0.2 π

1 2 3 4 5 6 7
t

1

|G
(p

,t)
|

p=0.3π
p=0.4π
p=0.5π
p=0.6π
p=0.7π
p=0.8π
p=0.9π
p=π

FIG. 8. Green’s function of the impurity in a ladder of hard-
core bosons, timp = 1, and transverse hopping (t⊥ = 1), U = 1, for
different momenta and χ = 600. Upper panel: Green’s function on
log-log scale. The momenta are p = 0, 0.1π, 0.2π . On a log-log
scale, the Green’s functions show a linear behavior which reflects
the power-law decay. Lower panel: Green’s function on semilog plot.
Momenta are p = 0.3π, 0.4π, 0.5π, 0.6π, 0.7π, 0.8π, 0.9π, π . On
the semilog scale, the Green’s function shows a linear behavior which
reflects the exponential decay.

threshold around 0.3π the numerical data no longer exhibits
a power-law decay and is fitted better with exponential decay,
as shown in the lower panel of the figure. This is similar to the
behavior observed for an impurity coupled to a single chain
[15].

For small momentum, a momentum dependent expo-
nent can be extracted by the fitting methods described in
Appendix C. The results are shown in Fig. 9. The growth
of the exponent with momentum can be expected since on
general grounds one finds [8,15] that the exponent varies as

α(p) = α(p = 0) + βp2. (38)

0.2 0.4 0.6 0.
U

0

0.002

0.004

0.006

0.008

α

 Ks=.8145 us=1.8
Ks=.835 us=1.86
DMRG data

0.2 0.4 0.6 0.

8 1

8 1
U

0

0.005

0.01

0.015

0.02

α

Ks=.8145 us=1.8
Ks=.835 us=1.86
DMRG data

FIG. 9. Green’s function exponent of the impurity in a ladder of
hard-core bosons, as a function of U for p = 0.1π (upper panel),
0.2π (lower panel), timp = 1, transverse hopping (t⊥ = 1), and χ =
600. The black curves represent the DMRG data, and the green and
red curves are fitted curves of the link cluster result with the TLL
parameters mentioned in the inset.

The coefficient β can be computed for small interactions (see
Appendix A) and is given by

β = 3KsU 2

π2u2
s

t2
imp

u2
s

. (39)

Comparison between the numerics and the LCE shows a very
good agreement between the two for small interactions.

This good agreement with the numerical exponent and the
LCE one suggests that as for the single chain we can use the
LCE to estimate the critical momentum p∗ which separates
the ID regime from the polaronic one. The crossover depends
on the TLL characteristics of the bath, namely the velocity
of sound in the ladder and the TLL parameter K . Using the
values extracted from [32] we get

p∗ = 0.3π, (40)
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1/

τ(
p)

U=0.3
U=0.4
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FIG. 10. Inverse lifetime of the impurity as function of the
momentum for a bath of hard-core bosons at one-third filling. The
parameters are timp = tb = t⊥ = 1, U = 0.3, 0.4, 1, a = 1 is lattice
spacing.

which is in reasonably good agreement with the observed
change of behavior in Fig. 8. Beyond the LCE we also see that
the change of behavior is in good agreement with the criteria
of intersection discussed in Fig. 2 when one uses properly the
structure factor the ladder.

Beyond p = p∗ and for small U , the Green’s function de-
cays exponentially, the impurity behaves like a quasiparticle,
and the Green’s function of the impurity in terms of lifetime
τ (p) is given by

|G(p, t )| = exp[−t/τ (p)]. (41)

In Fig. 10, we plot the inverse of lifetime 1/τ (p), defined in
Eq. (41) of the QP as function of p for different interactions
U = 0.3, 0.4, 1. As can be expected 1/τ (p) increases with
increasing interaction. Let us now turn to the limit of infinite
repulsion between the impurity and the bath. The numerical
Green’s functions are given in Fig. 11. In a similar way than
for the small interaction limit, the numerical data shows a
crossover from a power-law regime to another type of decay
upon increasing the momentum. The transition occurs for after
p around p∗ = 0.9π .

