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The experimental realizations of spin-orbit coupling (SOC) in cold atom gases put topological superfluids
(TSs) under the spotlight. The topological protection of suggested superfluid models comes from the local
antiunitary symmetries of ten Altland-Zirnbauer symmetry classes. In this paper we theoretically study a
two-dimensional BDI model describing spin-orbit-coupled bilayer fermionic gases with s-wave interaction to
realize mirror-symmetry- (nonlocal and unitary) protected gapped TS, beyond the paradigms suggested before.
This gapped phase not only shows linearly dispersive Majorana zero modes on mirror invariant one-dimensional
boundaries, but also shows Majorana corner states to realize the second-order TS (TS2) with s-wave pairing,
which is explicitly different from the nonconventional pairings in the suggested systems to realize TS2. Gener-
ally, engineering the single-particle band structures should be easier than directly engineering the complicated
pairings. Considering the tremendous progress in manipulating cold atom systems, our work provides a possible
route (by engineering the single-particle physics, such as SOC) to realize mirror-symmetry-protected gapped TS
and TS2 in cold fermionic systems in the future.
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I. INTRODUCTION

Majorana fermions [1], which can be regarded as zero-
energy Bogoliubov quasiparticles on the boundaries of topo-
logical superfluids (TSs), are self-Hermitian anyons satisfy-
ing non-Abelian statistics and the basic building blocks for
fault-tolerant topological quantum computation [2–4]. With
the realization of spin-orbit coupling (SOC) generated by
the laser-induced Raman transitions between atomic hypefine
states [5–13], ultracold degenerate Fermi gases have become
a brand-new experimental playground to explore the exotic
quantum phases in condensed-matter physics. Combined with
the attractive two-body interaction, SOC can induce effective
p-wave pairings and drive the system into TSs protected
by the local antiunitary symmetries of ten Altland-Zirnbauer
symmetry classes [14,15]. Some suggested two-dimensional
models include D class TS with Rashba SOC and Zeeman
field [16–19], C class TS in Haldane-Hubbard model [20], and
DIII class TS in Bose-Fermi mixtures [21].

Conceptually the notion of TSs has been extended to
include a new class of topological phases without gapless Ma-
jorana boundary states, dubbed as higher-order TSs [22–30].
A second-order TS (TS2) is a d-dimensional system with
topologically nontrivial gapped (d − 1)-dimensional bound-
aries such that there are protected low-energy modes at the
(d − 2)-dimensional boundaries. In other words, a TS2 in 2d
has Majorana corner states (MCSs), i.e., Majorana fermions
bound at the intersection of two boundaries. Some experi-
mental setups for TS2 have been suggested theoretically in
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proximity-induced systems, including 2d topological insu-
lator grown on a cuprate superconductor or s±-wave Fe-
based superconductor [28,30], a cuprate superconductor or
Rashba semiconductor placed on top of a time-reversal-
invariant p-wave superconductor [29], and a cuprate super-
conductor sandwiched between two Fe-based superconduc-
tors FeTe0.55Se0.45 [29].

