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Inspired by the renewed experimental activities on p-wave resonantly interacting atomic Fermi gases, we
investigate theoretically some experimental observables of such systems at zero temperature in two dimensions,
using both mean-field theory and Gaussian pair fluctuation theory. These observables include the two p-wave
contact parameters and the breathing mode frequency, which can be readily measured in current cold-atom
setups with 40K and 6Li atoms. We find that the many-body component of the two contact parameters exhibits a
pronounced peak slightly above the resonance and consequently leads to a dip in the breathing mode frequency.
In the resonance limit, we discuss the dependence of the equation of state and the breathing mode frequency
on the dimensionless effective range of the interaction kF Rp � 1, where kF is the Fermi wave vector and Rp is
the effective range. The breathing mode frequency ωB deviates from the scale-invariant prediction of ωc = 2ω0,
where ω0 is the trapping frequency of the harmonic potential. This frequency shift is caused by the necessary
existence of the effective range. In the small range limit, we predict that the mode frequency deviation at the
leading order is given by δωB � −(ω0/4) ln−1(kF Rp).

DOI: 10.1103/PhysRevA.100.023611

I. INTRODUCTION

The realization of Feshbach resonances in ultracold atoms
provides a unique opportunity to explore fascinating quantum
many-body phenomena [1]. By precisely tuning the s-wave
scattering length using an external magnetic field, one can
now routinely produce a stable cloud of strongly interacting
fermions and observe novel Fermi superfluidity at the cusp
of the crossover from a Bardeen-Cooper-Schrieffer (BCS)
superfluid to a Bose-Einstein condensate (BEC) [2–11]. The
manipulation of high-partial-wave interatomic interactions is
also possible. In particular, the experimental demonstration of
p-wave Feshbach resonances in 40K and 6Li atoms [12–18]
opened the exciting perspective of creating a topological p-
wave Fermi superfluid, which hosts nontrivial non-Abelian
excitations at its edges or in its vortex cores, the so-called
Majorana fermions, that could enable topological quantum
computation [19–23]. Unfortunately, unlike a strongly in-
teracting Fermi gas at the BEC-BCS crossover, the p-wave
resonantly interacting system generally suffers from a heating
problem due to serious loss in atom number and can hardly
reach a low-temperature equilibrium state. Therefore, there
is no significant experimental progress, in spite of many
interesting theoretical investigations at the early stage [24],
exploring different aspects of a strongly interacting p-wave
Fermi superfluid, such as the zero-temperature phase dia-
gram [25–30], the superfluid transition temperature in three
dimensions [31–33], and the Berezinskii-Kosterlitz-Thouless
phase transition in two dimensions [34].

This situation has improved much over the past few
years [35–38]. After a quench in the external magnetic field
to the resonance limit, a quasiequilibrium state of a three-
dimensional (3D) strongly interacting p-wave Fermi gas has
been observed [35], and the contact parameters, which char-

acterize the universal short-distance and large-momentum
behavior of the system [39–48], have been measured using
radio-frequency spectroscopy [35]. Most recently, the atom
loss close to the resonance has been found to decrease
significantly in lower dimensions [36], as theoretically pre-
dicted [49,50]. These experimental advances suggest the pos-
sibility of realizing a 2D strongly interacting p-wave Fermi
superfluid in future experiments.

Motivated by this possibility, here we present a detailed
theoretical study of two important experimental observables
of a p-wave Fermi superfluid at zero temperature: the two
p-wave contact parameters and the breathing mode frequency.
The investigation is based on our recent results of the zero-
temperature equations of state [51], which are reliably calcu-
lated using the Gaussian pair fluctuation (GPF) theory beyond
mean field [8,9,52,53]. A finite-temperature investigation is
also possible, by applying the Nozières–Schmitt-Rink theory
above the superfluid phase transition [4,5]. We note that, at
sufficiently high temperatures close to the Fermi degener-
ate temperature, the calculations of p-wave contact parame-
ters and breathing mode frequency were recently performed
by Zhang and Zhang [46], using the virial expansion the-
ory [54–57].

In this work we are particularly interested in the breathing
mode frequency right at the resonance. In three dimensions,
an s-wave resonantly interacting Fermi gas acquires scale-
invariant zero-energy wave functions, which are eigenstates
of the dilation operator [58]. In the presence of an isotropic
harmonic trap with frequency ω0, there is a hidden symmetry
SO(2, 1), yielding a scale-invariant breathing mode frequency
ωc = 2ω0 [58]. In two dimensions, this hidden symmetry was
nicely explained by Pitaevskii and Rosch using the same
contact s-wave interatomic interaction, which is classically
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scale invariant [59]. However, the quantum renormalization
of the s-wave contact interaction necessarily introduces a new
length scale of the 2D scattering length and explicitly breaks
the scale invariance of the interaction. Therefore, the breath-
ing mode frequency deviates from the classically invariant
value of ωc, i.e., δωB = ωB − ωc �= 0. This frequency shift
is now referred to as a quantum anomaly [60–67]. In our
case of a resonantly interacting p-wave interaction, where the
2D scattering area disappears, we anticipate that the system
may also have scale-invariant zero-energy wave functions
if there is no length scale set by interactions, and in the
presence of isotropic harmonic trap it has the scale-invariant
breathing mode frequency ωc. This is unfortunately not true.
The renormalization of p-wave interaction necessarily gives
a length scale of the effective range of interactions. The
breathing mode frequency then deviates from ωc. We find that
this frequency shift in the p-wave channel is much larger than
its s-wave counterpart of quantum anomaly and could be more
easily measured in experiments.