V. DISCUSSION

Let us now discuss the various results for the ladder
systems in comparison with the case for which the bath is a
single chain. The motion of the impurity being still strictly
one-dimensional all differences are directly related to the
change of nature of the bath.

Let us first turn to the weak coupling between the bath
and the impurity. The numerical results fully confirm that in
such limit the field theory description (25) gives an excellent
approximation of the exponent at zero momentum. The fact
that only the symmetric mode is massless roughly leads to
the replacement of the interaction between bath and impurity
by U/

√
2. This would lead, if the TLL parameters were

identical for the symmetric modes and a single chain, to a
reduction of the exponent. This trend can be easily extended

0.1 1 10
t

0.1

1

|G
(p

,t)
|

p=0
p=0.1π
p=0.2π
p=0.3π
p=0.4π

0.1 1 10
t

0.01

0.1

|G
(p

,t)
|

p=0.7π
p=0.8π

0 3 6 9 12 15 18 21
t

0.01

0.1

1

|G
(p

,t)
|

p=0.9π
p=π

FIG. 11. Green’s function of the impurity as a function of time
for p = 0, 0.1π, 0.2π, 0.3π, 0.4π, 0.7π, 0.8π, 0.9π, π for hard-
core boson on log-log (p = 0–0.8π ) scale and semilog scale (p =
0.9π, π ), t⊥ = 1.5, U =∞, timp = 1, for bond dimensions χ = 600.

to a bath consisting of an N-leg bosonic ladder. In that case,
all modes, except the global symmetric mode, are gapped, and
the interaction with the impurity would become U/

√
N . Note

that such a ladder with a large number of legs is very close to
an anisotropic two-dimensional superfluid [34].
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We, however, see that some of the peculiarities of the lad-
der, which would likely disappear when increasing the number
of legs, manifest themselves in the exponent in addition to the
effect as mentioned above. The ladder itself is more affected
by the interactions within the bath than a single chain. This
is readily seen by the fact that a ladder of hard-core bosons
at a filling of one boson per rung would be an insulator,
while a single chain remains a superfluid at half filling. As
a consequence the TLL parameter K can reach values below
one [32] corresponding to “enhanced” repulsion compared to
the case of a single chain. This effect also contributes to the
decay and to a further reduction of the exponent compared to
the effect on U itself.

On the other hand, increasing t⊥ leads to an opposite trend,
particularly visible in the limit of large t⊥ (see Fig. 7), in
which a marked increase of the exponent can be seen. Naively
one could consider that increasing t⊥ brings back the system
to a single mode for the rung and thus pushes the system back
to a more one-dimensional behavior. However, the impurity
couples still to both modes making the calculation of the
exponent delicate. How such effects would be modified upon
increasing the number of legs is, of course, an interesting and
open question.

As can be seen from Fig. 5 the general expression that
was introduced in [15] provides a good description of the
decay exponent at zero momentum for the ladder as well. Note
that in the present case we have a full numerical evaluation
of the infinite repulsion case between impurity and the bath,
making it an essentially parameter-free formula and allowing
one to check that the large impurity-bath repulsion limit is
indeed correctly reproduced by this formula. This confirms
that for a system in which the impurity couples to a single
massless mode the generalization of the free fermion solution
(37) captures the essential physics, and we would expect it
to hold to the case of N chains as well. As for the single
chain, the finite momentum case remains more difficult to
interpret. We recover for the ladder the same two regimes
that were observed in the single chain, namely a regime
dominated by infrared divergences (ID) for which we have the
power-law decay of the correlations and a different regime,
which seems, within the accuracy of the numerical solution
also, to correspond to a faster decay of the correlations,
and thus to a more conventional polaronic regime. As for
the single chain, the separation between these two regimes
seems to be reasonably well given by the possibility to ex-
cite real particle-hole excitations in the bath, as shown by
Fig. 2.