Although some possible systems for TS2 have been pro-
posed, the pairings in the suggested models [28–30] are
unconventional. Usually the interaction between ultracold
atoms is in s-wave channel; thus a natural question emerges:
is it possible to engineer TS2 in ultracold fermionic gases
with s-wave interaction by engineering single-particle band
structures? Generally, engineering the single-particle band
structures should be easier than directly engineering the com-
plicated pairings. In this paper we give a positive answer to
this question by the self-consistent mean-field analyses on a
theoretic model with s-wave pairing. Our suggested model can
be mapped onto a bilayer model in the cold fermionic gases
with π (0) phase difference for SOC along ky (kx) direction
between two layers and show gapped TS protected by an
emergent mirror symmetry (MS) (nonlocal and unitary). This
MS-protected TS implies Majorana zero modes (MZMs) on
the mirror reflection invariant boundaries, while other bound-
aries are gapped [31–34]. Considering one pair of gapped
boundaries, which are not left invariant but mapped onto each
other under mirror reflection, the topological nontriviality of
the bulk guarantees that the mirror-symmetry-breaking mass
terms on these boundaries are unique and exhibit gaps of
opposite signs [23,25]. As a result, the intersection of such a
pair of boundaries corresponds to a domain wall and naturally
leads to MCSs to realize TS2. As a matter of fact, these MCSs
are also robust when the system is rotated, such that there are
no longer any mirror-related boundaries [23,25].
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The paper is organized as follows. In Sec. II, we present
our theoretic model and Bogoliubov–de Gennes (BdG) mean-
field theory. In Sec. III, the mean-field ground state and the
phase diagram of the model are self-consistently determined
by minimizing the thermodynamic potential. We find that
the model shows two kinds of topologically nontrivial bulk
phases: gapped TS and gapless nodal TSs. An interesting
result is that gapless nodal TSs are also topologically non-
trivial in the mirror subspaces; as a result all TSs can be
distinguished from the number of Dirac points and topological
winding numbers in two mirror subspaces. In Sec. IV the
boundary states and corner states are studied. In the topolog-
ical gapped phase, there are linearly dispersive MZMs on the
mirror-invariant boundaries, while in the gapless topological
phases there are Majorana flat bands (MFBs). Especially we
also observe the coexistence of two kinds of boundary states
mentioned above. For (d − 2)-dimensional boundaries, these
phases also accommodate MZMs. For the gapped TS, these
MZMs are definitely localized around the corners to realize
MCSs, while, for gapless TSs, the wave functions of MZMs
more or less leak into the interior of the system owing to
MFBs on the (d − 1)-dimensional boundaries. In Sec. V,
we briefly discuss the stability of the ground state of our
model about two more general mean-field Ansätze and how to
detect experimentally all phases realized in our model in the
ultracold atom environment. Finally, we draw the conclusions
in Sec. VI. Our work provides a possible route to realize
MS-protected TSs and TS2 in an ultracold fermionic system
in the future.

II. MODEL

We consider a spin-orbit-coupled bilayer fermionic system,
which is described by the Hamiltonian

H =
∑

k,i,σσ ′
c†

kiσ [εk + �σz + ρki]σσ ′ckiσ ′

+ t
∑
kσ

[c†
k2σ ck1σ + c†

k1σ ck2σ ]

−U
∑
k,k′,i

c†
ki↑c†

−ki↓c−k′i↓ck′i↑, (1)

where ckiσ is the fermion annihilation operator with the mo-
mentum k = (kx, ky ), layer index i = 1, 2, and spin σ =↑,↓.
εk = k2/(2m) − μ, � are the dispersion of free particles
with mass m measured from the chemical potential μ and
Zeeman field, respectively. t is the spin independent tunneling
between two layers and U is the strength of attractive contact
interaction. ρki is the specified SOC for the ith layer with
ρk1 = αkyσx − βkxσy and ρk2 = −αkyσx − βkxσy, where α, β
represent the strength of SOC and σx,y,z are the Pauli matrices
acting on the spin space. One feature of ρki is π (0) phase
difference for SOC along ky (kx) direction. When α = β,
ρk1 corresponds to Rashba SOC, while ρk2 corresponds to
Dresselhaus SOC. Some forms of SOC in the bilayer systems
have been suggested theoretically, including integration of
1d SOC in a different direction for different layer [35],
Rashba SOC [36], and 1d SOC between the layer states [37].
Experimentally the equal weight of Rashba and Dresselhaus

SOC [5–8,38] and 2d Rashba SOC [12,13,39] have been
successfully realized. Considering highly controllability and
tremendous progress in manipulating cold atom systems, SOC
required in the model (1) is also in prospect.

The scattering between atoms can be treated in the
mean field approximation and we assume that the two lay-
ers have the pairings 	i = U

∑
k〈c−ki↓cki↑〉, where 〈· · · 〉

means thermodynamic average. Under the Nambu basis 
k =
(�k, �

†
−k )T with �k = (ck1↑, ck1↓, ck2↑, ck2↓), the Hamilto-

nian (1) can be arranged into H = 1
2

∑
k 


†
kHBdG(k)
k with

HBdG(k) =
(
H0(k) 	̂

	̂† −H∗
0(−k)

)
, (2)

where H0(k) = εk + �σz + tsx + αkyszσx − βkxσy and 	̂ =
−(i/2)[	1(s0 + sz ) + 	2(s0 − sz )]σy. s0,x,y,z are Pauli matri-
ces acting on the layer space. We will also introduce τ0,x,y,z

as Pauli matrices acting on the particle-hole space. The BdG
Hamiltonian HBdG(k) has inherent particle-hole symmetry
PHBdG(k)P−1 = −HBdG(−k) with P = τxK and inversion
symmetry (IS) IHBdG(k)I−1 = HBdG(−k) with I = τzσz,
where K implements the complex conjugate operation. The
combination of these two symmetries ensures that the eigen-
values Ekη (η = 1, 2, . . . , 8) of HBdG(k) are in pairs. The
thermodynamic potential of this model at zero temperature
can be written as

