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An exciton-polariton condensate loaded in a single active miniband in a one-dimensional microcavity wire
with a complex-valued periodic potential changes its state with an increase of the polariton-polariton repulsion.
This effect depends on the type of the single-particle dispersion of the miniband, which can be fine tuned by the
real and imaginary components of the potential. As a result, the condensate can be formed in a zero state, 7 state,
or mixed state of spatiotemporal intermittency, depending on the shape of the miniband, strength of interparticle
interaction, and distribution of gain in the system. The change of the condensate wave function with increasing
interaction takes place by proliferation of dark solitons, which are the building blocks of the new condensate
phase. We show that, in general, the interacting polaritons are not condensed in the state with minimal losses,
nor do they accumulate in the state with a well-defined wave vector.
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I. INTRODUCTION

Since the discovery of superfluid—-Mott insulator transition
with cold atoms in optical lattices [1,2], the system of bosons
in periodic potentials has attracted much attention for both
fundamental and applied reasons. While the cold atoms in
periodic optical lattices are probably the cleanest system,
they have extremely low critical temperature due to heavy
atomic masses. Exciton polaritons (polaritons) in semicon-
ductor microcavities [3-5] possess substantially smaller ef-
fective masses and can condense not only at liquid helium
[6-8] but also up to room temperature [9,10]. This makes a
system of polaritons in artificial periodic potentials an excel-
lent alternative platform for studying many-body physics, gap
solitons [11,12], topological polariton states [13,14], as well
as classical [15] and quantum [16] simulators.

The physics of polariton condensation is quite different
from traditional cold atoms. An external pumping (coherent or
incoherent) is required to create and maintain polaritons due to
their finite lifetime in the microcavity, which usually prevents
the particles from reaching thermal equilibrium, so that the
steady-state condensate can be formed in an excited state with
many-body correlations. In particular, for polariton conden-
sates in periodic potentials, condensation at the edges of the
Brillouin zone, namely, 7 condensation in one-dimensional
(1D) Iattices [8] and p and d condensation in two-dimensional
(2D) lattices [17], as well as mixed condensates [18], have
been observed.

Loading cavity photons and quantum-well excitons into
separate periodic potentials, one can achieve multivalley (in-
stead of m or zero) condensation [19]. Moreover, polariton
condensation in the presence of distributed gain and loss of
the single-particle states is expected to be accompanied by
formation of spontaneous currents [20]. Another significant
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recent finding is the flat band condensation in 1D [21] and
2D periodic systems [22—24]. Such condensates exhibit strong
enhancement of the effects of polariton-polariton interaction
due to the reduced kinetic energy of the particles.

In this paper, we consider a 1D polariton system in a
complex-valued (later complex) periodic potential and ac-
count for polariton-polariton interaction and gain saturation
nonlinearity. We show that for the detailed description of the
system it is necessary to consider the imaginary part of the
periodic potential, which describes the distributed gain and
losses [25] of single-particle states in the microcavity. By
carefully choosing the parameters of the complex potential
(such as height and width of its imaginary part), we can
control the state of the system and demonstrate that several
conceptually different situations are possible.

In the case of relatively large width of the miniband
(large energy difference between the zero and m states of the
single-particle spectrum), we find that the condensate changes
from zero state to w state (or vice versa) with the increasing
interaction between the particles. This counterintuitive effect
takes place since the condensate with maximal gain becomes
unstable in the case of strongly interacting particles, and the
bosons accumulate in the state with a minimal gain. Conse-
quently, the total number of particles in the condensate is not
maximized.

The crossover from zero to = condensate (or vice versa)
happens by formation of propagating dark solitons, which is
another surprising result. At certain magnitude of the effective
interaction between the particles, comparable with the band-
width, and as a result of soliton propagation, the polaritons are
distributed quasihomogeneously along the dispersion curve
instead of the usual condensation that tends to accumulate
the particles in a single quantum state. The polaritons oc-
cupy the band more or less uniformly, and short correlations
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in space and time manifest intermittency of the condensate
state.

