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An ion in a Penning trap induces image charges on the surfaces of the trap electrodes. These induced image
charges are used to detect the ion’s motional frequencies, but they also create an additional electric field, which
shifts the free-space cyclotron frequency typically at a relative level of several 10−11. In various high-precision
Penning-trap experiments, systematics and their uncertainties are dominated by this so-called image charge
shift (ICS). The ICS is investigated in this work by a finite-element simulation and by a dedicated measurement
technique. Theoretical and experimental results are in excellent agreement. The measurement is using singly
stored ions alternately measured in the same Penning trap. For the determination of the ion’s magnetron fre-
quency with relative precision of better than 10 parts per billion, a Ramsey-like technique has been developed. In
addition, numerical calculations are carried out for other Penning traps and agree with older ICS measurements.
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I. INTRODUCTION

Single ions trapped in cryogenic Penning traps have en-
abled a multitude of high-precision experiments in mass spec-
trometry [1–4], stringent tests of QED in strong fields [5–7],
several tests of the charge, parity, and time (CPT) reversal
symmetry theorem [8,9] and special relativity [10], as well as
high-precision measurements of fundamental constants [11].
With the exception of mass doublets, by comparing two very
similar masses [1,3], the predominant systematic shift of all
these measurements is the image charge shift (ICS). Here, the
motion of the ion in the center of the Penning trap is slightly
modified by the induced image charges on the trap electrodes.
For instance, the ICS of the high-precision measurement of
the atomic mass of the electron [11] via the bound-state
g factor is a factor of 130 larger than the absolute sum of
all other systematic shifts and 95% of the total systematic
uncertainty is given by the uncertainty of the ICS. In contrast
to other systematics, the ICS cannot be reduced by lower
temperature of the ion or an improved detection method. The
only way to reduce this shift is the increase of the size of the
Penning-trap electrodes as the ICS scales inversely with the
trap radius cubed; see Sec. III. However, the induced image
current detection signal decreases with the trap radius, which
constrains a simple enlargement of the trap. For this reason,
a precise measurement or calculation of the ICS is of great
importance for all state-of-the-art high-precision Penning-trap
experiments with ions.
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So far, the only experimental approach to study the ICS
is the measurement of its linear scaling with the number of
trapped ions [12,13]. There, the ICS has been measured with
a relative precision of 4%. On the theoretical side, semiana-
lytical descriptions of the ICS could only be formulated for
simplified trap geometries until now [14,15].

After a short introduction of Penning-trap basics in Sec. II
and the general concept of the ICS in Sec. III, this article
will present an experimental approach for the determination
of the ICS, which aims for relative uncertainties of a few
percent, in Sec. IV. Here, the ICS is determined experi-
mentally with two single trapped ions. In this way, hard-
to-control ion-ion interaction, which occurs in the former
measurement approaches [12], is completely avoided. This
technique is based on a 1000-fold improved determination
of the magnetron frequency, which requires a Ramsey-like
measurement technique [16]. In Sec. V, we introduce an
improved simulation of the ICS based on the finite-element
method (FEM). The simulation is able to predict the frequency
shift correctly for the measurement and is applicable to all
Penning-trap experiments. With a relative precision below
1%, these ICS calculations are not any longer limited by the
numerical precision of the simulation but by the machining
tolerances of the trap electrodes. In Sec. VI, one can find
a short introduction of the simulated Penning-trap setups.
Finally, in Sec. VII, the experimental and theoretical results
are summarized and compared to earlier measurements and
calculations for various Penning-trap experiments.

II. PENNING-TRAP BASICS

In an ideal Penning trap, a homogeneous magnetic field
B0 = B0ez is combined with an electrostatic quadrupole po-
tential to spatially confine an ion [17]. The electrostatic
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FIG. 1. A hyperbolic Penning trap consisting of a ring and two
end-cap electrodes, with the characteristic trap parameters z0 and ρ0.
The electric quadrupole potential is created by applying the voltage
U0 between the ring and the end caps. This electric potential is
superimposed with a homogeneous magnetic field B0.

potential of an ideal trap is described by

�2 = U0C2

2d2

(
z2 − ρ2

2

)
, (1)

where ρ =
√

x2 + y2, U0 is the voltage between the ring and
the end-cap electrodes (see Fig. 1), and C2 is a dimensionless
constant, which is usually close to unity for hyperbolic Pen-
ning traps. The characteristic trap dimension d is related to
other characteristic dimensions ρ0 and z0 (see Fig. 1) via

d =
√

1

2

(
z2

0 + 1

2
ρ2

0

)
. (2)

In a real Penning trap where cylindrical symmetry can be still
assumed, also higher-order terms exist and can be quantified
by the following expansion:

�(r, θ ) = U0

2

∞∑
i=2,4,...