� = 1

2

∑
k

⎛
⎝4εk −

4∑
η=1

Ekη

⎞
⎠ + |	1|2 + |	2|2

U
. (3)

Here Ekη are four positive eigenvalues of HBdG(k). Notice
that the ultraviolet divergence of the thermodynamic potential
needs to be regularized [40] using

1

U
=

∑
k

1

k2/m + εb
. (4)

Thus the binding energy εb serves as the major parameter to
control the many-body interaction strength. The minimization
of the thermodynamic potential directly determines two order
parameters

∂�/∂	i = 0, (5)

while the conservation of particle number determines the
chemical potential

n = −∂�/∂μ, (6)

where n is the particle density. In the following we numer-
ically solve these equations self-consistently. We define the
Fermi momentum kF = √

nπ and the Fermi energy EF =
k2

F /(2m), which are used to rescale the momentum and energy,
respectively, during the numerical simulation. In this calcula-
tion, a lot of initial values are randomly chosen and the free
energy

F = � + μn (7)

is calculated after the convergence. We have chosen the mini-
mal point of free energy as the true ground state.
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III. MEAN-FIELD PHASE DIAGRAM AND BULK
TOPOLOGY

Before the self-consistent calculation, we notice that the
attractive interaction U supports the Cooper pairings between
spin-up and spin-down fermions near the Fermi surface. In
the absence of SOC, a large Zeeman field � will break spin
degeneracy and superfluid pairings, which is the topic often
alluded to as the Chandrasekhar-Clogston limit in ordinary
s-wave superconductor [41,42]. But once SOC is introduced
into the system, every single-particle state is the superimposed
state of two spin components. Under this circumstance, the
Zeeman field � cannot suppress completely the superfluid
pairings [43–45]. This observation shows that the ground
state of the Hamiltonian (1) should be a superfluid state with
	i 	= 0 (i = 1, 2). This claim matches the numerically exact
results below.

The order parameters 	i (i = 1, 2) are complex numbers
in principle. However, the numerical results show these two
order parameters have the same magnitudes and phases, and
thus can be treated as real numbers simultaneously. When
	1 = 	2 = 	, HBdG(k) obtains an emergent time-reversal
symmetry (TRS) T HBdG(k)T −1 = HBdG(−k) with T =
sxK , and two MSs MxHBdG(kx, ky)M−1

x = HBdG(−kx, ky),
MyHBdG(kx, ky)M−1

y = HBdG(kx,−ky ) with Mx = τzsxσz

and My = sx. Thus the BdG Hamiltonian (2) belongs to BDI
class with chiral operator C = T P in ten Altland-Zirnbauer
symmetry classes [14,15].

The construction of the system’s phase diagram generally
depends on the analytic expressions for eigenvalues Ekη,
whose gap closings qualitatively describe the phase bound-
aries. However, these eigenvalues cannot be calculated ana-
lytically in the most general condition. Fortunately, we are
able to study the band structures of the model by studying the
determinant of the BdG Hamiltonian. The chiral symmetry
ensures that the eigenvalues will come with pairs; thus

Det[HBdG(k)] � 0. (8)

In the above equation, Det[HBdG(k)] = 0 corresponds to the
gap closings or gapless excitations. The determinant of the
Hamiltonian can be calculated very easily with the help of
the chiral operator C. Under the basis diagonalizing the chiral
operator, the Hamiltonian can be written into the off-diagonal
form

HBdG(k) ∼
(

0 Q(k)
Q†(k) 0

)
, (9)

with Q(k) = H0(k)(sx ⊗ σ0) − 	̂. Thus the gapless excita-
tions correspond to

Det[Q(k)] = R(k) + 8iβt	kxεk = 0, (10)

with the real function R(k) = (ε2
k − t2 − k2

x β
2 − k2

y α
2 −

�2 + 	2)2 − 4t2(k2
x β

2 + �2) + 4(t2 + k2
x β

2 + k2
y α

2)	2. Ge-
ometrically R(k) = 0 defines a curve in the momentum space,
similarly for kxεk = 0. When these two curves cross, the
system owns gapless excitations at some separated momenta;
contrarily the system is gapped. We also differentiate the
gapless phases from the number nd of gapless points. From
this criterion, the phase diagram of the model is constructed
in Fig. 1.

