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Holographic interference in atomic photoionization from a semiclassical standpoint

Sebastián D. López and Diego G. Arbó *

Institute for Astronomy and Space Physics IAFE (UBA-Conicet), CC 67, Suc. 28 (C1428ZAA), Buenos Aires, Argentina

(Received 31 May 2019; published 30 August 2019)

A theoretical study of the interference pattern imprinted on the doubly differential momentum distribution
of the photoelectron due to atomic ionization induced by a short laser pulse is developed from a semiclassical
standpoint. We use the semiclassical two-step model of Shvetsov-Shilovski et al. [Phys. Rev. A 94, 013415
(2016)] to elucidate the nature of the holographic structure. Three different types of trajectories are characterized
during the ionization process by a single-cycle pulse with three different types of interferences. We show that
the holographic interference arises from the ionization yield only during the first half cycle of the pulse, whereas
the coherent superposition of electron trajectories during the first half cycle and the second half cycle gives rise
to two other kinds of intracycle interference. Although the picture of interference of a reference beam and a
signal beam is adequate, we show that our results for the formation of the holographic pattern agree with the
glory rescattering theory of Xia et al. [Phys. Rev. Lett. 121, 143201 (2018)]. We probe the two-step semiclassical
model by comparing it to the numerical results of the time-dependent Schrödinger equation.
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I. INTRODUCTION

The glory effect is a phenomenon found in many branches
of physics. First observed in optics as a halo of one or more
concentric rings around the shadow of the observer, glories
have been explained as the result of the interference of the
light entering droplets and following different paths [1–3].
Many scattering processes in atomic physics, such as the
decay of autoionizing states formed by the impact of slow
charged ions [4–7] and the anomalous oscillations in the
binary peak of electrons emitted in U+21 + He collisions, have
been explained as the interference of glory trajectories [8].
Rainbow and glory scattering in Coulomb trajectories starting
from a point in space has been studied since the end of the
last century, pointing out its importance in atomic physics
[4,7,9–12].

Rescattering processes are responsible for different high-
energy structures such as a plateau in the photoelectron en-
ergy spectrum [13–21] and the so-called rescattering rings
in the momentum distributions [19,22]. Although classical
mechanics explains many features of electron distributions
in atomic photoionization [23], electron dynamics can only
be fully described by quantum mechanics as quantum inter-
ference effects. Spatial and temporal interferences have been
studied both experimentally and theoretically. Gribakin and
Kuchiev first reported quantum interferences within an optical
cycle for negative ions in Ref. [24] and Paulus et al. [14,17]
observed and analyzed them theoretically. Chirila et al. calcu-
lated nonequidistant peaks in the photoelectron spectrum [25].
A time double-slit interference pattern has been measured
[26,27] and theoretically studied [18,28–32] for few-cycle
pulses. A bouquet-shaped structure in the doubly differential
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momentum distribution near threshold was measured and
understood as the interference of electron trajectories oscil-
lating around Kepler hyperbolae in a generalized Ramsauer-
Townsend scheme [33–38].

In the last decade, some structures coming from the in-
terference of rescattered electrons with those which ionize
without returning to the parent ion were characterized as
holographic structures in photoelectron spectra [39–44]. Elec-
tron holography is useful for probing some properties of the
ionization process. In this sense, Porat et al. performed an
experiment showing the detailed subcycle electron dynamics
associated with the hologram [45]. Very recently, Xia et al.
explained the holographic structure found in the electron
momentum distribution in the strong-field atomic ionization
as the result of quantum interference of glory rescattering
semiclassical trajectories [46,47]. As a spiderlike shape in
the doubly differential momentum distribution, holographic
interference is one of many types of interferences visible
in experiments of atomic and molecular ionization by laser
pulses with frequencies in the far infrared [39,40,48]. How-
ever, for ionization by infrared and near-infrared (NIR) lasers,
the holographic interference pattern can hardly been seen in
the electron yield.

In this work, we explore the nature of subcycle dynamics
of the atomic ionization by a NIR single-cycle laser pulse
leading to the holographic pattern in the momentum distribu-
tion within a semiclassical theory by using the semiclassical
two-step (SCTS [49–51]) model and compare the results with
a pure quantum treatment. We show that glory trajectories
present in the forward direction are in the transition region
between rescattering and direct trajectories. Besides the holo-
graphic pattern, we show two other types of intracycle inter-
ference also present in the doubly differential photoelectron
momentum distribution: the well-known intracycle interfer-
ence stemming from the interference of nonrescattering (di-
rect and indirect) electron trajectories [25,28,35,52], and the
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intracycle interference stemming from direct and rescattering
trajectories [53–55].

The paper is organized as follows. In Sec. II, we present
the semiclassical two-step (SCTS) model used to analyze the
different interfering types of electron trajectories and, thus,
different kinds of interferences present in the photoionization
process. We also mention our method to numerically solve
the time-dependent Schrödinger equation (TDSE) [56–58].
In Sec. III, we show and discuss our results of the different
interference structures, especially the holographic structure in
view of an interference process of glory rescattering trajecto-
ries. Finally, in Sec. IV, we draw the fundamental concluding
remarks.

We employ atomic units throughout this work.

II. THEORY

In the length gauge, the Hamiltonian of an atomic system
interacting with a laser pulse within the single-active electron
approximation can be written as

H = �p 2

2
+ V (r) + �r · �F (t ), (1)

where the first term corresponds to the kinetic energy of
the active electron with electron momentum �p, the elec-
tron position from the atomic core is �r, and V (r) is the
time-independent central potential of the core composed of
the atomic nucleus and the rest of the electrons considered
frozen. The summation of these two terms forms the time-
independent Hamiltonian of the atom. The last term on the
right-hand side of Eq. (1), �r · �F (t ), describes the interaction
of the atomic system with the time-dependent electric field
�F (t ) of the laser pulse within the dipole approximation.