Ci
riPi( cos(θ ))

di
. (3)

Here, spherical coordinates r and θ are used and Pi(cos(θ )) are
the Legendre polynomials. The azimuthal angle φ vanishes
due to rotational symmetry. Only even terms are listed, as
odd terms are strongly suppressed by mirror symmetry in
axial direction. Taking only i = 2 into account, this expression
reduces to the ideal case shown in Eq. (1).

One method to produce such an electric quadrupole po-
tential is a hyperbolically shaped ring electrode and two
hyperbolically shaped end-cap electrodes (see Fig. 1) [18].
Another trap geometry being widely used consists of cylin-
drical electrodes. Additional so-called correction electrodes
(also called “guard electrodes” for hyperbolic Penning traps)
are implemented. They compensate higher order electric field
components Ci.

In the absence of deviations from the ideal magnetic field
and electrostatic potential, the nonrelativistic equation of mo-
tion of an ion with charge q and mass m in a Penning trap can

be written as⎛
⎝ẍ′

ÿ′
z̈′

⎞
⎠ = qB0

m

⎛
⎝ ẏ′

−ẋ′
0

⎞
⎠ + qU0C2

2md2

⎛
⎝ x′

y′
−2z′

⎞
⎠, (4)

where the primed variables are the coordinates of the ion.
Solving this differential equation leads to three independent
eigenmotions with frequencies

νz = 1

2π

√
qU0C2

md2
, (5)

ν± = 1

2

[
νc ±

√
ν2

c − 2ν2
z

]
, (6)

where νz is the axial, ν− is the magnetron, and ν+ is the
modified cyclotron frequency. The magnetron frequency is
independent of the charge-to-mass ratio to lowest order, which
allows the comparison of the magnetron frequencies of two
independent ions directly with each other with minimal cor-
rections. The free-space cyclotron frequency is defined as

νc = 1

2π

q

m
B0. (7)

In a Penning-trap measurement, only frequencies ν± and νz

are directly measurable but usually the free-space cyclotron
frequency is of physical interest. It can be obtained from the
eigenfrequencies through, e.g., the invariance theorem [17]:

ν2
c = ν2

z + ν2
− + ν2

+. (8)

The hierarchy of the frequencies is ν− � νz � ν+. Typically,
the frequencies range from a few kHz for ν− up to a few tens
of MHz for ν+.

III. IMAGE CHARGE SHIFT

The trapped ion induces oscillating image charges on
the surrounding trap electrodes. While these induced image
charges are essential for the detection of the ion’s oscillation
frequencies [19–22], they cause a systematic shift to the
ion’s frequencies by generating an undesired electrostatic field
E image, which acts back on the ion and slightly shifts the ion’s
eigenfrequencies; see Fig. 2. E image is approximated by

E image(x′, y′, z′) = n(Exx′ex + Eyy′ey + Ezz
′ez ), (9)

where the parameters Ei are the so-called electrostatic linear
field gradients (LFG) and n is the charge state of the ion.
Higher order terms of the induced electric field are also
present. They only become relevant for extremely excited
ions when the amplitude of their motion becomes compara-
ble to the characteristic trap parameters z0 or ρ0. The term
in parentheses represents the LFG induced by one positive
elementary charge. Because of the cylindrical symmetry of
the Penning-trap electrodes, the LFG of the ICS should be the
same in x and y directions:

Eρ ≡ Ex = Ey. (10)

The full derivation of the frequency shift due to the ICS
can be found in Ref. [23]. The force F = qE image caused by
the image charges on the ion leads to an additional term in
the radial equation of motion. The image charges cause a
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FIG. 2. Illustration of the image charge shift (ICS): In the upper
part, the Penning trap of the LIONTRAP experiment is shown with
a single positively charged ion shifted in the x direction to position
x′. On the surface of the cylindrical electrodes, the relative change
of the induced image charges is shown, which results from the
displacement of the ion from the center position. Less induced image
charges result in a relative positive change and are sketched in red,
and more image charges are sketched in blue. In the lower part, the x
component of the electric field simulated by COMSOL MULTIPHYSICS

at the ion’s position is shown, which is generated by the induced
image charges when the ion is placed at position x′. Uncertainties
of the individual points are smaller than the point size. The red
line indicates the linear approximation of the induced electric field:
Eimage,x(x′) = n × Ex × x′, where Ex is the linear field gradient in x
direction.

perturbation ερ to the ion motion. This changes the normal
radial equation of motion [see Eq. (4)] to

(
ẍ′
ÿ′

)
= 2πνc

(
ẏ′

−ẋ′

)
+ 2π2ν2

z

(
1 + ερ

)(x′
y′

)
, (11)

where ερ = n eEρ

4π2mν2
z
, q = n × e, and e is one elementary

charge. It can be assumed that ν− � ν+ and so the radial
frequency shifts becomes