The rest of the paper is set as follows. In Sec. II we
provide the Hamiltonian of a 2D spinless Fermi gas near a p-
wave Feshbach resonance described by a separable interaction
potential. We show how to calculate the scattering area ap and
the effective range Rp for the separable potential. As discussed
in Sec. III, this enables us to obtain the equations of state of
the system as functions of ap and Rp. We derive the analytic
mean-field equations and present the numerical GPF results
beyond mean field for the equations of state. In Sec. IV we
discuss the two p-wave contacts and the related breathing
mode frequency. In Sec. V we focus on the resonance limit
and discuss the significant frequency shift from the scale-
invariant frequency ωc, due to the existence of the effective
range. We summarize in Sec. VI.

II. MODEL HAMILTONIAN AND TWO-BODY
SCATTERING

A spinless 2D p-wave interacting Fermi gas of N atoms can
be described by the Hamiltonian (with the area A = 1) [25,51]

H =
∑

k

ξkψ
†
kψk + 1

2

∑
k,k′,q

Vkk′b†
kqbk′q, (1)

where ψ
†
k (ψk) is the creation (annihilation) field operator

for atoms, ξk ≡ εk − μ = h̄2k2/2M − μ is the single-particle
dispersion with mass M and chemical potential μ, and b†

kq ≡
ψ

†
k+q/2ψ

†
−k+q/2 is the composite operator that creates a pair

of atoms with center-of-mass momentum q. The interparticle
interaction takes a separable form with the chiral px + ipy

symmetry [4,25,26,51]

Vkk′ = λ�(k)�∗(k′). (2)

Here λ is the bare interaction strength and

�(k) = (k/kF )

[1 + (k/k0)2n]3/2
eiϕk (3)

is a dimensionless regularization function with the cutoff mo-
mentum k0, polar angle ϕk, and exponent n that is introduced
for the convenience of numerical calculations. The Fermi
wave vector kF is related to the number density of atoms

n2D = N/A by the relation kF = √
4πn2D. Our choice of the

chiral px + ipy channel is motivated by the phase diagram
established by Gurarie et al. [27]. Although experimentally
the Feshbach resonances for m = 0 and m = ±1 are nearly
degenerate, at low temperature the system will spontaneously
break the spin-rotational symmetry and condense into the
px + ipy superfluid state.

We may replace λ with a characteristic energy Eb by
solving the two-body problem at zero center-of-mass momen-
tum [25,51]

2εk�k +
∑

k′
Vkk′�k′ = Eb�k, (4)

where �k is the two-body wave function in momentum space
and k is the relative momentum of two particles. By using the
separability of the interaction potential, after some algebra, it
is easy to find that

1

λ
= −P

∑
p

|�(p)|2
2εp − Eb

, (5)

where P stands for taking Cauchy principal value. As we
will see in the next section, Eb is related to the 2D scattering
area ap [see Eq. (12) below]. It can be either negative or
positive [25,51]. In the former case, the so-called BEC side,
it is simply the ground-state energy of a two-body bound
state and the associated binding energy εB = −Eb > 0. In the
latter, it may be viewed as a scattering energy Eb = h̄2k2

b/M >

0 for two particles colliding with a characteristic relative
momentum kb within the two-particle continuum. In this case,
the sum on the right-hand-side of Eq. (5) is not well defined
and we have taken the Cauchy principal value of the sum to
remove possible ambiguity. From now on, for convenience we
refer to Eb as the scattering energy, in spite of the fact that it
can take negative values on the BEC side.

In previous work [51] we determined the equations of state
of the 2D p-wave Fermi superfluid as functions of the pa-
rameters (Eb, k0, n = 1). Here, for the purpose of calculating
the p-wave contacts and breathing mode frequency, it is more
useful to parametrize the interparticle interaction by using the
2D scattering area ap and the effective range of interactions
Rp, which are formally defined through the p-wave phase shift
δp(k) [46,49,51],

k2 cot δp(k) = − 1

ap
+ 2k2

π
ln(Rpk) + · · · . (6)

As shown in the Appendix of our previous work [51], we find
that Rp = k−1

0 in the limit of n → ∞. In the following, we
derive the general expressions of ap and Rp for an arbitrary
exponent n. This is necessary, since we have to take a finite
value of n in actual numerical calculations. At low energy, all
the physical results of interest should be functions of ap and
Rp, independent of the different choice for n.

Expressions of ap and Rp

To relate the bare interaction strength λ to the scattering pa-
rameters, we calculate the two-body T -matrix in vacuum [51],

T (k, k; E ) = |�(k)|2
[

1

λ
+

∑
p

|�(p)|2
2εp − E − i0+

]−1

, (7)
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where E ≡ h̄2k2/M. Using the relation T −1(k, k; E ) =
−M[cot δp(k) − i]/4h̄2, we find that in the limit k → 0,

1

λ
+ P

∑
p

|�(p)|2
2εp − E

= M|�(k)|2
4h̄2k2

[
1

ap
− 2k2

π
ln(Rpk)

]
.