Finally, let us note that the analysis of the present paper
is made for a repulsive interaction between the impurity
and the bath. The attractive case is more complex because
of the possibility of forming a bound state between the
impurity and a particle of the bath [35]. Note that such a
bound state formation has also been reported in the two-
dimensional case [36–38]. How such a bound state would
affect the results or not compared to the repulsive case
is an interesting question which would deserve a separate
analysis going beyond the scope of the present paper. Note
that a simple extrapolation of the LCE result for weak
coupling would show no dependence on the sign of the
interactions.

VI. CONCLUSION AND PERSPECTIVES

We have studied the effect of a quantum bath made of
a bosonic ladder on an impurity confined to move in one
dimension. We have computed, both analytically and by using
the time-dependent density-matrix renormalization group, the
Green’s function of the impurity as a function of the interac-
tion between the impurity and the bath and the interactions in
the bath itself.

We find that, as for a single chain bath, the presence of the
bath affects the mobility of the impurity drastically, in a way
quite different than a simple renormalization of the mass of the
impurity via a polaronic effect. One measure of such effects is
given by the Green’s function of the impurity corresponding to
the creation of an impurity with a given momentum p at time
zero and its destruction at time t . We compute this Green’s
function both analytically using a bosonization representa-
tion of the bath, linked cluster expansion and numerically
with a time-dependent density-matrix renormalization-group
technique.

We find that for small momentum the Green’s function
decays as a power law. For weak interaction between the
impurity and the bath, the exponent is smaller than for
a single chain, due to the gap appearing in the antisym-
metric mode of the ladder. This trend would increase with
the number of legs of the ladder, and reflect the trend
to the more two-dimensional behavior. On the other hand,
some aspects of the ladder are manifest in the fact that for
large tunneling in the ladder one finds an increase of the
exponent.

We also studied the dependence of the Green’s function
on the momentum of the impurity and found, in a similar way,
that for the single chain there is a regime other than the power-
law decay that appears, in which one has an exponential decay.
The transition between these two regimes is well connected
with the possibility to excite real rather than virtual particle-
hole excitations in the bath.

Our analysis is a first step towards studying the evolution
from the 1D behavior, essentially dominated by the Anderson
orthogonality catastrophe provoked by the motion of the im-
purity, and which in 1D is not cured by the motion itself, and
the higher-dimensional behavior, in which more conventional
polaronic behavior is expected. Several additional directions
could prove interesting extensions. If the interaction in the
bath becomes sufficiently strong and sufficiently long range,
backscattering on the bath becomes as relevant as the forward
scattering considered in the present study. It would be inter-
esting to know the effect on the impurity in ladders. Another
extension could be to let the impurity also delocalize on the
various chains so that the motion of the impurity itself tends
to a two-dimensional one.

Cold atomic systems could provide a good realization of
the systems described in the present paper. On one hand,
bosonic ladders have been realized [39] and more generally
systems made of many bosonic tubes are routinely realizable
either in bulk [40] or in boson microscopes. Atom chips
systems provide also an excellent realization of a ladder
system [41]. Systems with bath and impurities have already
been realized for single chains [22–25] either by using two
species (such as K and Rb) or internal degrees of freedom.

023614-10



DYNAMICS OF A MOBILE IMPURITY IN A TWO-LEG … PHYSICAL REVIEW A 100, 023614 (2019)

Combination of these two aspects should be reachable in the
very near future.
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APPENDIX A: LINKED CLUSTER EXPANSION

We have shown in the main text that for small inter-
action between impurity and ladder compared to the gap
in the antisymmetric sector, the impurity effectively cou-
ples only to the forward scattering part of the symmetric
sector. We give in this Appendix the LCE calculation of
the Green’s function of the impurity for a weak interaction
U . We consider the symmetric part of (21) as the bath
Hamiltonian and represent it in terms of the usual bosonic
operators [26].