The paper is organized as follows. In Sec. II below we
introduce the generalized Ginzburg-Landau model to describe
the exciton-polariton condensate in 1D complex-valued peri-
odic potentials and give a brief description of the cases on
which we will focus in our numerical simulations. In Sec. III,
the simulation results are presented and discussed, and Sec. [V
contains conclusions.

II. THEORETICAL MODEL

We study the solutions to the 1D generalized Ginzburg-
Landau equation (GLE):

hz
iho, Y = —%afw + VY + (@ —ip)ly Py, (1)

where ¥ (x, t) is the wave function of the polariton conden-
sate, V(x) = V(x + a) is the complex periodic potential with
the lattice period a, m* is the polariton effective mass, o
is the polariton-polariton interaction constant [26-28], and
B > 0 accounts for the gain-saturation nonlinearity of the
system [29,30]. By scaling the wave function ¥ — ¥ //B,
one can set B = I, obtaining the dimensionless interaction
constant /.

The usefulness of the generalized GLE (1) lies in
(1) its simple form, as compared to more detailed descriptions
involving the incoherent exciton reservoir, and (ii) its minimal
set of parameters, which allows us to obtain good qualitative
insight into the physics of exciton-polariton condensation in
the periodic potential. We note that when the system reaches a
steady state on long time scales the interaction and dissipative
parameters get rescaled, taking into account the reservoir
steady state. However, the general form of Eq. (1), namely,
the periodicity of the potential and the presence of two non-
linearities (interaction and dissipation), remains unchanged,
which is a great benefit of the Ginzburg-Landau approach.
Equation (1) of our model has another advantage that it can be
easily compared with the complex Ginzburg-Landau equation
without a periodic potential, which is the well-established
model for the study of nonlinear phenomena in different areas
of physics (see, e.g., Ref. [31] for a review).

We describe the complex potential V (x) = Vr(x) + iV;(x)
as a superposition of square wells in both real and imaginary
parts of it, but with different widths. Namely, within the unit
cell, 0 < x < a, we have (see Fig. 1, upper panels)

Ve(x) = U ®<‘x _ g - %R) (2a)
\G(x):W@(%— x—g’)—f‘, (2b)

where O(x) is the Heaviside step function, U is the height of
potential barriers, W describes the local gain, and I" defines
the uniform losses in the system (due to finite polariton
lifetime in the microcavity wire). Parameters ag and a; are the
widths of real potential wells and imaginary potential barriers,
respectively.

Complex potential (2) reflects the experimental situation
when the system is pumped from the excitonic reservoirs
created in the barriers. Due to exciton-polariton repulsion, the
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FIG. 1. Complex potentials and dispersion of the first miniband.
The real parts are plotted with thick black lines; the imaginary parts
are plotted with thin red lines. (a) AA case: U = 14 /m*a®), W =
326U, =2.64U. (b) VV case: U = 28(h*/m*a*), W = 0.25U,
I'=0.16U. The energy bandwidth ratio AEg/AE; ~ 3 (a) and
2 (b). In both cases, ag = 0.5a and a; = 0.4a. The energies are
measured in the units of Ey = w2k /2m*a>.

particles move into the wells (similar to the case of 2D lattices
of trapped polariton condensates [15]), so that the gain part
of the potential (parameter W) is located at the wells. The
excitonic reservoirs also increase the barrier heights. It should
be noted that a uniform wire subject to a periodic pumping
with the period a is described by the same model (2). This
pumping produces not only periodic gain (periodic imaginary
part) but also periodic repulsive potential (periodic real part).
This setup has the clear benefit that the period a can be tuned.
Since the gain is maximized in the potential wells, the zero
state, which mainly resides in the wells, has usually bigger
gain than the 7 state, which mainly resides in the barriers.