(8)

As shown in Appendix A, for arbitrary exponent n we have

P
∑

p

|�(p)|2
2εp − E

= M

4π h̄2

[
k2

0

k2
F

π (n − 1/2)(n − 1)

n3 sin(π/n)

− 2k2

k2
F

ln

(
e3/4n k

k0

)]
. (9)

Therefore, we obtain

1

ap
= 4h̄2k2

F

Mλ
+ (n − 1/2)(n − 1)

n3 sin(π/n)
k2

0 , (10)

Rp = exp

(
3

4n

)
k−1

0 . (11)

In the limit n → ∞, we recover the known relation Rp =
k−1

0 [51]. For the expression of the scattering area ap, we
may replace λ in favor of the scattering energy Eb. In the
low-energy limit, i.e., |Eb| � h̄2k2

0/M, we find that

1

ap
= MEb

π h̄2

[
ln

M|Eb|
h̄2k2

0

+ 3

2n

]
. (12)

It is easy to see that the scattering energy Eb changes sign
in the unitary limit ap = ±∞. On the BEC side with ap > 0,
we may write Eb = −εB, where εB ≡ h̄2κ2/M is the binding
energy, and obtain

− 1

ap
− 2κ2

π
ln(Rpκ ) = 0. (13)

This equation agrees with the low-energy expansion of the
phase shift in Eq. (6), where k = iκ is simply the pole of the p-
wave scattering amplitude fp(k) = √

2/πk[cot δp(k) − i]−1.

III. ZERO-TEMPERATURE THEORY

The zero-temperature mean-field and GPF theories of a 2D
chiral p-wave Fermi superfluid were laid out in our previous
work [51]. Here, for self-containedness, we give a brief sum-
mary. In the superfluid phase, two fermions can pair up via the
separable attraction Vkk′ to form a Copper pair, described by a
generalized density operator ρ̂q ≡ λ

∑
k �∗(k)bkq. The pairs

then condense into the zero center-of-mass momentum state,
as described by a nonzero pairing order parameter �, i.e.,

ρ̂q = �δq,0 + �q. (14)

On top of this condensate are strong pair fluctuations, repre-
sented by the field operator �q for the noncondensed Cooper
pairs.

Neglecting �q leads to the mean-field description. At
a given chemical potential, the zero-temperature thermody-

namic potential takes the form [51]

�MF = 1

2

�2

λ
+ 1

2

∑
k

(ξk − Ek ), (15)

where Ek = [ξ 2
k + �2|�(k)|2]1/2 is the energy of fermionic

Bogoliubov quasiparticles. The associated quasiparticle wave
functions are given by

|uk|2 = 1

2

(
1 + ξk

Ek

)
, (16)

|vk|2 = 1

2

(
1 − ξk

Ek

)
, (17)

ukv
∗
k = ��(k)

2Ek
. (18)

By minimizing the mean-field thermodynamic potential with
respect to � and μ, we obtain the mean-field gap equation

1

λ
+

∑
k

|�(k)|2
2Ek

= 0 (19)

and the mean-field number equation

n2D = −∂�MF

∂μ
= 1

2

∑
k

(
1 − ξk

Ek

)
≡ nF . (20)

The contribution of strong pair fluctuations to the thermo-
dynamic potential can be accounted for by taking an approx-
imate Green’s function �(Q ≡ {q, iνn}) for noncondensed
Copper pairs at the Gaussian level [8],

�(Q) = −
[

M11(Q) M12(Q)

M21(Q) M22(Q)

]−1

, (21)

where the matrix elements are given by

M11(Q) =
∑

k

|�(k)|2
[

(u+u∗
+)(u−u∗

−)

iνn − E+ − E−

− (v+v∗
+)(v−v∗

−)

iνn + E+ + E−
+ 1

2Ek

]
, (22)

M12(Q)=
∑

k

[�∗(k)]2

[
(u+v∗

+)(u−v∗
−)

iνn − E+ − E−
− (u+v∗

+)(u−v∗
−)

iνn + E+ + E−

]
,

(23)

M21(Q) = M∗
12(Q), and M22(Q) = M∗

11(Q). Here νn ≡
2nπkBT with integer n = 0,±1,±2, . . . are bosonic Mat-
subara frequencies, and the abbreviations u± ≡ uq/2±k, v± ≡
vq/2±k, and E± ≡ Eq/2±k are used. At the Gaussian level, the
effective interaction between noncondensed Cooper pairs is
treated within the Bogoliubov approximation, so there is no
residual interaction between bosonic quasiparticles. There-
fore, it is straightforward to write the fluctuation part of
the thermodynamic potential for noninteracting quasiparti-
cles [68],

�GF[μ,�(μ)] = kBT

2

∑
iνn

∑
q

ln det[−�−1(Q)]. (24)

For a given μ, once �GF is numerically calculated, we de-
termine the number of Cooper pairs nB by using numerical
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differentiation

2nB = −∂�GF[μ,�(μ)]

∂μ
. (25)

The number equation (20) is then updated to

n2D = nF + 2nB. (26)

This leads to an updated chemical potential in the GPF theory.
It is worth noting that within GPF the pairing gap �(μ)

is always calculated at the mean-field level, by solving the
gap equation (19). This is necessary to ensure a gapless
Goldstone phonon mode [8,9], i.e., det �−1(Q = 0) = 0. In
principle, it is possible to have a generalized approximation
to improve the gap equation beyond mean field. Accordingly,
we could improve the vertex function �(Q) beyond GPF. The
exploration of this possibility is left for future studies.