FIG. 1. Phase diagram of the model (2). The two solid phase
boundaries mean that the energy gap closings and reopenings take
place at k = 0 and the dashed one means the gap closing and
reopening at kx = 0 and ky 	= 0. Every phase in the phase diagram
is labeled by the ordered number (nd ; w1

m, w2
m ), where nd is the

number of Dirac points and w1,2
m are the topological winding numbers

in two mirror subspaces M1,2
x . The parameters are t = 0.5EF and

kF α = kF β = 1.0EF .

Totally there are two gapped phases and three gapless
phases with two, four, and six gapless nodal points, which are
separated by three lines in the phase diagram. Two solid lines
correspond to gap closings at k = 0, leading to

�2 = (μ ± t )2 + 	2. (11)

When μ = 0, these two lines cross, as demonstrated in Fig. 1;
for the dashed phase boundary, the gap closing happens at
kx = 0, ky 	= 0. Generally the topological phase boundaries
always correlate with gap closings at zero momentum; thus
our model supplies a counterintuitive example. When t = 0,
two layers decouple and the phase boundaries (11) degenerate
into the usual situation for the single layer [46,47].

In the gapless phases, the dispersions are linear near these
nodal points (see Fig. 2); thus these gapless points are Dirac
typed and protected by the topological winding numbers
[48–51]

w = 1

2π
Im

[∮
L

dk ∂k ln Det[Q(k)]

]
, (12)

where the loop L encircles a Dirac point and Im means
taking the imaginary part. The TRS requires Det[Q∗(k)] =
Det[Q(−k)]; as a result the two Dirac points with opposite
momenta have different winding numbers. The neutrality of
topological charges in the entire space means even number of
Dirac points.

Two gapped phases in the phase diagram are walled off
from the gapless phases with two Dirac points. According to
the Periodic Table of topological phases [14,15], a 2d gapped
BDI class without other symmetries is topologically trivial.
However, the existence of MSs can fundamentally change this
conclusion [31–34]. To this end, we can diagonalize the mirror
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FIG. 2. Dispersions in gapless phases. Since all Dirac points
locate on ky axis, we plot 1d dispersions at kx = 0. Panels (a)–
(d) correspond to phases (2; 0, −1), (4; −1, −1), (6; −1, 0), and
(2; −1, 0) in Fig. 1, respectively. In (a) εb = 1.91EF , � = 1.68EF ;
in (b) εb = 0.81EF , � = 1.6EF ; in (c) εb = 0.06EF , � = 0.7EF ; in
(d) εb = 0.21EF , � = 0.65EF . The remaining parameters are t =
0.5EF and kF α = kF β = 1.0EF .

symmetry operator Mx (My) via a unitary transformation;
under the same transformation, 1d BdG Hamiltonian Hy =
HBdG(kx = 0, ky) [Hx = HBdG(kx, ky = 0)] can be arranged
into block-diagonal form Hy,x ∼ diag(M1

y,x, M2
y,x ). In general

M1,2
x,y can have totally different symmetries from the original

Hamiltonian HBdG(k). For our model, only the mirror sub-
spaces generated by My are important and

M1,2
x = −(εkx,ky=0 ± t )sz + �szσz − βkxszσy − 	syσy. (13)

These two Hamiltonians have the same time-reversal operator
Tm = K and particle-hole operator Pm = sx ⊗ σ0K , and thus
they belong to BDI class with chiral operator Cm = sx ⊗ σ0.
On the other hand, M1,2

y belong to AI class, which are trivial
in 1d and not listed.

As we have claimed that (10) is satisfied only at kx =
0, thus (11) are also the gap closing conditions in mirror
subspaces M1,2

x , with ± mapped onto two subspaces. Fur-
thermore, all gapless phases in the phase diagram are gapped
in M1,2

x . Here we notice that the gapless points in mirror
subspaces must be the gapless points of HBdG(k), but it is not
definitely correct contrarily. From the structure of the phase
diagram, we can expect that there are luxuriant topologies
in mirror subspaces. By means of Cm and following the
procedure deriving Eq. (9), the mirror Hamiltonians can be
transformed into

M1,2
x ∼

(
0 Q1,2

x (kx )
Q1,2†

x (kx ) 0

)
, (14)

with Q1,2
x (kx ) = −(εkx,ky=0 ± t )σ0 + �σz − βkxσy − i	σy.