The photoelectron momentum distribution after photoion-
ization can be calculated as

dP

d�k = |T |2, (2)

where T is the transition matrix from the initial bound state
to the final state of an electron with momentum �k in the
continuum. There are many ways to calculate the transi-
tion matrix from pure classical to quantum calculations with
several levels of approximation. In this paper, we focus on
the study of the semiclassical two-step (SCTS) model, first
introduced in [49] based on classical trajectory Monte Carlo
(CTMC) models that include quantum interferences [59,60],
and compare the results with the ab initio solution of the time-
dependent Schrödinger equation (TDSE) [56–58]. In the rest
of the section, we briefly describe both calculating methods.

A. Semiclassical model

Here we briefly describe the SCTS model. For a thorough
description of the model and its theoretical framework, the
reader can refer to Ref. [49]. The method assumes that the ion-
ization process of the atom happens in two different steps. The
first step is the tunneling through the potential barrier formed
by the atomic central potential V (r) and the interaction energy
with the external field, �r · �F (t ), corresponding to the last
two terms of the Hamiltonian in Eq. (1). The second step

corresponds to the action of the Coulomb force −∂V (r)/∂�r
and the external field �F (t ) on the electron in the continuum.

The time-dependent distorted-wave theory establishes that
the transition amplitude in the prior form and length gauge is
expressed as [61,62]

T = −i
∫ +∞

−∞
dt〈χ−

�k (�r, t )|�r · �F (t )|φi(�r, t )〉, (3)

where φi(�r, t ) = ϕi(�r)eiIpt is the initial atomic state with ion-
ization potential Ip and χ−

�k (�r, t ) is the distorted final state.
The time integral in Eq. (3) can be calculated with the

saddle-point approximation if the phase of the integrand, i.e.,
the action �(�k, t ) = Arg[〈χ−

�k (�r, t )|�r · �F (t )|φi(�r, t )〉], varies
rapidly with time. This is the so-called semiclassical ap-
proximation, which states that the action in the Feynman
propagator is asymptotically large compared to the quantum
action h̄ and, consequently, assures the use of the saddle-point
approximation. In this way, the transition matrix becomes a
sum over several electron trajectories born at ionization times
ts, i.e.,

T = −i
√

2π
∑

ts

ei�(�k,ts )

|�̈(�k, ts)|1/2
|〈χ−

�k (�r, ts)|�r · �F (ts)|ϕi(�r, ts)〉|.
(4)

The saddle points ts correspond to the ionization times in the
complex plane and fulfill the saddle equation �̇(�k, ts) = 0,
where the dot and double dot on the action mean that the
respective time derivative and double time derivative must be
taken.

The imaginary part of ts produces an exponential decay in
the probability corresponding to the first step in our semiclas-
sical description. For the first step, the strong-field approxima-
tion (SFA), which neglects the Coulomb distortion in the final
channel, is considered. With this in mind, the final distorted
function is a Volkov state and the dipole element becomes
�d (�k, ts) = 〈�k + �A(ts)|�r|ϕi(�r)〉, where the bra corresponds to
a plane wave. Therefore, the action becomes the generalized
Volkov action which includes the energy of the initial state
−Ip [63],

�(�k, ts) = [�k + �A(t )] · �r −
∫ ∞

t
dt ′

{
[�k + �A(t ′)]2

2
+ Ip

}
.

(5)
This leads to the very well-known tunneling rates [64–67],

w0(t0, v0⊥) ∝ e
− 2(2IP )3/2

3F (t0 ) e
−

√
2IPv2

0⊥
F (t0 ) , (6)

where t0 = Re[ts], and v0⊥ refers to the velocity in the di-
rection perpendicular to the polarization axis at time to. The
electron is supposed to tunnel through the barrier formed by
V (r) + �r · �F (t ) instantaneously (in the complex plane from
complex times ts to real times t0) with zero longitudinal
probability v0,z and a Gaussian distributed probability v0⊥,

according to Eq. (6). The assumption v0,z = 0 is not strictly
fulfilled for t0 different from extremes of the electric field
F (t ), which leads to nonadiabatic effects that we neglect in
this paper. For the coordinates right after tunneling, we use
z0 = −√

IP/F (t ) (the semiclassical distance traveled under
the barrier for a zero-range potential) and zero perpendicular

023419-2



HOLOGRAPHIC INTERFERENCE IN ATOMIC … PHYSICAL REVIEW A 100, 023419 (2019)

coordinate. In our simulations, we neglect the Stark shift of
the initial state. The initial conditions for the second step
are the position and momentum distributions in the phase
space right after the first step. We use an acceptance-rejection
algorithm in order to reproduce the initial distribution.

The second step consists in simulating the time evolution
of the system classically by solving the Hamilton’s equations
of motion,

�̇r = ∂H

∂ �p ; − �̇p = ∂H

∂�r , (7)

where the Hamiltonian H is given by Eq. (1). The first of
the Eqs. (7) expresses that the momentum is equal to the
velocity (in atomic units), i.e., �̇r = �p in the length gauge,
whereas the second one leads to the second Newton’s law �̇p =
−∂V (r)/∂�r − �F (t ). The SFA neglects the potential energy
between the remaining core and the active electron (the first
term of the second-hand side of Newton’s law); however, we
keep it in the time evolution of each electron trajectory during
the second step of the photoionization process. The electron
evolves under the Hamilton’s equations [Eqs. (7)] acquiring a
phase given by the classical action along the evolution from
t0 up to the detection time. Then, the probability amplitude is
accounted for as the coherent superposition of the phases �

of each electron trajectory according to Eq. (4) replacing the
saddle times by the ionization times t0.