	ν± = ∓n
Eρ

2πB0
. (12)

It becomes evident from Eq. (12) that the radial sideband
frequency νc = ν+ + ν− is immune to the ICS. The axial shift

can be calculated as

	νz = −n2 e

m

Ez

8π2νz
. (13)

The shift of the free-space cyclotron frequency, obtained by
using the invariance theorem [see Eq. (8)], is then2

	νc ≈ n
2Eρ + Ez

4πB0
. (14)

The unperturbed free-space cyclotron frequency νc can be
obtained from the measured frequency ν̃c by

νc = ν̃c + 	νc. (15)

In cylindrical Penning traps, the electrode surfaces can be
approximated as an infinitely long cylinder with radius ρ0

for a first-order ICS calculation. In this case, an analytical
solution of the ICS exists [24]:

	ν± = ∓ q2

16π3ε0mρ3
0νc

, (16)

where ε0 is the vacuum permittivity. Consequently, the relative
shift of the free-space cyclotron frequency

	νc/νc ≈ m/
(
4πε0B2

0ρ
3
0

)
(17)

shows that the ICS is most relevant in measurements of heavy
ions. Furthermore, Eq. (17) illustrates the strong impact of the
trap size 	νc ∝ 1/ρ3

0 . For realistic hyperbolic and cylindrical
Penning-trap geometries, Eρ and Ez cannot be determined ana-
lytically. In the following, a dedicated experimental approach
is described to determine 	νc directly in a Penning trap as
well as a dedicated calculation by a finite-element simulation
to find Eρ and Ez.

IV. MEASUREMENT OF THE ICS

Assuming typical Penning-trap parameters, e.g., a mag-
netic field of 3 to 8 T, a trap radius of 3 to 7 mm, and ion
masses of 1 to 250 u, the relative ICS in the free cyclotron
frequency ranges from a few ppt to several tens of ppb; see
Eq. (17). In many cases, this shift is larger than the typical
level of statistical precision in state-of-the-art Penning-trap
experiments. Aiming for an ICS measurement on a 5% level or
better, for two reasons it is not possible to determine this shift
by measuring the three eigenfrequencies of just one single
particle: At first, the absolute values of the electric as well as
of the magnetic field are not known with sufficient precision to
make a precise prediction of the unshifted eigenfrequencies.
Second, the measured eigenfrequencies have to be corrected
by other systematic shifts, e.g., the tilt of the trap; see Table I.
However, all these additional trap parameters can only be de-
termined via eigenfrequency measurements. Therefore, solely

2Note the change in sign convention here. While the shifts in the
previous two equations, (12) and (13), need to be added to the
frequencies of the ideal trap—that is, without image charges—in
order to yield the actual frequencies in the presence of image charges,
the shift in Eq. (14) needs to be added to the measured frequency in
order to obtain the free-space cyclotron frequency in the absence of
image charges.
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TABLE I. Measured magnetron frequency difference of a single
proton and a single carbon nucleus, determined in the LIONTRAP
setup. The first row indicates the magnetron frequency difference
already including the correction of the voltage fluctuations. Various
contributions have to be subtracted to derive the sought-after ICS
contribution in the magnetron frequency difference: (1) magnetron
frequency difference in an ideal trap without any systematics given
by Eq. (6), (2) systematic shifts due to the dominant magnetic inho-
mogeneity B2, and (3) systematic shifts due to a tilt and ellipticity of
the trap electrodes. The last row indicates the predicted magnetron
frequency difference caused by the ICS, as determined by the full
COMSOL simulation described in Sec. V (see also Table II) and
evaluated for 12C6+ (n = 6) and p (n = 1) respectively, which is in
agreement with the measured value.

Effect ν−(12C6+) (mHz) ν−(p) (mHz) 	ν− (mHz)

ν
exp
− 393.258 (98)

Ideal ν− 4 770 614.107 4 770 223.384 390.723 (1)
B2 −0.017 −0.073 0.056 (21)
θmag, φmag, ε 747.748 747.560 0.188 (37)
ν

exp
− (only ICS) 2.291 (126)

ν theo
− (only ICS) 2.852 0.475 2.377 (21)

the linear scaling of the ICS with charge can be measured
by varying the number of simultaneously trapped ions of
the same species or alternating measurements of ions with
different masses in the same trap.