The topologies in mirror subspaces can be defined by the
similar topological winding numbers [31–34] as in Eq. (12)
by substituting Q into Q1,2

x and the integral over momentum

loop into the whole Brillouin zone

w1,2
m = 1

2π
Im

[∫ ∞

−∞
dkx∂kx ln Det[Q1,2

x (kx )]

]
. (15)

Here we should note that the mirror winding numbers w1,2
m are

independent. For this reason the mirror topological properties
are labeled by two integer numbers (w1

m,w2
m).

The results for mirror winding numbers for all phases
in the phase diagram are summarized as follows. The left
(right) phase with two Dirac points has (w1

m,w2
m) = (−1, 0)

[(0,−1)]; the regime with four Dirac points has (w1
m,w2

m) =
(−1,−1); the gapless phase with six Dirac points has
(w1

m,w2
m) = (−1, 0); the higher (lower) fully gapped topolog-

ical phase has (w1
m,w2

m) = (−1,−1) [(0,0)]. Thus in addition
to a trivial gapped phase, all phases in the phase diagram
have nontrivial mirror topologies and can be distinguished
by the ordered numbers (nd ; w1

m,w2
m) from the number of

Dirac points and topological winding numbers in two mirror
subspaces. Here an interesting conclusion is that gapless nodal
TSs can be topologically nontrivial in the mirror subspaces.

IV. BULK-BOUNDARY CORRESPONDENCE AND TS2

In order to consider the boundary states along an arbitrary
direction, we first rotate the BdG Hamiltonian HBdG(k) in
kxky frame into kx′ky′ frame by an in-plane rotation with θ .
Thus the momentum k is related to k′ by the relations kx =
kx′ cos θ − ky′ sin θ and ky = ky′ cos θ + kx′ sin θ . We consider
a strip with periodic boundary condition in y′ direction and
a finite width Lx along x′ direction. In order to obtain the
boundary states, we replace kx′ → −i∂x′ and expand the wave

function 
(x′) =
√

2
Lx

∑Nx
i=1 ci sin iπx′

Lx
to convert the original

Hamiltonian (2) into an 8Nx × 8Nx boundary Hamiltonian
[52], where ci are eight-component spinors and Nx is basis
cutoff. Diagonalizing this boundary Hamiltonian, boundary
state spectra for all topological phases can be obtained, as
shown in Fig. 3.

The dispersions of boundary states show different features.
For the gapless phases, we can find dispersionless MFBs as
long as θ 	= π/2, which are used to connect the two Dirac
points with opposite winding numbers. The MFB is a general
feature in all nodal superconducting phases. The observed
MFBs can be easily seized in a dimension reduction man-
ner by calculating ky′ -dependent topological winding number
[49–51]

w(ky′ ) = 1

2π
Im

[∫ ∞

−∞
dkx′∂kx′ ln Det[Q(k′)]

]
, (16)

as long as ky′ does not cross the nodal points in momentum
space. The MFBs in phases with two and six Dirac points
cover ky′ = 0, while it is not true for a gapless phase with four
Dirac points. This directly leads to their different boundary
states at θ = 0 since the nontrivial mirror topologies signify
that there are linearly dispersive MZMs at ky′ = ky = 0. The
nontrivial mirror topologies also bring linearly dispersive
MZMs for the gapped phase when θ = 0. These MZMs will
open a gap when θ deviates from mirror-invariant boundaries,
as shown in Fig. 3(b) and Fig. 3(d). Finally, we emphasize
that the mirror topologies are solely determined by the index

023602-4



MIRROR-SYMMETRY-PROTECTED TOPOLOGICAL … PHYSICAL REVIEW A 100, 023602 (2019)

FIG. 3. Spectra of 1d boundary states. Panels (a) and (b), (c) and
(d), (e), and (f) correspond to phases (0; −1, −1), (4; −1, −1),
(2; −1, 0), and (6; −1, 0) in Fig. 1, respectively. In (a), (c), (e), and
(f) θ = 0, while in (b) and (d) θ = π/4. We don’t show boundary
state spectra in phases (2; −1, 0) and (6; −1, 0) for θ = π/4, since
MFBs in these phases have the similar forms with θ = 0. In (a) and
(b) εb = 0.81EF , � = 1.2EF ; in (c) and (d) εb = 0.81EF , � = 1.6EF ;
in (e) εb = 0.21EF , � = 0.65EF ; in (f) εb = 0.06EF , � = 0.7EF . The
remaining parameters are t = 0.5EF and kF α = kF β = 1.0EF .