For calculating the phases, we need to consider the matrix
element of the semiclassical propagator between the initial
state at time t j

0 (for the jth trajectory) and the final state
at time t → ∞ (the time that the electron impinges on the
detector, which compared to the atomic transition times can be
regarded as infinite). The photoionization is a half-scattering
process of an electron initially located in the vicinity of the
ionic core at real time t0 and measured with final momentum
�k at the detector (t → ∞). Therefore, the classical phase
is associated with the integral of the Lagrangian through a
Legendre transformation [68–71], i.e.,

�
(�k, t j

0

) = [�k + �A(
t j
0

)] · �r +
∫ ∞

t j
0

dt[ �p(t ) · �̇r(t ) − H]

+ Ipt j
0 − �k · �r(t → ∞). (8)

Integrating the second term on the right-hand side of Eq. (8)
by parts (see [49] for a complete discussion), the phase can be
expressed as

�
(
t j
0 , v j

0

) = [�k + �A(
t j
0

)] · �r + IPt j
0 − �v j

0 · �r j
0

−
∫ ∞

t j
0

dt

[ �p2(t )

2
+ V (r) − �r(t ) · ∂V (r)

∂�r
]
, (9)

where �r j
0 is the initial position (at time t j

0 ) of the jth trajectory
resulting from the first step. The last term in the integrand
of Eq. (9) is also considered in the Coulomb quantum-orbit
strong-field approximation [72], but is completely neglected
in the quantum trajectory Monte Carlo (QTMC) model [60].
For a hydrogenic case, i.e., V (r) = −Z/r, the phase in Eq. (9)

becomes

�
(
t j
0 , v j

0

) = [�k + �A(
t j
0

)] · �r + IPt j
0 − �v j

0 · �r j
0

−
∫ ∞

t j
0

dt

[ �p2(t )

2
− λ

Z

r(t )

]
, (10)

with λ = 2. We refer to Eq. (10) with λ = 2 to the SCTS
phase. In our simulations, the third term in Eq. (10) is zero
since �r j

0 = −√
IP/F (t )ẑ and we consider that the velocity

right after tunneling is perpendicular to the polarization di-
rection of the laser field. In turn, the QTMC model considers
the phase as in Eq. (10) with λ = 1, which is a first-order
approximation of the SCTS phase [60].

In order to numerically implement the second step, we
divide the time evolution into two different intervals: from
the initial time of the jth trajectory to the end of the laser
pulse of duration τ , i.e., [t j

0 , τ ], and from the end of the
pulse to the asymptotic time t → ∞, i.e., [τ,∞). It is worth
noting that for a hydrogenic atom, during the second time
interval when the external laser field is off, the different elec-
tron trajectories follow Kepler hyperbolae up to the detector
and the contribution to the phase can be taken into account
analytically without following the numerical evolution of the
electron [49,59]. Therefore, the asymptotic momentum can be
calculated as

�k = k2(�L × �a) − kZ�a
Z2 + k2L2

, (11)

where the absolute value of the asymptotic momentum k is
related to the absolute value of the momentum at time t = τ

through the conservation of the energy, i.e., k2/2 = p2(τ )/2 −
ZT /r(τ ). The Runge-Lenz vector can be determined as �a =
�p(τ ) × �L − Z �r(τ )/r(τ ), and �L is the angular momentum
(which is also a constant of motion) after the laser has been
switched off.

As the time extends to infinity, the integral in the phases in
Eq. (10) contains divergent terms. For that reason, the integral
is split at the instant corresponding to the end of the pulse τ

as

�
(
t j
0 , v j

0

) = [�k + �A(
t j
0

)] · �r + IPt j
0 − �v j

0 · �r j
0

−
∫ τ

t j
0

[
p2

2
− λ

Z

r(t )

]
dt + (λ − 1)φC, (12)

where

φC = −
∫ ∞

τ

Z

r(t )
dt . (13)

In Eq. (12), we have dropped the diverging energy term∫ ∞
τ

[p2/2 − Z/r(t )]dt = ∫ ∞
τ

k2/2dt because it is the same
for all trajectories with the same final momentum. In contrast
to the SCTS (λ = 2), the QTMC model lacks the asymptotic
Coulomb correction to the phase given by the last term in
Eq. (12) since λ = 1 and, thus, �QTMC remains exactly as was
stated in Ref. [60].

The asymptotic Coulomb phase �c in Eq. (13) is still
divergent. It can be regularized by a change of coordinates
r(t ) = (e cosh ξ − 1)/(2E ), where e = √

k2L2 + Z2 is the ec-
centricity of the Kepler orbit and ξ = ξ (t ) is determined from
t = (e sinh ξ − ξ )/(2E )3/2 + C, where C can be found from
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the position and velocity at t = τ. With this in mind, Eq. (13)
becomes

φC = Z√
2E

[ξ (∞) − ξ (τ )], (14)

where ξ (∞) means that the limit t → ∞ of ξ (t ) should be
taken. In fact, this is the divergent part of the Coulomb phase
in Eq. (13). In this sense, we can neglect the constant C and
also ξ compared to sinh ξ and the time can be asymptoti-
cally written as t = e exp(ξ )/(2E )3/2 or, equivalently, ξ (t ) =
ln [(2E )3/2t/e] = ln [(2E )3/2t] − ln [e]. For all the trajecto-
ries with the same final momentum �k, the first term of ξ (t )
is the same, and thus we drop it off in our calculations. In
turn, the second term depends on the energy and angular mo-
mentum through the eccentricity parameter e and, contrarily
to the energy, the angular momentum is in general different
for all the interfering trajectories with the same final momen-
tum �k. From the expression of r(t ), we can write ξ (τ ) =
± cosh−1 [ 2E r(τ )+1

e ]. With a bit of algebra, the second term in

Eq. (14) can be written as ξ (τ ) = sinh−1 [
√

2E �r(τ )· �p(τ )
e ] and,

therefore, the interference contribution to the Coulomb phase
reads

φC = − Z√
2E

{
ln e + sinh−1

[√
2E

e
�r(τ ) · �p(τ )

]}
. (15)