It is important that depending on the values of the parame-
ters of potential (2) the single-polariton spectrum [obtained
setting « = 8 =0 in Eq. (1)] can be of four qualitatively
different types. We classify them as A A [see Fig. 1(a), lower
panel], VV [Fig. 1(b), lower panel], VA, and AV, depending
on the position of the minimum of the energy (the real part of
the eigenvalue) and the position of the minimum of the gain
(the imaginary part of the eigenvalue) for the first miniband.
For example, the AA type corresponds to the case when the
minimum energy and minimum gain are both at the edge of
the first Brillouin zone at k = £ /a [see Fig. 1(a)]. We also
can define effective widths of the bands, AEgr and AE].

In what follows, we will consider the formation of the
polariton condensate near the threshold, when the losses in the
system, governed by the parameter I, are big enough, and the
first miniband only possesses the positive imaginary part of
the eigenvalues, so that the particles are expected to condense
into this miniband. The complex potential in Fig. 1 is then
chosen by the following two principles: (i) Detuning the width
and depth of the well to get the ground-state dispersion with
the AA (or VV) type and (ii) changing the magnitude of
the overall shift for the imaginary part, I', we make the first
miniband the only band with the positive imaginary part of
the eigenvalues. We also consider the first miniband to be
well separated from the other bands, thus disregarding the
transitions between bands.
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FIG. 2. Spatiotemporal pattern of the condensate density |1 (x, #)|> (a, b, ¢) and intensity |y (k, E)|?> (d, e, f) for the AA case. a/B =0

(a, d), 2 (b, e), and 6 (c, f). Time is measured in units of 1y = i/Ey.

III. RESULTS AND DISCUSSION

A. Spatiotemporal dynamics of the condensate

For noninteracting polaritons one expects to obtain their
condensate in the state with the maximal gain. Thus the num-
ber of particles is maximized in this state and it is stabilized
by finite gain-dissipation parameter 8. Therefore, we expect
the zero-state condensation in AA and VA cases, and 7 -state
condensation in AV and VV cases. Numerical solutions of
Eq. (1) show that this scenario remains valid even in the
presence of strong repulsion between polaritons in the VA
and AV cases. However, the polariton-polariton interaction
has a dramatic effect on the condensate loaded in the A A and
VV minibands, leading to fundamental reconstruction of the
condensate state with the increase of interactions. Therefore
we will mostly concentrate on the VV and A A configurations.

Figures 2 and 3 show spatiotemporal dynamics of the
condensate for the AA and VV cases. The upper rows of
these figures show spatiotemporal patterns of the condensate
density | (x,1)|> and the lower rows show the polariton
emission intensities | (k, E)|*> for a small initial random
seed of noise. We calculated 50 trajectories and checked that
different small initial random seeds give a qualitatively similar
picture. In density plots, shown in panels (a), (b), and (c), the
local maxima of the condensate density (dark black vertical
lines along the time axis) are at the centers of wells of the
real potential Vg, where the maximal gain is attained [see also
Figs. 6(a) and 6(b)].

Going right from panels (a) and (d) to panels (c) and (f)
in Figs. 2 and 3, the dimensionless parameter o/ increases
and we observe considerable changes in the spatiotemporal
density patterns and condensation states. (a, d) When o/ =
0, the condensate is formed in the state with the maximal

gain: the zero state in the AA case and the 7 state in the
VYV case. The defects appearing at the early stage of evolution
dissipate away at later times. In panels (b) and (e), when o/
takes an intermediate value, polaritons no longer accumulate
in the state with a well-defined wave vector, but rather they
distribute along the whole miniband. As one can see from
panels (b), strong spatiotemporal chaos is present in this case.
In panels (c) and (f), surprisingly, with further increase of
o/ B, the well-defined condensation takes place again, but now
the condensate is formed at the minimum of the dispersion, in
the state with the smallest gain. It corresponds to the 7 state in
the A A case and the zero state in the VV case. This result is in
contrast with the one obtained in the zero interaction regime
[compare panels (d) and (f)]. It should be noted that the 7 state
in our system is different from the one discussed in Ref. [8],
where it corresponds to the minimum of the second miniband.
The density patterns presented in panels (b) resemble those
of spatiotemporal intermittency in the 1D complex Ginzburg-
Landau equation (CGLE) [32-34], which can be written in the
form
idA =iA+ (c; +)3?A + (c3 — D)|APA. (3)
The nonlinear term here takes the same form as in Eq. (1) and
the linear terms for ¢; > 0 correspond to the complex-valued
energy dispersion of AA type even though the dispersion
in Fig. 1 is not a quadratic but a periodic function. The
parameters c¢; and c3 play similar roles as AEgr/AE; and o/
in our system, respectively. However, the shapes of real and
imaginary parts of the dispersion in Fig. 1 are not exactly
proportional to each other and the continuous translation
symmetry of CGLE is reduced to a discrete lattice translation
symmetry due to the periodic potential.
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FIG. 3. Spatiotemporal pattern of the condensate density | (x, ¢)|? (a, b, ¢) and intensity | (k, E)|?> (d, e, f) for the VV case. /8 =0