A. Analytic solutions from mean-field theory

In two dimensions, the integrals involved in mean-field
equations can often be integrated out explicitly, leading to
some nice analytic solutions. In the following, we take the
Fermi wave vector kF and Fermi energy εF = h̄2k2

F /2M as
the units of wave vector and energy, respectively. In particu-
lar, we define the dimensionless pairing gap �̃ = �/εF and
the dimensionless chemical potential μ̃ = μ/εF . By setting
n → ∞, i.e., taking a steplike function for the regularization
function �(k), and performing the integrals in the gap and
number equations, we arrive at two coupled equations

−
[
�̃2

4
− μ̃�(μ̃)

]
+ �̃2

2
ln

(kF Rp)−1√
�̃2

4 − μ̃�(−μ̃)
= 1 (27)

and

μ̃ ln
(kF Rp)−1√

�̃2

4 − μ̃�(−μ̃)
= 1 − π

2

1

k2
F ap

, (28)

where �(x) is the step function.
In the BCS limit, where �̃ → 0 and μ̃ → 1, we find from

Eq. (28) that

�

εF
� 2

e

(
1

kF Rp

)
exp

[
π

2

1

k2
F ap

]
. (29)

By substituting it into Eq. (27) we obtain

μ

εF
� 1 + π

e2

(
1

kF Rp

)2 1

k2
F ap

exp

[
π

k2
F ap

]
. (30)

In the BEC limit, the chemical potential becomes negative
and approaches half of the bound state energy, i.e., μ →
−h̄2κ2/2M, where κ is the solution of Eq. (13). From Eq. (27)
it is readily seen that

�

εF
�

[
−1

2
ln(Rpκ ) − 1

4

]−1/2

. (31)

For the chemical potential, we rewrite it in the form μ =
−h̄2κ2/2M + μB/2, where the molecular chemical potential
μB is approximately equal to gBn2D/2, with gB the strength
of the interaction between two pairs. After some algebra

FIG. 1. Chemical potential μ (in units of εF ) and total energy E
(in units of E0 = NεF /2), as a function of the inverse scattering area
−1/k2

F ap, calculated by using the mean-field theory (red dashed line)
and the GPF theory (black solid line with circles). We have subtracted
the contribution from the two-body bound state with binding energy
εB ≡ −Eb when the scattering area is positive. The effective range
of the interaction is fixed to kF Rp = 0.05. The inset in (a) shows
the pairing order parameter. The two green dot-dashed lines are the
mean-field predictions of the asymptotic behavior in the BCS and
BEC limits, Eqs. (29) and (31), respectively.

we find that

μB

εF
�

[
−1

2
ln(Rpκ ) − 1

4

]−1

�
(

�

εF

)2

. (32)

The pair-pair interaction strength gB = μB/(n2D/2) is then
given by

gB � 8π h̄2/M

− ln(Rpκ )
= 16π h̄2/M

ln
[
h̄2k2

0/M|Eb|
] , (33)

in agreement with the previous result [see Eq. (48) in
Ref. [51]].

B. Numerical results on the equation of state

At the level beyond mean field, the GPF theory can only
be solved numerically. In Fig. 1 we report the GPF chemical
potential [Fig. 1(a)], total energy [Fig. 1(b)], and the pairing
gap (i.e., the inset) as a function of the inverse scattering
area −1/k2

F ap at a given effective range kF Rp = 0.05, using
the black solid lines with circles. For comparison, we show
also the corresponding mean-field results by the red dashed
lines. These thermodynamic variables have been shown in the
previous work as a function of the scattering energy Eb [51].

023611-4



RESONANTLY INTERACTING p-WAVE FERMI … PHYSICAL REVIEW A 100, 023611 (2019)

Both the chemical potential and total energy decrease
significantly from their noninteracting values εF and E0 =
NεF /2, respectively. In particular, on the BEC side, we ob-
serve a flat molecular chemical potential and total energy,
which are nearly independent of the scattering area ap. As
discussed in the previous work [51], this is an indication of
the formation of an interacting Bose condensate of composite
Copper pairs in two dimensions, with a constant pair-pair
interaction strength gB ∼ h̄2/M.

C. Super-Efimov trimers

It is worth mentioning that, for 2D fermions with p-wave
interaction, Nishida et al. discovered a series of three-particle
bound states, namely, super-Efimov states [69]. How would
the many-body properties of the system (i.e., contact and
breathing mode as addressed in this work) be affected by
these super-Efimov trimers is an interesting research topic to
explore [70]. Naively, due to the double exponential scaling
of the super-Efimov trimers [69], we anticipate that only
one trimer with an emergent energy scale will appear under
current experimental conditions. The neighboring trimer with
smaller energy cannot exist due to its large spatial extent,
while the one with larger energy is simply too deep to observe
experimentally. In this respect, the impact of super-Efimov
states on the many-body physics could be less significant than
that of conventional Efimov states.

IV. RESULTS AND DISCUSSION

We are now ready to discuss the p-wave contacts and
the related breathing mode frequency. There are two con-
tact parameters, characterizing the short-distance and large-
momentum behaviors of different correlation functions, such
as the momentum distribution and pair-pair correlation func-
tion [42,43]. As shown by Zhang and Zhang [46], these two
contacts Ca and CR satisfy the adiabatic relations(

∂E

∂a−1
p

)
S

= −π h̄2

2M
Ca, (34)

(
∂E

∂ ln Rp

)
S

= h̄2

M
CR (35)

and therefore can be determined once the total energy is
known at a given entropy S. At zero temperature, where the
entropy is always zero, we simply take the two first-order
derivatives.