After having properly accounted for the Coulomb cor-
rection of the phase (and thus the phase itself), Eq. (4) is
computed together with the SFA assumption for the first step
in Eq. (6). The ionization probability can then be calculated as

dP

d�k = |T |2 =
∣∣∣∣∣∣
∑

j

√
w0

(
t j
0 , v

j
0⊥

)
ei�(�k,t j

0 )

∣∣∣∣∣∣
2

, (16)

where the sum extends over all electron trajectories. The
classical approximation is reached when all the phases are ne-
glected by randomizing their values. Therefore, the ionization
probability becomes

dP

d�k =
∑

j

∑
j′

√
w0

(
t j
0 , v

j
0⊥

)√
w0

(
t j′
0 , v

j′
0⊥

)
ei[�(�k,t j

0 )−�(�k,t j′
0 )]

=
∑

j

w0
(
t j
0 , v

j
0⊥

)
, (17)

where the exponential on the first line of Eq. (17) takes all
random values if j �= j′, and zero if j = j′. Thus, only the
terms with j = j′ survive and the final CTMC probability
distribution is finally found.

In our calculations, we use importance sampling to com-
pute Eq. (16), where the weight

√
w0(t j

0 , v
j
0⊥) of a given tra-

jectory is already considered at the sampling stage by choos-
ing the initial sets of initial conditions t j

0 and �v j
0 distributed

taking into account the tunneling probability in Eq. (6). In this
way, the electron distribution can be written simply as

dP

d�k =
∣∣∣∣∣∣
∑

j

ei�(�k,t j
0 )

∣∣∣∣∣∣
2

, (18)

and, consequently, fewer trajectories are needed to reproduce
the interference structures compared to using uniformly dis-
tributed initial conditions.

B. Time-dependent Schrödinger equation

In order to numerically solve the TDSE in the dipole
approximation with the Hamiltonian given by Eq. (1), we em-
ploy the generalized pseudospectral method, which combines
the discretization of the radial coordinate optimized for the
Coulomb singularity with quadrature methods to allow stable
long-time evolution using a split-operator representation of
the time-evolution operator [56–58]. Both the bound as well
as the unbound parts of the wave function |ψ�k (t )〉 can be
accurately represented. Due to the cylindrical symmetry of
the system, the magnetic quantum number m is conserved.
After the end of the laser pulse, the wave function is projected
on eigenstates |k, �〉 of the free atomic Hamiltonian with
positive eigenenergy E = k2/2 and orbital quantum number
� to determine the transition amplitude T to reach the final
state |φ f 〉 (see Refs. [73–75]). In order to avoid unphysical
reflections of the wave function at the boundary of the system,
the length of the computing box was chosen to be 1200 a.u.
(∼65 nm) and the maximum angular momentum considered
was �max = 200.

III. RESULTS AND DISCUSSION

For the sake of simplicity, throughout the paper we use a
linearly polarized single-cycle laser pulse,

�F (t ) = F0 sin ωt ẑ, (19)

for 0 � t � 2π/ω, and zero elsewhere. We use a peak field
F0 = 0.075 a.u., which corresponds to a laser intensity of
I = 2 × 1014 W/cm2, and a laser frequency ω = 0.05 a.u.,
corresponding to a wavelength of 911 nm, very close to the Ti-
sapphire laser frequency. As the system possesses cylindrical
symmetry around the polarization axis ẑ, the ionization pro-
cess can be thought of as a two-dimensional problem where
the projection of the angular momentum of the electron along
the polarization axis is conserved, i.e., the magnetic quantum
number is constant.

For the single-cycle electric field of Eq. (19), the simple
man model (SMM) predicts ionization only in the forward
direction, i.e., 0 < kz < 2F0/ω (see, for example, [28]). If
one wants to obtain forward-backward symmetrical ionization
like in experiments, one needs to use longer electric fields
with some ramp on and ramp off. However, we show below
that using the single-cycle pulse of Eq. (19) is sufficient to
exhibit most of the interference processes characteristic of the
electron yield for a more realistic laser pulse. The electron
yield after the ionization of atomic hydrogen by the electric
field in Eq. (19) calculated within the TDSE can be seen
in Fig. 1(a) as a function of the longitudinal momentum kz

(along the polarization direction) and transverse momentum
k⊥ (perpendicular to the polarization direction). The momen-
tum distribution in Fig. 1(a) spreads mostly along the forward
direction and within the classical boundaries predicted by the
SMM, i.e., 0 < kz < 3, though extending slightly beyond the
classical boundaries due to quantum diffusion. We can see a
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FIG. 1. Doubly differential momentum distribution for the ion-
ization of atomic hydrogen by the one-cycle sine pulse of Eq. (19)
with F0 = 0.075, ω = 0.05 calculated within the (a) TDSE and
(b) SCTS model.

very rich interference pattern in the quantum momentum dis-
tribution. In order to perform the identification of the different
kinds of interference present in the complicated interference
pattern of Fig. 1(a), we also compute the ionization of the
hydrogen atom within the SCTS model of Sec. II A using
the same electric field of Eq. (19). The SCTS simulation was
performed in the four-dimensional phase space (z, x, v0z, vx0),
where x is the component of the position perpendicular to the
laser direction. In cylindrical coordinates, we should note that
ρ = |x|. We observe that the SCTS distribution in Fig. 1(b)
restricts to the classical boundaries, as expected. We can see
that both classical and quantum momentum distributions ex-
hibit a similar interference pattern, although the resemblance
is not perfect.

In order to analyze the different types of electron trajecto-
ries present in the ionization process, we show in Fig. 2(a)
the map of asymptotic (final) perpendicular momenta (in
cylindrical coordinates) kρ = |k⊥| versus the momenta at the
time of ionization (also in cylindrical coordinates) v0ρ = |v0⊥|
calculated for a total of about 20 million trajectories within the
CTMC [see Eq. (17)]. Within the SFA, the perpendicular mo-
mentum is constant because the action of the ionic potential of
the remaining core on the escaping electron is neglected, i.e.,
kρ = vρ0, which is indicated as a dashed line in Figs. 2(b) and
2(d). Beyond the SFA, electron trajectories can be classified
according to the effect of the Coulomb potential on them:
(i) weak effect, where the Coulomb potential is not strong
enough to change the perpendicular direction of the electron
trajectories, i.e., v⊥0k⊥ > 0, which we call nonrescattering

0.0

0.5

1.0

k
 (a

.u
.)