(a, d), 0.65 (b, €), and 2 (c, f).

There is also another important difference. Even though
the offset term iA in Eq. (3) admits only a restricted range
of wave numbers (—1 < k < 1) to have a positive gain with
a maximum at k = 0, the edge points k = %1 have zero gain,
and therefore the condensate cannot be formed at the edge.
Instead, the polariton system is characterized by edge points
of the first Brillouin zone k = £ /a with finite gain and the
singularity in the density of states. It is this feature that leads
to the possibility of formation of the polariton condensate at
the edge.

In the system described by the CGLE, the spatiotemporal
intermittent phase appears in the transition from a plane-wave
to a turbulent (chaotic) state [32]. In our case, the phase land-
scape is different: a zero-state Bloch wave, a m-state Bloch
wave (instead of the turbulent state), and the spatiotemporal
intermittency which separates these states. Nonetheless, the
spatiotemporal intermittency pattern is quite similar to the
conventional one. We note that the intermittency phase ex-
hibits some features of the deterministic chaos within a single
trajectory. Similar intermittent polariton states have recently
been reported in spontaneously formed periodic structures
under resonant driving [35].

The crossover from the spatiotemporal intermittent dynam-
ics to the 7t condensate in the A A case (or to the zero conden-
sate in the VV case) is not always possible. The formation
of a new condensate phase depends not only on the polariton
interaction strength /8, as has been discussed above, but
also on the ratio AEg/AE;. Figure 4 demonstrates (for the
A A case) that a sufficiently large value of the ratio AEg/AE;
is required to reach a m state from the mixture state of the
spatiotemporal intermittency.

B. Spatiotemporal intermittency

It has been suggested that the transition from a laminar
(regular) state to the turbulent (irregular) state via spatiotem-
poral intermittency can be related to the directed-percolation
process [36]. Following directed percolation studies, one can
quantify spatial intermittency by measuring the distribution of
the lengths of laminar domains, which is expected to reveal
a power-law behavior at the spatiotemporal intermittency
threshold [37,38].

The spatiotemporal patterns which we observe are not
exactly the same as in the conventional spatiotemporal inter-
mittency [36]. In our system, the spatiotemporal intermittent
pattern appears halfway between two ordered phases (zero
and 7 phases). On both sides of intermittency domain there
is only one stable condensate state (single stable attractor).
Inside the intermittency domain, both zero and m phases of
the condensate are stable, but they possess different basins
of attraction. The basin of attraction of the new phase grows
with increasing polariton-polariton interaction, and the basin
of attraction of the old phase shrinks down. Near the bound-
ary of the intermittency domain, the phase with a smaller basin
of attraction is manifested by the propagating solitons, which
have the form of small domains of this less-probable phase.
More detailed analysis involves studying the sizes of basins
of attraction and the Lyapunov exponents of the two phases in
question and it is beyond the scope of this paper.