A. Tan’s p-wave contacts

For this purpose, we may write the zero-temperature total
energy in a dimensionless form ξ (x, y),

E = NεF

2
ξ

[
x ≡ 1

k2
F ap

, y ≡ ln(kF Rp)

]
, (36)

and the two p-wave contacts can similarly be rewritten in a
dimensionless way,

Ca

N
= − 1

2π
ξx, (37)

CR

Nk2
F

= 1

4
ξy, (38)

where ξx ≡ ∂ξ/∂x and ξy ≡ ∂ξ/∂y. Following the dimension-
less form of the total energy, it is easy to find that the chemical
potential μ = ∂E/∂N and the pressure P = μn2D − E/A,

μ = εF

(
ξ − x

2
ξx + 1

4
ξy

)
, (39)

P = P0

(
ξ − xξx + 1

2
ξy

)
, (40)

where P0 ≡ n2DεF /2. By substituting the expressions of the
dimensionless contact into the equation for pressure (40), we
obtain the pressure relation [46]

PA = E + π h̄2

2M

Ca

ap
+ h̄2

2M
CR. (41)

It is useful to distinguish the two- and many-body contribu-
tions to the contact parameters. For the two-body contribution,
we assume that the system can be viewed as an ideal nonin-
teracting gas of N/2 pairs, each of which has the energy

ε2B =
{−εB if ap > 0

0 otherwise.
(42)

In other words, on the BEC side the pair takes the ground-state
energy of the two-body bound state, while on the BCS side,
the minimum energy of the pair should be zero, i.e., the
lower threshold of the two-particle continuum. The two-body
contribution to the total energy of the system can then be
written as

E2B = (N/2)ε2B =
{−NεB/2 if ap > 0

0 otherwise.
(43)

On the BEC side, by using Eq. (13), we find that the two-body
contribution to the contact from the energy E2B, denoted by
Ca,2B and CR,2B, is given by [46]

Ca,2B = −N

2

1

ln(Rpκ ) + 1/2
, (44)

CR,2B = +N

2

κ2

ln(Rpκ ) + 1/2
. (45)

On the BCS side, Ca,2B = 0 and CR,2B = 0, as a result of
E2B = 0. On both sides, either BEC or BCS, we obtain that

E2B + π h̄2

2M

Ca,2B

ap
+ h̄2

2M
CR,2B = 0. (46)

This equation is easy to understand from the pressure relation,
since the two-body bound state does not contribute to the
many-body observables such as pressure.

In Fig. 2 we plot the two dimensionless contact parameters
as a function of −1/k2

F ap at a given effective range kF Rp =
0.05, calculated by using the GPF theory (black lines with
circles) and the mean-field theory (red dashed lines). The
two-body contribution from the bound state to the contacts is
also shown by green dot-dashed lines. As we see in Fig. 2(a),
the contact related to the scattering area Ca is always positive.
It increases with increasing interaction strength (k2

F ap)−1. On
the BEC side with a positive scattering area, we find that the
GPF result of Ca is exhausted by the two-body contribution
Ca,2B. The mean-field theory seems to underestimate Ca, with
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FIG. 2. Contact parameters (a) Ca and (b) CR as a function
of the inverse scattering area −1/k2

F ap at the effective range of
the interaction kF Rp = 0.05. The mean-field and GPF results are
shown by the red dashed line and the black solid line with circles,
respectively. The two-body contribution is also shown by the green
dot-dashed line.

the largest underestimation occurring at (k2
F ap)−1 ∼ 0.5. On

the other hand, the contact related to the effective range CR has
a nonmonotonic dependence on the inverse scattering area,
as shown in Fig. 2(b). As (k2

F ap)−1 increases, CR initially
increases, reaches a maximum at (k2

F ap)−1 ∼ −1, and then
decreases to zero at about the resonance limit. Towards the
BEC limit, it decreases very rapidly. We find similarly that the
GPF result of CR is almost exhausted by the two-body contri-
bution CR,2B. The mean-field theory generally overestimates
CR and the overestimation becomes increasingly larger when
we increase the interaction strength. This is related to the
unreliable prediction of the mean-field theory on the pair-pair
interaction strength [see Eq. (33)].

We have separated out the many-body parts of the two con-
tact parameters Ca,MB = Ca − Ca,2B and CR,MB = CR − CR,2B

and show the GPF predictions in Fig. 3 for two effective
ranges of interactions kF Rp = 0.05 (black line with circles)
and kF Rp = 0.10 (blue line with squares). On the BEC side,
the many-body parts of both contact parameters are small,
consistent with the observation in Fig. 2 that the contacts are
exhausted by the two-body contribution. Across the resonance
limit, they exhibit a pronounced peak. The peak in Ca,MB

is slightly above the resonance limit. The peak in CR,MB is
located at (k2

F ap)−1 ∼ −1 and shifts towards the BCS limit
with decreasing effective range. We note that the many-body
parts of the two p-wave contacts are always positive.

FIG. 3. Many-body part of the contact parameters (a) Ca,MB and
(b) CR,MB as a function of the inverse scattering area −1/k2

F ap at two
effective ranges of the interaction: (a) kF Rp = 0.05 (black solid line
with circles) and (b) kF Rp = 0.10 (blue solid line with squares). All
the results are calculated by using the GPF theory.

B. Breathing mode frequency

The interesting dependence of the many-body part of the
contacts on the interaction strength may lead to a nontriv-
ial breathing-type oscillation mode, when the 2D p-wave
Fermi superfluid is confined in a harmonic trap with trapping
frequency ω0. This is a mode excited by the perturbation
λ(t )O ≡ λ(t )

∑N
i=1 r2

i , i.e., by slightly modulating the har-
monic trapping frequency for a certain period. For noninter-
acting bosons or fermions, the breathing mode frequency is
simply ωc = 2ω0. The interparticle interaction generally leads
to a frequency shift. As shown by Zhang and Zhang [46],
the frequency shift at the leading order is proportional to the
contact parameters. By using virial expansion, the frequency
shift of the breathing mode at high temperatures was then
theoretically studied [46].