 SFA

0.0 0.5 1.0
0.0

0.5

1.0

(d) 2HCT(c) 1HCRT

(b) 1HCNT

v 0 (a.u.) v 0 (a.u.)

k
 (a

.u
.)

(a)

0.0 0.5 1.0

 SFA

 1 

10

 10

10

10

FIG. 2. Maps of final perpendicular momentum vs initial per-
pendicular momentum (right after ionization) for (a) all trajectories,
(b) 1HCNT (nonrescattering trajectories ionized during the first half
cycle), (c) 1HCRT (rescattering trajectories ionized during the first
half cycle), and (d) 2HCT (trajectories ionized during the second half
cycle). The dashed line corresponds to the SFA kρ = vρ0 prediction.
The laser parameters are the same as in Fig. 1.

trajectories, also known in the literature as far-side trajectories
[7,76], and (ii) strong effect, where the Coulomb potential is
strong enough to change the perpendicular direction of the
electron trajectories, i.e., v⊥0k⊥ < 0, which we call rescat-
tering trajectories, also known in the literature as near-side
trajectories [7,76]. We can see three different regions in the
(kρ, vρ0) map of Fig. 2(a). The (kρ, vρ0) map in Fig. 2(b)
shows only the nonrescattering trajectories ionized during the
first half cycle, which we call 1HCNT. One can see very
clearly the weak effect of the ionic potential on the escaping
trajectories slowing down the electron in the perpendicular
direction, i.e., k⊥ < v⊥0. In our case of the hydrogen atom,
this effect is called Coulomb focusing, although this name
is commonly extended to other atoms with non-Coulombic
potentials [11,20,21]. We see that 1HCNT must have an initial
transversal momentum higher than a value between 0.1 and
0.2 a.u. for our case. Electron trajectories with less than these
values for the initial perpendicular velocity ionized during
the first half cycle are strongly affected by the potential
of the remaining core changing the sign of the transverse
momentum, which can be seen as a collision of the escaping
electron with the parent ion. The (kρ, vρ0) map for this kind
of trajectories, which we name 1HCRT, is shown in Fig. 2(c).
Perpendicular initial velocities are low enough so that the
action of the Coulomb potential is strong enough to change
the sign of v0x and produce rescattering. We observe that for
electron trajectories with low initial transversal momentum
(less than 0.1–0.2 a.u.), the asymptotic transverse momentum
kρ can acquire a very high value compared to the low initial
transversal momentum vρ0 due to the collision event: The
lower the initial perpendicular velocity, the higher the final
perpendicular velocity. 1HCRT, which are also born during
the first half cycle of the pulse, are completely different
from the SFA kρ = v0ρ prediction, as seen in Fig. 2(c). The
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FIG. 3. Examples of the three different types of trajectories
present in the photoionization process: 1HCNT (dashed blue line),
1HCRT (solid red line), and 2HCT (solid gray line). All of these
three trajectories have asymptotic momentum kz = 1.5 a.u. and k⊥ =
0.17. The dotted line shows the GT (transition between 1HCNT and
1HCRT, i.e., k⊥ = 0).

limit of zero perpendicular initial velocity corresponds to a
head-on collision, so the final perpendicular velocity is high.
The limiting case between 1HCNT and 1HCRT corresponds
to trajectories which start with a given value of vρ0 (0.1 �
v0ρ � 0.2) and finish with kρ = 0, which means that the
electrons move asymptotically parallel to the polarization axis
in the forward direction. This type of trajectories in the border
between rescattered and nonrescattered trajectories is named
glory rescattering trajectories [47]. This is equivalent to the
problem of the family of orbits encountered when particles are
emitted in all directions from a point source in the presence of
a Coulomb potential whose center is displaced with respect to
the source [9].

On the other hand, none of the trajectories released during
the second half cycle of the pulse suffer rescattering, i.e.,
v⊥0k⊥ > 0, and the corresponding (kρ, vρ0) map is plotted in
Fig. 2(d). Due to the same Coulomb focusing effect in the
case of 1HCNT, trajectories born during the second half cycle,
which we call 2HCT, are weakly affected by the potential
of the remaining core and slightly departs from the SFA
prediction (dashed line, kρ = vρ0). We see from Fig. 2(d)
that 2HCT have a map similar to the SFA kρ = v0ρ with no
rescattering at all. Unlike 1HCNT, there is no lower limit for
the initial transverse momentum vρ0 for 2HCT. Therefore,
even for low values of v0ρ , the SFA is a good approximation
for 2HCT. Summing up, three different types of trajectories
are present in the atomic ionization process: 1HCNT ionized
during the first half cycle that do not suffer rescattering,
1HCRT ionized during the first half cycle which do suffer
rescattering, and 2HCT ionized during the 2HC (which do not
suffer rescattering).