(w1
m,w2

m), while the observed MZMs at ky′ = ky = 0 gener-
ally originate from the combination of two mirror subspaces.
Thus for phases only with a nonzero w1,2

m , MZMs at ky′ =
ky = 0 have definite mirror indices. However, in gapless phase
with four Dirac points and topological gapped phase, this
conclusion is not correct.

Below we discuss the MCSs in our model. At this
time we impose open boundary conditions along x′ and
y′ directions and expand the wave function 
(x′, y′) =√

4
LxLy

∑Nx
i=1

∑Ny

j=1 ci, j sin iπx′
Lx

sin jπy′
Ly

, where Ly and Ny are

the width and basis cutoff in y′ direction, respectively. We
consider θ = π/4 with the boundaries along x′ and y′ di-
rections mapped onto each other under mirror symmetry.
For the topological gapped phase, the mirror topologies of
the bulk guarantee that the boundary states in the specified
configuration are gapped and the mirror-symmetry-breaking
mass terms on these boundaries exhibit gaps of opposite

FIG. 4. Spectra of 0d boundary states and the wave functions of
MZMs. (a) and (b), (c) and (d), (e) and (f), and (g) and (h) correspond
to phases (0; −1, −1), (4; −1, −1), (2; −1, 0), and (6; −1, 0) in
Fig. 1, respectively. We consider θ = π/4 with the boundaries along
x′ and y′ directions mapped onto each other under mirror symmetry.
The parameters in the corresponding phases are the same as those in
Fig. 3.

signs [23,25]. As a result, the intersection of such boundaries
corresponds to a domain wall and naturally leads to MCSs.
The corresponding energy spectrum and wave function of
MCSs in the topological gapped phase are shown in Figs. 4(a)
and 4(b), consistent with the theory in [23,25]. In the gapless
phase with four Dirac points, the gap of boundary states at
ky′ = 0 is also opened, similarly as the gapped topological
phase. But the existence of MFBs on the boundaries causes
the related energy spectrum [Fig. 4(c)] to show a series of
low energy states besides MZMs. These low energy states
directly lead to the leakage of MZMs into the interior of
the system [Fig. 4(d)]. The energy spectra and corresponding
wave functions for all other gapless phases are also plotted in
Fig. 4 and show the consistent conclusions with the case in
the gapless phase with four Dirac points. However, we note
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FIG. 5. Landscapes of free energy for phase (0; −1, −1). Panels
(a) and (b) correspond to Ansätze (i) and (ii) in the main text,
respectively. The parameters are the same as those in Fig. 3. The
other phases also have similar results.

that for the gapless phases with two Dirac points the number
of low energy states is relatively small and the leakages of
MZMs are not profound. Qualitatively the number of low
energy states is consistent with the total width of MFBs
in the momentum space. This naturally illustrates the small
number of low energy states in gapless phases with two Dirac
points.

V. DISCUSSION

The conclusions of MS protected gapped TS and TS2
not only depend on whether the order parameters 	i (i =
1, 2) for two layers are equivalent, but also depend on spa-
tially homogeneous property of superfluid states. If these
two conditions are not satisfied, the emergent TRS and MS
will be broken; as a result the topological protection of
superfluid states will be destroyed. In order to exclude these
possibilities, without loss of generality we consider two An-
sätze: (i) 	1 = 	, 	2 = (	 + δ	)eiφ with δ	, φ denoted
respectively by magnitude and phase deviations from 	1 and
(ii) 	1 = 	2 = 	eiq(cos φx+sin φy) with pairing momentum q =
(q cos φ, q sin φ) to investigate the behavior of free energy F
as the function of δ	, φ in Ansatz (i) and q, φ in Ansatz (ii)
by self-consistently solving order parameter 	 and chemical
potential μ. We find that the free energies increase for both
cases. Figure 5 shows the landscapes of free energy for phase
(0; −1,−1). The other phases also have similar results. These
numerical checks further address the validity of our results
in the suggested system. As a matter of fact, in the present
model the strong SOC is considered in the x and y direction,
which could suppress the finite-momentum pairings along
these directions [53,54].