In our zero-temperature case, we calculate the breath-
ing mode frequency using the well-known scaling ap-
proach [71–73]. This amounts to assuming a polytropic form
for the pressure equation of state P ∝ nγ+1

2D , where the poly-
tropic index γ may be calculated using

γ = n2D

P

(
∂P

∂n2D

)
− 1, (47)

at the center of the harmonic trap. The scaling approach then
leads to a breathing mode frequency [73]

ω2
B

ω2
c

= γ + 1

2
= P0κ

(0)
T

PκT
, (48)
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where at zero temperature we rewrite ∂P/∂n2D in terms
of the compressibility κT = [n2

2D(∂μ/∂n2D)]−1 and κ
(0)
T ≡

(n2DεF )−1 is its noninteracting value. This expression empha-
sizes the sound-wave nature of the breathing mode frequency.
Qualitatively, the breathing mode frequency can be estimated
as cskmin, where cs is the sound velocity and kmin ∝ A−1/2 is
the minimum wave vector of the Fermi cloud with an area A.
By recalling the relation κ−1

T ∝ c2
s and assuming the pressure

P ∝ A−1 under the soft-wall confinement of the harmonic
trap, we find ω2

B ∝ (PκT )−1.
The polytropic index γ can be directly calculated once

the energy or pressure equation of state is known. By taking
derivative with respect to density in Eq. (40) and neglecting
all small second-order derivatives, we find that

n2D
∂P

∂n2D
� 2P + P0

(
−xξ̄x + 1

2
ξ̄y

)
, (49)

where the bar over ξx and ξy indicates that we do not include
the irrelevant two-body contribution. By substituting it into
Eq. (47), we obtain the frequency shift δωB = ωB − ωc,

δωB

ωc
� γ − 1

4
� −xξ̄x + 1

2 ξ̄y

4P/P0
. (50)

By replacing the two derivatives with the help of Eqs. (37)
and (38), we finally arrive at

δωB

ωc
� h̄2

M2

πa−1
p Ca,MB + CR,MB

4ω2
0〈O〉 , (51)

where the virial theorem PA = Mω2
0〈O〉/2 in the presence

of harmonic traps is used.1 We therefore recover Eq. (84) in
Ref. [46] and explicitly show the relation between the many-
body parts of the two p-wave contacts and the frequency shift
in the breathing mode.

In Fig. 4 we present the frequency shift of the breathing
mode as a function of the inverse scattering area at two
effective ranges kF Rp = 0.05 [Fig. 4(a)] and kF Rp = 0.10
[Fig. 4(b)]. These results are calculated using Eq. (48) within
the mean-field theory (dashed lines) and the GPF theory (lines
with symbols). We find that the frequency shift is negative on
the BCS side and exhibits a broad dip at −(k2

F ap)−1 ∼ 1–2.
This dip structure is apparently related to the peak structure in
the many-body part of the two p-wave contacts, according to
Eq. (51). The two contacts contribute differently in opposite
signs and the contribution from Ca,MB seems to dominate.
We note that, in a 1D harmonically trapped p-wave Fermi
superfluid, the breathing mode frequency shows a qualita-
tively similar dependence on the interacting strength in the
weak-coupling regime [74,75].

On the BEC side, we see that the frequency shift predicted
by the GPF theory becomes flat and small. This is associated

1There is a subtlety here, as we want to relate the peak value of a
quantity at the trap center to an average of the quantity over the whole
trap. In a 2D harmonic trap, the virial theorem states that the trapping
potential energy 〈Mω2

0

∑
r2

i /2〉 = Mω2
0〈O〉/2 = ∫

dr P(r) � PA. In
the last step, we approximate the integral using the peak pressure P
at the trap center and define an appropriate area A, which is to be
removed by using the identity P0A = NεF /2.

FIG. 4. Deviation of the breathing mode frequency from the
scale-invariant result of ωc = 2ω0, as a function of the inverse
scattering area −1/k2

F ap, at two effective ranges of the interaction:
(a) kF Rp = 0.05 and (b) kF Rp = 0.10. The mean-field and GPF
results are shown by the dashed lines and the solid lines with
symbols, respectively.

with the formation of tight-binding molecules that interact via
a nearly constant molecular scattering length, as we discussed
earlier. The GPF frequency shift is positive and is about 5%
at kF Rp = 0.10. In contrast, the mean-field frequency shift is
negative and shows a nontrivial cusp at (k2

F ap)−1 ∼ 0.5. This
mean-field behavior is unphysical, arising from the unreliable
equations of state predicted by the mean-field theory. It is
interesting to note that the breathing mode frequency shift
of a weakly interacting 2D Bose gas was investigated both
theoretically and experimentally [76,77]. In that case, the shift
is too small to be experimentally observed. The moderately
interacting molecular condensate formed in the strongly in-
teracting 2D p-wave Fermi superfluid could be a possible
candidate to observe the breathing mode frequency shift due
to beyond-mean-field effects.

V. FREQUENCY SHIFT IN THE RESONANCE LIMIT

Here we focus on the breathing mode frequency in the
resonance limit ap = ±∞. If we neglect the dependence of
the equations of state on the effective range, the dimensionless
energy function ξ is simply a constant. From the pressure
P = ξP0 ∝ n2

2D we find a polytropic index γ = 2 and hence
ωB = 2ω0. This could be an exact result ensured by the scale
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invariance of the system [58]. However, the necessary exis-
tence of the effective range breaks the scale invariance and
leads to a derivation of the breathing mode frequency away
from the scale-invariant result of ωc = 2ω0. A similar situa-
tion happens in an s-wave 2D Fermi superfluid [60,63]. While
the superfluid with s-wave contact interaction is scale invari-
ant in the classical treatment, i.e., the model Hamiltonian
simply scales upon stretching the length of the system [59],
the renormalization of the contact interaction necessarily in-
troduces a 2D s-wave scattering length a2D that violates the
scale invariance. This leads to an upshift in the breathing mode
frequency, the so-called quantum anomaly, which is about
10% in the strongly interacting regime [60,61]. It is not a
surprise to see the similarity between the effective range Rp

in a p-wave Fermi superfluid and the 2D scattering length a2D

in an s-wave Fermi superfluid. This is discussed in more detail
in Appendix B.