In Fig. 3, we show one example for each of the three
different types of electron trajectories 1HCNT, 1HCRT, and
2HCT with the same asymptotic momentum kz = 1.5 a.u.

and k⊥ = 0.17 (corresponding to the first minimum in the
holographic structure with longitudinal momentum close to

maximum emission according to the SMM). The two trajec-
tories released during the first half cycle 1HCNT and 1HCRT
have about the same ionization time (within the statistical
uncertainty) t0 = 28.02 a.u. This is a general characteristic
for all 1HCNT and 1HCRT. The initial position after the
first step (tunneling) depends only on the ionization time and
is z0 = −√

IP/F (t0) = −6.76 a.u. for both types of trajecto-
ries. What makes the difference between the two trajectories
1HCNT and 1HCRT is the initial transverse momentum,
which is v⊥0 = 0.265 a.u. for 1HCNT and v⊥0 = −0.0594
a.u. for 1HCRT. We can see an abrupt change of direction
in 1HCRT due to the collision with the nucleus when z 

0, which changes the direction of the transversal velocity.
This collision takes place at t = 149.76 a.u., which is about
25 a.u. (20% of an optical cycle) after the end of the electric
field (2π/ω = 125.66 a.u.). The trajectory released within the
second half cycle 2HCT starts its trip in the continuum at
t0 = 90.69 a.u., which is close to the SMM prediction that
the sum of the ionization times for 1HCNT and 2HCT is
2π/ω = 125.66 a.u. The difference stems from the action of
the Coulomb potential on the electron trajectories (departing
from the SFA). The initial position is z0 = √

IP/F (t0) = 6.77,
almost the same as the trajectories released during the first
half cycle, but with the opposite sign due to the inversion of
the potential barrier. Finally, we plot an example of a GT with
the same asymptotic longitudinal momentum kz = 1.5 and,
by definition, null asymptotic transversal momentum since
the collision is not enough to bend the trajectory so that the
final transverse momentum has opposite sign to the initial
transverse velocity, which in this case is v⊥0 = −0.126. There
are three different values of the initial perpendicular velocity
v0ρ contributing to the electron yield with a particular value
of the final momentum kρ corresponding to the three different
types of trajectories.

In order to isolate the holographic interference from the
imbroglio of quantum interference patterns in Fig. 1(a), we
artificially switch off the ionization during the second half
cycle (2HC) of the pulse by projecting the wave function
at the middle of the pulse, �(t = π/ω), onto the contin-
uum states dropping out, in this way, the remaining bound
states’ populations. In other words, we set the probability
amplitudes of the bound states to zero, i.e., an,l (t = π/ω) =
〈nl|�(t = π/ω)〉 = 0. The time evolution afterwards (π/ω <

t � 2π/ω) continues normally, allowing recapture and further
ionization. In this way, only the electron yield ionized during
the first half cycle of the pulse and driven by the whole
pulse is considered. The corresponding doubly differential
momentum distributions can be seen in Fig. 4(a). As it can
be clearly observed, the well-known holographic structure
hindered in Fig. 1(a) by other types of interferences comes up.
This scheme has been recently used for multiple-cycle pulses
[48,77,78]. In a multiple-cycle pulse, the main lobe centered
at k⊥ = 0 flanked by a family of thinner stripes also extends
to the backward (kz < 0) direction. If we exclude ionization
during the second half cycle in our semiclassical calculations,
only trajectories 1HCNT in Fig. 2(b) and 1HCRT in Fig. 2(c)
contribute to ionization. The holographic pattern in the doubly
differential momentum distribution in Fig. 4(b) arises as the
interference of the two different kinds of electron trajec-
tories: rescattering (1HCRT) and nonrescattering (1HCNT)
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FIG. 4. Doubly differential momentum distribution of ionization
of atomic hydrogen by the one-cycle sine pulse of Eq. (19) when
ionization takes place only during the first half cycle of the pulse
(removing ionization during the second half cycle) within (a) the
TDSE and (b) the SCTS model. (c) SCTS holographic interference
pattern cos2 [(�1HCRT − �1HCNT)/2].

trajectories ionized during the first half cycle. From a semi-
classical perspective, electron trajectories of one kind have a
certain accumulated phase [Eq. (12)] from the ionization time
up to the final state denoted by a particular momentum �k in the
momentum plane (kz, k⊥) and interfere with the other kind of
trajectories having a different accumulated phase. The SCTS
model [in Fig. 4(b)] and TDSE [in Fig. 4(a)] holographic in-
terference patterns are very similar. Considering a holographic
interference nomenclature, 1HCNT plays the role of the refer-
ence beam, whereas 1HCRT plays the role of the signal beam.

We can enhance the interference pattern calculating the
phase of each electron trajectory and average it within every
momentum bin in the two-dimensional grid for every electron
trajectory type, i.e.,

〈�s〉(kzi, k⊥ j ) =
∑

n

�n(kz, k⊥)

Ni j
, (20)

where the sum extends over all the Ni j electron trajectories
with final momentum kzi − �kzi/2 < kz < kzi + �kzi/2, and

FIG. 5. (a) SCTS intracycle interference pattern type I consider-
ing only nonrescattering trajectories during the whole pulse doubly
differential momentum distribution of ionization of atomic hydrogen.
(b) SCTS intracycle interference pattern type II considering direct
and rescattered indirect trajectories. (c) Intracycle interference pat-
tern type I, cos2 [(�2HCT − �1HCNT)/2]. (d) Intracycle interference
pattern type II, cos2 [(�2HCT − �1HCRT)/2]. The laser parameters are
the same as Fig. 1.

k⊥ j − �k⊥ j/2 < k⊥ < k⊥ j + �k⊥ j/2 and the grid (kzi, k⊥ j )
span the two-dimensional momentum space. The subscript s
denotes the type of electron trajectories, i.e., 1HCRT, 1HCNT,
and 2HCT. Then, the interference map is calculated as

cos2

[ 〈�s〉(kzi, k⊥ j ) − 〈�s′ 〉(kzi, k⊥ j )

2

]
. (21)

In Fig. 4(c), we show the holographic interference map
stemming from the calculation of Eq. (21) for s = 1HCRT,
and s′ = 1HCNT. The white color corresponds to regions
in the (kz, k⊥) plane with no trajectories of either the s or
s′ type. The general shape of the holographic interference
pattern in Fig. 4(c) shows radial stripes with a moderate jump
at kz 
 1 decreasing this value slightly as k⊥ increases. The
holographic map calculated from Eq. (21) allows one to see
the interference pattern even for momentum regions where the
probability distribution is very low (less than four orders of
magnitude lower than the maximum in our case) in Fig. 4(c).