In the second quantized notation (23) is described by

H = Hs + Himp + Hcoup,

Hs =
∑

q

us|q|b†
sqbsq,

Hcoup =
∑
q,k

V (q)d†
k+qdk (bsq + b†

s−q ),

Himp =
∑

q

ε(q)d†
q dq, (A1)

where b† and d† are the creation operators for the bath and the
impurity, respectively, Himp is the tight-binding Hamiltonian
of the impurity, and Hcoup is the interaction between impurity
and bath:

V (q) = U√
2

√
Ks|q|
2πL

exp
(

− |q|
2qc

)
, (A2)

where qc is an ultraviolet cutoff of the order of the inverse
lattice spacing.

The Green’s function of the impurity is defined as

G(p, t ) = −i〈dp(t )d†
p (0)〉. (A3)

By using LCE, Eq. (A3) can be written as

G(p, t ) = −i e−iεpt eF2(p,t ), (A4)

where F2(p, t ) is defined as

F2(p, t ) = eiεptW2(p, t ). (A5)

W2(p, t ) is given by

W2(p, t ) = −1

2

∫ t

0
dt1

∫ t

0
dt2

×〈Tτ dp(t )Hcoup(t1)Hcoup(t2)d†
p (0)〉. (A6)

By employing Wick’s theorem W2(p, t ) is given by

W2(p, t ) = −
∑

q

V (q)2
∫ t

0
dt1

∫ t

0
dt2Y (t1)e−iε(p)t1

×Y (t2 − t1)e−iε(p+q)(t2−t1 )Y (t − t2)

× e−iε(p)(t−t2 )Y (t2 − t1)e−i[us|q|(t2−t1 )],

(A7)

where Y (t ) is a step function, which is zero for t < 0 and one
for t > 0. Y (t ) changes the limit of integration of t2 and t1,
and F2(p, t ) is modified as

F2(p, t ) = −
∑

q

V (q)2
∫ t

0
dt2

∫ t2

0
dt1e−iε(p)t1

× e−iε(p+q)(t2−t1 )

× e−iε(p)(t−t2 )e−i[us|q|(t2−t1 )], (A8)

F2(p, t ) = −
∑

q

∫
duV (q)2

∫ t

0
dt2

∫ t2

0
dt1

×e−it1ueit2u

× δ(u − [ε(p) − ε(p + q) − us|q|]). (A9)

After performing an integration over t1 and t2, F2(p, t ) is given
by

F2(p, t ) = −
∑

q

∫
duV (q)2

× 1 + iut − eitu

u2

× δ(u − [ε(p) − ε(p + q) − us|q|]), (A10)

which can be rewritten as

F2(p, t ) = −
∫

du
1 + iut − eitu

u2
R(u). (A11)

For small momentum ε(p) � timp p2,

R(u) =
∑

q

V (q)2δ(u − [ε(p) − ε(p + q) − us|q|]). (A12)

We evaluate R(u) as

R(u) = 1

2π

∫
dq V (q)2δ(u − [ε(p) − ε(p + q) − us|q|]).

(A13)
q’s roots inside the delta function are given by

q>
± = −

(
p + us

2timp

)
±

√(
p + us

2J

)2
− u

timp
(A14)

and

q<
± = −

(
p − us

2timp

)
±

√(
p − us

2timp

)2
− u

timp
. (A15)

q> corresponds to q > 0 and q< corresponds to
q < 0. For (p − us

2timp
) < 0 ∧ u > 0, R(u) = 0, while for
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(p − us
2timp

) > 0 ∧ u > 0 one has

R(u) = 1

2timp

⎡
⎣

⎛
⎝ p − us/(2timp)√

[p − us/(2timp)]2 − u/timp

− 1

⎞
⎠

× e−|q<
+|/(2qc ) +

⎛
⎝ p − us/(2timp)√

[p − us/(2timp)]2 − u/timp

+ 1

⎞
⎠

× e−|q<
−|/(2qc )

⎤
⎦. (A16)

For u < 0,

R(u) = 1

2timp

⎡
⎣

⎛
⎝1 − p + us/(2timp)√

[p + us/(2timp)]2 − u/timp

⎞
⎠

× e−|q>
+|/(2qc )

+
⎛
⎝ p − us/(2timp)√

[p − us/(2timp)]2 − u/J
+ 1

⎞
⎠e−|q<

−|/(2qc )

⎤
⎦.