However, the spatiotemporal pattern in our case is quite
similar to the one appearing in the transition to turbulence. We
also consider the distribution of lengths of the defect domains,
which represent domains of dark solitons in both AA and
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FIG. 4. Spatiotemporal pattern of the condensate density |1 (x, t)|? (a, b, ¢) and intensity | (k, E)|? (d, e, f) for the AA cases witha /B = 4
fixed. The ratios of the real and imaginary parts of the energy bandwidths are AEx/AE; = 1,2, and 4 from (a, d) to (c, f). W = 3.82U (a, d),

343U (b,e), and 3.18 U (c, f) with U

VV cases. Figure 5 shows the distributions of Ny (number of
defect domains of length L). Here N, is sampled at /1) =
200 — 700 with the time interval of 5. We have checked that
the linear decline behavior (in the log-log scale) is insensitive
to the choice of smaller time intervals. We indeed observe
close to power-law behavior, which is the fingerprint of the
spatiotemporal intermittency.

C. Soliton dynamics

At weak polariton-polariton interaction, the long-range
order of the zero condensate in the A A case and the 7 conden-
sate in the VV case is destroyed by formation of propagating
defects. Each defect extends only over a few lattice constants,
and it is characterized by the suppression of the condensate
occupation and by the phase slips.

10° 108

102 102 -
= o < B
2 . =3 djuqﬁ

10! o 10 ’

10° 10°

10° 10' 102 10° 10’ 102
L L
(a) AA-type (b) VV-type

FIG. 5. Distributions of the number of defect domains (N;) for
the spatiotemporal patterns, presented in Figs. 2(b) and 3(b). N, is
sampled from ¢ /7y = 200 to 700 with the time interval of 7 /t, = 5.
Both horizontal and vertical axes are in the log scales. The length L
is in the units of lattice constant a.

= 14(i* /m*a®). AEg ~ 0.107 E, (a, d), 0.164 E; (b, ), and 0.201 E, (c, f) with Ey, = 7%h*/2m*a®

As an example, Fig. 6 shows the collision events of a pair of
such defects propagating towards each other. The individual
collisions are seen only for weakly interacting polaritons,
when the concentration of defects is small. Each defect is
characterized by the depletion of the particle density together
with an abrupt change in the phase of the wave function at two
edge points of the defect, where the phase change is about
in the A A case, while the phase change is smooth in the VV

700 (a) ||] i| S ) ‘ ‘ |
B m‘ ‘ =
50 70 oo 7<;x/a %0

= “(q‘)M L I
i ” m % Y
; /oa 80 ) o 80

FIG. 6. Propagation and collision of a pair of solitons in the A A
case (a, b) and VV case (c, d) for /8 = 0.4, when the number of
solitons is small. (b, d) The upscaled profiles of the particle density
and the phases of the wave functions just before the collision [along
the thick dashed blue lines in panels (a, c), respectively].
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case. The fact that the defects maintain their properties after
the collision indicates that they can also be considered as dark
solitons. We note, however, that these solitons are different
from the Bekki-Nozaki hole solutions of CGLE [39] or the
dissipative Gross-Pitaevskii equation for the polariton mean
field [40]. In our case, solitons represent the building blocks
of a new condensate phase.

The density of solitons increases with «/f8, and some of
them attach to each other, forming wide soliton domains,
which one can see in Figs. 2(b) and 3(b). In the AA case,
with further increase of polariton-polariton interaction and for
sufficiently large ratio AEg/AE;, a complete array of dark
solitons is formed as in Fig. 2(c). The wave-function phase
changes by 7 per every lattice constant and the quasi-long-
range order appears again, manifesting the formation of the
m-condensate phase.

IV. CONCLUSIONS

Interacting exciton polaritons loaded into a one-
dimensional microcavity wire with a periodic potential and

periodic distribution of losses can condense into nontrivial
states, where losses are not minimized but maximized.
Under certain conditions, polaritons can form a space-time
intermittency phase, which separates two condensate phases
with minimal and maximal losses. The reconstruction of the
condensate wave function takes place by proliferation of dark
solitons along the periodic structure. The nuclei of the new
condensate phase, which are characterized by maximization
of losses, are formed with increasing polariton-polariton
interaction, and they can be seen as a result of gluing the dark
solitons together.
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