So far, we have analyzed only one type of interference: The
holographic interference. On the other hand, two other types
of interference naturally come up: the interference between
1HCNT and 2HCT, which we name intracycle type I and
known in the literature as intracycle interference [28,29,31],
and the interference between 1HCRT and 2HCT, which we
name intracycle type II and which is scarcely studied in the lit-
erature [54,55]. Figure 5(a) shows the results of the intracycle
interference type I between 1HCNT and 2HCT as a pattern of
convex boomerang-shaped stripes centered at the longitudinal
momentum axis. The only difference between the intracycle
pattern type I of Fig. 5(a) and the one previously studied in
the literature [28,29,31] is the pointy edge at k⊥ = 0. One can
adjudicate the reason of the pointy edge in Fig. 5(a) to the
action of the potential of the remaining core on the escaping
electron, which was neglected in previous calculations relying
on the strong-field approximation [28,29,31]. We corroborate
this result by neglecting the action of the Coulomb potential
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FIG. 6. Final angular momentum as a function of the transversal
and longitudinal momentum. (a) All trajectories, (b) 1HCNT (non-
rescattered trajectories ionized during first half cycle), (c) 1HCRT
(rescattered trajectories ionized during first half cycle), (d) 2HCT
(trajectories ionized during the second half cycle). The laser param-
eters are the same as in Fig. 1.

in our SCTS simulations (not shown). The intracycle inter-
ference type II between 1HCRT and 2HCT in Fig. 5(b) has
a similar shape as the intracycle interference type I, but the
stripes are concave with the pointy edge aiming at the positive
kz axis. The respective interference maps of Eq. (21) are
shown in Figs. 5(c) and 5(d) for the intracycle interferences
type I and type II. As in holographic interference, we see how
the interference pattern is enhanced in the interference maps
for the intracycle interferences type I and II. This fact clearly
demonstrates that the stripes in Figs. 5(a) and 5(b) stem from
the interference of the corresponding types of trajectories.
Some odd nonphysical moiré patterns can be seen for low
parallel momentum because of the plotting method [79].

As we have seen, the three different types of electron tra-
jectories present in the ionization process situate at essentially
the same region (forward emission) in the (kz, k⊥) momen-
tum plane. Therefore, it is difficult to identify them without
tracing back their time evolution. One way to discriminate
among the different types of trajectories is looking at their
angular momenta. In Fig. 6(a), we show the average angular

momentum,

〈L〉(kzi, k⊥ j ) =
∑

n

Ln(kz, k⊥)

Ni, j
, (22)

where the sum extends over all the electron trajectories
with final momentum kzi − �kzi/2 < kz < kzi + �kzi/2, and
k⊥ j − �k⊥ j/2 < k⊥ < k⊥ j + �k⊥ j/2 and the grid (kzi, k⊥ j )
spans the two-dimensional momentum space. All three types
of trajectories are present in Fig. 6(a). The maximum angular
momentum found is about 25 a.u. in a region similar to a fork
bifurcating at the classical edge kz = 3 a.u. and k⊥ = 0 and
aiming backwards. The white color corresponds to regions of
the final momentum space with no trajectories. We have also
performed the same calculation for each of the three types
of trajectories separately. In Fig. 6(b), we plot the angular
momentum for 1HCNT as a function of the final momentum
(kz, k⊥). We see that the minimum angular momentum for
1HCNT is at k⊥ = 0 and 〈L〉 increases from 20 a.u. with
the absolute value of the perpendicular velocity kρ = |k⊥|
reaching very high values close to 120 a.u. at the classical
boundaries. The angular momentum of 1HCRT in Fig. 6(c)
exhibits a completely different behavior: The maximum corre-
sponds to 〈L〉 = 20 a.u. and the angular momentum decreases
with the absolute value of the perpendicular velocity kρ =
|k⊥|. Therefore, we can say that 1HCNT and 1HCRT have
different values of angular momentum, coinciding only for
k⊥ = 0. In fact, this is the same result pointed out in the
description of Figs. 2(b) and 2(c) because the definition of
rescattering and nonrescattering trajectories mixes when kρ =
k⊥ = 0, corresponding to the rescattering glory trajectories
described before. Coming back to the analysis of the angular
momentum, we see in Fig. 6(d) that 2HCT have angular
momentum with a minimum at k⊥ = 0 but, in contrast to the
trajectories ionized during the 1HC, the minimum value is
〈L〉 = 0.

The angular momentum distribution of the electron yield
has been calculated at the end of the pulse, i.e., t = 2π/ω,
which is the same at the asymptotic detection time t → ∞
since the angular momentum is a constant of motion once
the laser pulse has been switched off. In Fig. 7(a), we show
the quantum angular momentum distribution after the end
of the pulse (calculated within the TDSE). The distribution
shows a sharp peak at very low angular momenta with a broad
plateau with maximum at L 
 25 a.u. slowly decreasing up
to L ≈ 100 a.u. In order to analyze the reason for this shape,
we also perform the quantum calculation of the momentum
distribution for ionization during the first half cycle, which
exhibits a very broad distribution with a maximum value at
L 
 28 in Fig. 7(a). Therefore, we can conclude that the sharp
peak at very low angular momenta stems from ionization
during the second half of the pulse.