A. Chemical potential in the resonance limit

Before we discuss the frequency shift in a resonantly inter-
acting p-wave Fermi superfluid, it is useful to first understand
the chemical potential in this limit. Using the mean-field
equations (19) and (20), we find that

μ̃ = − 1

ln(kF Rp�̃/2)
, (52)

�̃2 = 2μ̃(1 − μ̃)

1 − μ̃/2
. (53)

By treating −[ln(kF Rp)]−1 = −y−1 as the small parameter,
we obtain

μ

εF
� −1

y

[
1 − 1

2y
ln

(
− 1

2y

)]
, (54)

�

εF
�

√
−2

y

[
1 − 1

4y
ln

(
− 1

2e

1

y

)]
. (55)

Thus, towards the zero-range limit, the mean-field chemical
potential at resonance vanishes linearly.

More accurate predictions from the GPF theory should be
determined numerically. Empirically, we find that the GPF
chemical potential at resonance can be nicely fitted by the
formalism

μ

εF
� −A

(
1

y
− 1

2y2

)
, (56)

where A � 0.078 � 1. While the GPF chemical potential at
resonance still vanishes linearly in the zero-range limit, the
slope, i.e., the value of A, is much slower than that of the
mean-field chemical potential.

In Figs. 5 and 6 we report the mean-field and GPF predic-
tions of the chemical potential at resonance as a function of
− ln−1(kF Rp), respectively. The analytic expressions and the
empirical formalism discussed in the above are also shown.
At small effective range, they agree well with the numerical
results.

FIG. 5. Mean-field chemical potential μ (main figure, circles)
and the mean-field pairing order parameter (inset, squares) as a
function of − ln−1(kF Rp) in the resonance limit (i.e., ap → ±∞).
The lines show the asymptotic behavior in the limit of zero effective
range of the interaction, Rp → 0 or − ln−1(kF Rp) → 0 [see Eqs. (54)
and (55)].

B. Frequency shift

The mean-field analytic expression and the GPF empirical
formalism for the chemical potential at resonance are very
useful to understand the shift of the breathing mode frequency.
To see this, we may calculate the polytropic index related to
the chemical potential, i.e., μ ∝ nγ

2D, by using

γ = n2D

μ

(
∂μ

∂n2D

)
� 1 + ξ (μ)

y

2ξ (μ)
, (57)

where we have rewritten μ = εF ξ (μ)(y) and have assumed
ξ (μ)

y � ξ (μ). By taking the chemical potential at the leading
order, i.e., ξ (μ) ∝ −1/y, we obtain immediately γ � 1 −

FIG. 6. Chemical potential μ as a function of − ln−1(kF Rp),
calculated by using the GPF theory in the resonance limit ap → ±∞.
The inset shows the chemical potential as a function of kF Rp in the
linear scale. The lines are the fitting curves to the GPF results [see
Eq. (56)].
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FIG. 7. Deviation of the breathing mode frequency from the
scale-invariant result of ωc = 2ω0 as a function of − ln−1(kF Rp) in
the resonance limit ap → ±∞. The mean-field and GPF results are
shown by the black circles and red squares, respectively. The black
solid line and red dashed line are the corresponding analytical results
in the zero-range limit, Eqs. (60) and (59), respectively. The blue
dot-dashed line shows the leading contribution to the deviation of
the mode frequency: δωB/2ω0 � − ln−1(kF Rp)/8 [see Eq. (58)].

1/[2 ln(kF Rp)], and consequently

δωB

ωc
� γ − 1

4
� − 1

8y
= − 1

8 ln(kF Rp)
. (58)

More careful treatments of the chemical potential to the next
order in Eqs. (54) and (56) lead to the results

δωB

ωc
� − 1

8y

[
1 − 1

2y
ln

(
− e

2y

)]
(59)

for the mean-field theory and

δωB

ωc
� − 1

8y

[
1 − 1

2y

]
(60)

for the GPF theory, respectively.
In Fig. 7 we show the upshifts of the breathing mode fre-

quency predicted by the mean-field theory and the GPF theory
in the resonance limit, together with the asymptotic behaviors
in the zero-range limit, as discussed above. According to the
GPF theory, the shift of the breathing mode frequency can
easily reach 10% at a relatively small effective range, i.e.,
[ln(kF Rp)]−1 � −0.6 or kF Rp ∼ 0.2.

At this point, it is interesting to compare the frequency shift
exhibited by a resonantly interacting p-wave Fermi superfluid
and by a strongly interacting s-wave Fermi superfluid, both in
two dimensions. In the latter case, the theoretically predicted
maximum quantum anomaly of 10% is yet to be experimen-
tally confirmed [63,65,66]. The main obstacle comes from the
confinement-induced effective range Rs, which is significant
under the current experimental condition. Indeed, our recent
analysis indicates that the effective range Rs in a 2D s-wave
superfluid can strongly suppress the quantum anomaly down
to 1–2 % [67]. In sharp contrast, for a resonantly interacting
p-wave Fermi superfluid, the effective range Rp enhances the
frequency shift. Owing to the great feasibility in tuning Rp

in cold-atom experiment, therefore, we anticipate that a low-
temperature p-wave Fermi gas at Feshbach resonances would
be an ideal candidate to conclusively confirm the predicted
frequency shift.