In the theory of topological insulator, the presence of IS
greatly simplifies the calculation of Z2 invariant [55,56]. The
BdG model (2) we consider also has IS, so the Hamiltonian
commutes with inversion operator I and can be diagonalized
simultaneously for time-reversal-invariant momentum k = 0.
Note that for our model, except at the critical lines (11), the
conduction bands and valence bands do not degenerate at
k = 0; thus the sum of parity eigenvalues of valence bands
is invariant for every phase. Due to phases (0; −1,−1) and
(4; −1,−1) being separated by dashed line in Fig. 1, on which
gap closing happens at k 	= 0, these two phases have the same
sum of parity eigenvalues for valence bands. This conclusion
also applies to phases (2; −1, 0) and (6; −1, 0). In addition,

FIG. 6. Exotic behaviors of spin Sz(ky ) [the red (lower) line]
and particle’s momentum distribution n(ky ) [the blue (upper) line]
along ky for all phases. Panels (a)–(f) correspond to phases (0; 0, 0),
(2; 0, −1), (0; −1, −1), (4; −1, −1), (6; −1, 0), and (2; −1, 0), re-
spectively. In (a) εb = 0.81EF and � = 0.85EF ; in (c) εb = 0.81EF

and � = 1.2EF . The parameter of gapless phases are the same as
those in Fig. 2.

phases (2; −1, 0) and (2; 0,−1) also have the same sum of
parity eigenvalues since they can be obtained from the phase
(0; 0, 0) by gap closings at k = 0. Accidentally, the spin op-
erator Ŝz(k) = I/4, so that its expectation value Sz(k) is also
conserved at k = 0 and equal to the sum of parity eigenvalues
for valence bands divided by 4. We find that Sz(0) = 0, − 1

2 ,
−1 for phases (0; 0, 0), (6; −1, 0), (0; −1,−1), respectively.
For general momentum, the analyses above do not validate
and Sz(k) is not quantized. But in the gapless phases, the
conduction bands contact with valence bands at Dirac points,
which should affect the spin behaviors near the Dirac points.
In order to testify to this claim, in Fig. 6 we plot Sz(kx =
0, ky ) = Sz(ky) along ky axis for all phases and find that Sz(ky)
shows discontinuous changes near all Dirac points. In Fig. 6
we also plot particle’s momentum distribution n(kx = 0, ky) =
n(ky), which also has similar behaviors with Sz(ky). These
different exotic behaviors on Sz(ky) and n(ky) will provide
unique fingerprints to experimentally identify all phases by
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the most powerful time-of-flight imaging technique in the
ultracold atom environment.

The different band structures of the corresponding phases
shown in Fig. 2 can also be detected by momentum-resolved
radio-frequency spectroscopy [57–59], which has been widely
used to study BCS-BEC crossover [60–62] and polarons
[63,64] in spin-imbalanced Fermi gases. Moreover, this tech-
nique provides an analog to angle-resolved photoemission
spectroscopy (ARPES) in the condensed-matter physics [62].

VI. CONCLUSION

In conclusion, we suggest a theoretic model to realize MS-
protected gapped TS and TS2. On one hand, this gapped phase
is protected by nonlocal unitary symmetry, but not local antiu-
nitary symmetry in ten Altland-Zirnbauer symmetry classes.
On the other hand, this phase also realizes TS2 with conven-
tional s-wave pairing, signifying that, in addition to pairing
symmetry, the single-particle band structures provide another
knob to engineer TS2. By the self-consistent calculation we
also find some gapless TSs. All phases can be distinguished
from the number of Dirac points and topological winding
numbers in two mirror subspaces. An interesting conclusion
is that gapless nodal TSs can be topologically nontrivial in
the mirror subspaces. These TSs show linearly dispersive

MZMs, MFBs, and even their coexistence, depending on
corresponding bulk phases and (d − 1)-dimensional boundary
configurations. On the other hand for (d − 2)-dimensional
boundaries, these phases also accommodate MZMs. For the
gapped TS, these MZMs are spatially localized around the
corners to realize MCSs, while, for gapless TSs, the wave
functions of MZMs more or less leak into the interior of
the system in virtue of MFBs on the (d − 1)-dimensional
boundaries. Our model can be mapped to a bilayer model in
the cold fermionic gases with π (0) phase difference for SOC
along ky (kx) direction between two layers. Considering the
tremendous progress in manipulating cold atom systems, our
work provides a possible route to realize MS-protected TSs
and TS2 in cold fermionic systems in the future.
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