(A17)

If (p − us
2timp

) < 0,∧u < 0

R(u) � u, (A18)

Re[F2(p, t )] � − ln(|t |). (A19)

For small |(p − us
2timp

)|,

Re[F2(p, t )] � − KsU 2

4π2u2
s

(
1 + 12t2

imp p2

u2
s

)
ln(|t |), (A20)

leading to the Green’s function decay

|G(p, t )| = e
− KsU2

4π2u2
s

(
1+ 12t2

imp p2

u2
s

)
ln(|t |)

. (A21)

APPENDIX B: DMRG PROCEDURE

In Fig. 12, we show the Green’s function of the impurity for
χ = 300, 400, 500, 600 at zero momentum. We find that the
Green’s function upturns after a certain time. This is because
entanglement entropy scale linearly with time, so one needs
exponentially large χ to get a good result. This is confirmed
by studying the upticks behavior with increased χ , which as
a result is pushed out further and further in time, as shown in
Fig. 12.

APPENDIX C: EXTRACTING EXPONENT AND ERROR
BAR FROM NUMERICAL DATA

The absolute value of Green’s function of the impurity
decays monotonically as a function of time but with superim-
posed oscillations. To extract the exponents, we first select all
the data (up to a maximum time) where the Green’s function

10
t

0.1

1

|G
(0

,t)
|

χ=300
χ=400
χ=500
χ=600

FIG. 12. Green’s function as a function of time at p = 0 for hard-
core boson, t⊥ = 1.5, U =∞, tb = 1, timp = 1 for bond dimensions
χ = 300, 400, 500, 600. With increasing χ the upturn of the Green’s
function is pushed out further in turn and is thus revealed as an
artifact resulting from the exponential increase in entanglement with
time.

displays local maxima. We compute the slope between two
neighboring data and take the average of all the slopes to
obtain the exponent.
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FIG. 13. Green’s function of the impurity as function of time for
hard-core bosons at timp = tb = 1, t⊥ = 1, and U = 1. The upper
panel represents the Green’s function at p = 0.2π and the lower
panel the Green’s function at p = 0.3π on log-log scale (left) and
semilog scale (right). At p = 0.2π , the Green’s function is linear
on a log-log scale but deviates on a semilog scale from linear
behavior. On the other hand, at p = 0.3π , the Green’s function is
linear on a semilog scale but deviates on a log-log scale from linear
behavior. This allows us to fix p∗ ∼ 0.3π as the critical momen-
tum at which the decay for the impurity goes from power law to
exponential.
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We take log10 |G(0, tl )|’s to denote the maxima of
log10 |G(0, t )|, at time tl , where l = 1, 2, . . . , n. Then
the slope between time tl and tl+1 is given by βl =
log10[|G(0,tl )]−log10[|G(0,tl+1 )]

log10(tl+1 )−log10(tl ) and the exponent α = β1+β2+···βn−1

n−1 .

The error bar is given by |α−β1|+|α−β2|+···+|α−βn−1|
n−1 .

To distinguish between a power-law decay and an expo-
nential one, and determine the critical momentum p∗ at which
such a change occurs, we show in Fig. 13 the Green’s function

of impurity at U = 1, p = 0.2π on both log-log scale and
semilog scale.

The comparison both on a log-log scale and a semilog one
of these two behaviors allows us to determine p∗ ∼ 0.3π at
which the change of behavior from power law to exponential
occurs. At p = 0.2π , the Green’s function decays but has
oscillations. To extract the exponent we select all the points
where the Green’s function is maximum and use the above
procedure to compute the error bars and exponent.
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