In order to corroborate this, we calculate the classical angu-
lar momentum distribution [within the CTMC with Eq. (17)]
for each of the three types of electron trajectories present
in the ionization process. We observe in Fig. 7(b) that the
sharp peak at low momenta is due almost exclusively to the
contribution of 2HCT, that is, the electron trajectories born
during the second half cycle (which do not suffer rescattering).
In turn, 1HCNT (which do not suffer rescattering either)
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FIG. 7. Angular momentum distribution for the different kinds of
trajectories. (a) TDSE calculations and (b) CTMC calculations. The
laser parameters are the same as in Fig. 1.

contribute to the broad plateau only for angular momentum
L � 20 a.u., as previously shown in Fig. 6(b). Trajectories
released within the first half cycle ending with lower angular
momentum (L � 20 a.u.) suffer rescattering (1HCRT), con-
tributing to the lower region of the plateau and very little
to the sharp peak at low angular momentum. However, the
low-energy peak of the TDSE momentum distribution in
Fig. 7(a) is slightly broader than the corresponding CTMC
in Fig. 7(b). The sum of the CTMC 1HCRT and 1HCNT
contributions shown in Fig. 7(b) is very similar to the quantum
distribution with ionization only during the first half cycle. We
can see a very high quantum-classical correspondence for the
angular momentum, even though the resemblance between the
quantum and classical results is not perfect.

For the sake of a quantitative comparison between the
SCTS and TDSE calculations, in Fig. 8 we plot the SCTS
and TDSE doubly differential energy-angle distribution as a
function of the emission angle for a fixed energy E = 2Up =
1.125 a.u. (corresponding to a momentum k = 1.5 a.u., close
to the maximum of the energy distribution). We observe that
the general shape of the semiclassical and quantum distribu-
tions is similar, with a central peak at forward emission (θ =
0◦) and symmetrical lower peaks at both sides. Despite this
qualitative similarity, several differences are observed. First,
the central peak of the SCTS distribution is narrower than
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FIG. 8. Doubly differential angle-energy distribution as a func-
tion of the emission angle for fix energy E = 1.125 a.u. Calculations
are performed with different methods: dots correspond to TDSE,
thick blue line to SCTS model, green line to the square of the
Bessel function of the angle-dependent angular momentum L(θ )
times the angle θ, and the thin red line is the same but replacing
L(θ ) by L(0) = 19.5. The inset displays the function L(θ ) calculated
at E = 1.125 a.u. The laser parameters are the same as in Fig. 1.
All the functions are normalized to unity at the forward direction
(θ = 0◦).

the quantum one. In this sense, the first minima of the TDSE
distribution are at θ 
 ±6.5◦, whereas the corresponding
SCTS ones are situated at θ = ±4◦. In addition, the position
of the first peaks of the TDSE distribution is at θ 
 ±9◦ with a
height of 0.135 relative to the central peak (normalized in the
figure), whereas the corresponding SCTS ones lie at θ 
 ±7◦
with height of 0.28.

According to the glory rescattering theory posed by Xia
et al. (see Ref. [47]), due to an interference process of glory
trajectories, the angular distribution (for a fixed energy) can
be described by the square of a Bessel function of the first
type of the angular momentum times the angle, i.e., J2

0 (L θ )
(see Ref. [47]). Therefore, in the inset of Fig. 8 we show
the SCTS angular momentum L(θ ) as a function of the
angle for the same fix energy E = 1.125 a.u. The value of
the angular momentum at zero emission angle (θ = 0◦) is
L(0◦) = 19.5 a.u.; then it increases as the emission angle
departs from the forward emission up to |θ | 
 12◦, where it
reaches the maximum angular momentum and then decreases
as the emission angle increases further, |θ | 
 12◦. The thin
red line shows that J2

0 (L(0◦) θ ) follows the TDSE distribution
very accurately for low emission angles, i.e., |θ | � 6◦, but
then it predicts angles of minima and maxima higher than the
quantum simulation. If we replace the constant value of L(0◦)
by the function L(θ ) into the Bessel function, the prediction
J2

0 (L(θ ) θ ) changes considerably. It departs from the SCTS
at lower angles |θ | 
 3◦ with first maxima at |θ | 
 7◦, very
close to the semiclassical prediction, although higher-order
peaks set off from the SCTS model.
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IV. CONCLUSIONS

We have studied the interference phenomena in atomic
ionization by a single-cycle laser pulse. We have shown
that the SCTS model qualitatively reproduces the quantum
results. Within the SCTS model, we have identified three
different types of electron trajectories with three different
types of interferences. Nonrescattering trajectories (1HCNT)
and rescattering trajectories (1HCRT) lead to the well-known
holographic interference pattern in the doubly differential
momentum distribution. We have shown that one way to dis-
tinguish between these two types of trajectories (1HCNT and
1HCRT) is through their different final angular momenta. We
have found that the glory rescattering theory of Ref. [47] qual-
itatively explains the TDSE holographic interference pattern,
but some quantitative discrepancies arise. Moreover, glory
trajectories (k⊥ 
 0) are in the transition between nonrescat-
tering trajectories 1HCNT (where k⊥vx0 > 0) and rescattering
trajectories 1HCRT (where k⊥vx0 < 0). For this reason, we
have dropped the name “rescattering” used in Ref. [47] and
just call them glory trajectories.

Electron trajectories born during the second half cycle
2HCT do not suffer rescattering and interfere with the other
two types of trajectories (released during the first half cycle).
On one hand, the interference between 2HCT and 1HCNT
gives rise to the well-known intracycle interference type

I [25,28,35]. The intracycle type-I interference calculated
within the SCTS exhibits a family of convex pointy stripes in
the doubly differential momentum distribution. On the other
hand, the interference between 2HCT and 1HCRT gives rise
to the intracycle interference type II as a family of con-
cave pointy stripes in the momentum distribution. Whereas
the wedges of the stripes of the interference type I aim to
the backward direction, those corresponding to interference
type II aim forwards. The sharp wedges at k⊥ = 0 for both
intracycle interferences type I and II are due to the effect of
the Coulomb potential with the escaping electron and are not
present in previous calculations based on the SFA [25,28,35].

Finally, we have shown both quantum mechanically and
classically that the very sharp peak at low angular momentum
in the angular momentum distribution mostly stems from
ionization during the second half cycle, whereas ionization
during the first half cycle contributes to the very broad plateau,
reaching high values of the angular momentum up to L ∼ 100.
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