VI. CONCLUSION AND OUTLOOK

We have determined theoretically two important experi-
mental observables, Tan’s contact parameter and the breathing
mode frequency, of a resonantly interacting p-wave Fermi
superfluid in two dimensions at the BEC-BCS evolution.
Both observables can be easily accessed in current cold-atom
experiment, as soon as a stable p-wave superfluid is realized in
reduced dimensions. The two Tan contact parameters can be
directly extracted from the tail of the momentum distribution
probed by radio-frequency spectroscopy [35] and the breath-
ing mode measurement is now a routine tool in cold-atom
laboratories [63,65,66].

We have proposed that, similar to an s-wave Fermi super-
fluid at the BEC-BCS crossover, the p-wave Fermi superfluid
in the resonance limit experiences a frequency shift, due to
the nonvanishing effective range of interactions that explicitly
breaks the scale invariance of the system. The upshift in
the breathing mode frequency, away from the scale-invariant
value ωc = 2ω0, turns out to be significant. At the leading
order, it is inversely proportional to the logarithm of the
effective range. As a result of this slow-decay logarithmic
dependence, the frequency shift can reach 5–10% over a wide
range of the effective range.
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APPENDIX A: INTEGRAL IN THE TWO-BODY T MATRIX

Here we consider the integral

I = P
∑

p

|�(p)|2
2εp − E

= M

h̄2k2
F

∫ ∞

0

p d p

2π

p2

[1 + (p/k0)2n]3
P

1

p2 − k2
. (A1)

By introducing the variable z ≡ (p/k0)2, we find that

I = Mk2
0

4π h̄2k2
F

∫ ∞

0
dz

z

(1 + zn)3
P

1

z − z0
, (A2)

where z0 ≡ (k/k0)2 � 1. To handle the operator P for the
Cauchy principle value, we divide the whole integral into
three parts [0, z0) ∪ [z0, 2z0) ∪ [2z0,∞). Upon changing the
dummy variable, the integral I can be rewritten in terms of I1

and I2,

I = Mk2
0

4π h̄2k2
F

[I1 + I2], (A3)
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where

I1 =
∫ z0

0

dz

z

{
z0 + z

[1 + (z0 + z)n]3
− z0 − z

[1 + (z0 − z)n]3

}
(A4)

and

I2 =
∫ ∞

z0

dz

z

z0 + z

[1 + (z0 + z)n]3
. (A5)

It is clear that I1 = 2z0 + o(z0). For I2, by neglecting the
higher contribution o(z0), it can be separated into two parts

I2 = −2z0 +
∫ ∞

0

dz

(1 + zn)3
+ z0

∫ ∞

z0

dz

z(1 + zn)3
. (A6)

These two parts can be integrated out explicitly:∫ ∞

0

dz

(1 + zn)3
= π (n − 1/2)(n − 1)

n3 sin(π/n)
, (A7)

∫ ∞

z0

dz

z(1 + zn)3
= − ln z0 − 3

2n
+ 3zn

0

n
+ o

(
zn

0

)
. (A8)

Putting I1 and I2 together, up to the o(z0), we obtain the
expression

I = Mk2
0

4π h̄2k2
F

[
π (n − 1/2)(n − 1)

n3 sin(π/n)
− z0 ln z0 − 3z0

2n

]
, (A9)

which is Eq. (9) in the main text.

APPENDIX B: QUANTUM ANOMALY IN A STRONGLY
INTERACTION s-WAVE FERMI SUPERFLUID

In an s-wave Fermi superfluid, Tan’s adiabatic relation is
given by [78] (

∂E

∂ ln a2D

)
S

= h̄2

2πM
C, (B1)

which takes exactly the same form as the adiabatic relation
for the effective range of interactions, as given in Eq. (35),
up to an unimportant prefactor. This same form emphasizes

the similar role played by the effective range Rp in a p-wave
Fermi superfluid and by the scattering length a2D in an s-wave
Fermi superfluid.

Let us now write the total energy of the s-wave Fermi
superfluid in a dimensionless form [53]

E = NεF

2
ξ [z = ln(kF a2D)], (B2)

where for the two-component Fermi gas the Fermi wave
vector kF = √

2πn2D. By using the adiabatic relation (B1),
we then find

C

k4
F

= 1

4
ξz, (B3)

where ξz = ∂ξ/∂z. The dimensionless chemical potential and
pressure are also easy to obtain

μ = εF (ξ + 1
4ξz ), (B4)

P = P0(ξ + 1
2ξz ). (B5)

By calculating the polytropic index related to the pres-
sure [60], we find that

γ = n2D

P

(
∂P

∂n2D

)
− 1 � 1 + ξ̄z

2ξ̄
, (B6)

where again the bar denotes the exclusion of the two-body
bound-state contribution. The calculation of the polytropic
index related to the chemical potential leads to the same
expression at the same level of approximation. Thus, we
obtain the quantum anomaly

δωB

2ω0
� γ − 1

4
� ξ̄z

8ξ̄
= CMB/k4

F

2(E + NεB/2)/E0
. (B7)

According to the GPF calculation or quantum Monte
Carlo simulations, at around the strongly interacting regime
ln(kF a2D) ∼ 0, the many-body part of the contact shows a
peak with CMB/k4

F ∼ 0.05 [53]. This is correlated with a
total energy (E + NεB/2)/E0 ∼ 0.25 [53]. By using these two
numbers, we find a quantum anomaly δωB/2ω0 ∼ 0.1 for a
strongly interacting s-wave Fermi superfluid.
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