The ICS was first observed in 1989 by Van Dyck et al.
[13]. The studied shifts in the magnetron frequency as well
as in the modified cyclotron frequency by varying the number
of trapped ions of the same species from a very few up to a
cloud of about thousand ions. By measuring the linear scaling
of the eigenfrequencies with four different ion species, they
managed to constrain the ICS with 17% relative uncertainty.
In the year 2000, mass measurements of nonmass doublets
started to be strongly limited by the uncertainty of the ICS. For
this reason, Van Dyck and colleagues measured the ICS with
improved detection techniques [12]. Here, they compared the
modified cyclotron frequencies of 24(1) 16O6+ ions to a single
16O6+ ion. In an additional measurement, they measured the
ICS number scaling with one and two 12C6+ ions. Finally, they
determined the ICS with a relative uncertainty of 4%, limited
by the uncertainty of systematic effects.

To rule out ion-ion interactions, we developed a measure-
ment approach based on two single ions with a large charge
difference, which enables ICS measurements with relative
uncertainties of a few percent. The relevant trap, referred
to as the precision trap (PT) of the LIONTRAP setup [4],
is a highly harmonic cylindrical Penning trap with a radius
of 5 mm, described in detail in Sec. VI. The PT has two
precisely tuned resonators, which pick up the induced image
current of a single proton p and a single carbon nucleus
12C6+. In this way, both ions can be alternately studied with
the same voltage setting and therefore at the same position
in the trap and the same magnetic field. The ICS is about
three orders of magnitude larger for the radial frequencies
(e.g., for the proton: |	ν±(p)| ≈ 0.48 mHz) compared to the
shift in the axial frequency (|	νz(p)| ≈ 0.59μHz), due to the
close-to-ideal translational axial symmetry, particularly for

cylindrical traps. Based on numerical calculations, which will
be introduced in Sec. V, the predicted ICS difference in the
radial modes (|	ν∗

±| = |	ν±(12C6+)| − |	ν±(p)|) is of the
order of 2.3 mHz. Since the shift in the axial frequency is
so small, the shift in the modified cyclotron mode is nearly
equivalent to the shift in the free cyclotron frequency. Limited
by the uncertainty of the proton mass as well as by the present
magnetic field fluctuations, it is not feasible to measure the
ICS with the cyclotron frequency, but only in the magnetron
frequency. Aiming for a relative precision of the measured
ICS shift of 5% or less, the uncertainty in the determination
of the magnetron frequencies, which are in the order of
4.7 kHz, has to be below 85μHz. So far, in our former high-
precision experiments, the magnetron frequency has been
determined via sideband coupling to an axial detection system
in a so-called double-dip spectrum [25,26]. In combination
with the required single-dip spectrum, the experiment reached
frequency uncertainties of about 50 mHz in the setup after
two minutes of averaging the dip- as well as for the double-
dip spectrum. While such a precision for ν− is absolutely
sufficient for state-of-the-art mass and g-factor measurements,
the precision needed to resolve the ICS requires a different
measurement technique.

A. Ramsey-like phase-sensitive measurement principle

To reach sub-mHz precision for the magnetron frequency,
a phase-sensitive measurement technique was applied. As the
magnetron frequency is so small, phase-sensitive techniques,
like Pulse and Phase (PnP) or Pulse and Amplify (PnA)
[25,27] using the red or blue sideband νrf = νz ± ν− for phase
transformation from the magnetron into the axial mode, are
problematic. Both of these sideband excitations exhibit a sig-
nificant component of a direct axial dipolar excitation which
parasitically modifies the magnetron phase transformation.
Therefore, a Ramsey-like phase-sensitive detection technique
has been developed shown in Fig. 3. Here, two short and
identical radial dipolar pulses at the frequency of νrf = ν− are
applied to the singly trapped ion, separated by a precise phase
evolution time Tevol. The first pulse excites the thermalized
magnetron motion of the ion and thus imprints a magnetron
phase. Depending on the phase relation between the ion,
whose phase evolved for some time Tevol, and the fixed phase
of the second pulse, the magnetron motion is further enlarged
or diminished.

By varying the phase evolution time Tevol, the final mag-
netron radius r−,exc oscillates periodically with the magnetron
frequency:

r2
−,exc(Tevol) = r2

−,max.exc

2
{1 + cos [φ(Tevol)]} + r2

therm, (18)

where φ(Tevol) = 2πν−Tevol + φ0 and in our case r−,max.exc ≈
274μm (see Fig. 3) for the proton and the carbon ion. The
thermal magnetron radius rtherm

− amounts to significantly less
than 10 µm for all cases relevant to this work. In order to detect
the excited magnetron radius, the highly harmonic trapping
potential is deformed by artificially generated C4 and C6 terms
[see Eq. (3)]

	νz

νz
= −C4

C2

3

2d2
r2
−,exc + C6

C2

45

16d4
r4
−,exc, (19)
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FIG. 3. Ramsey-like excitation scheme for a high-precision mea-
surement of the magnetron frequency. The pattern contains two
identical radial dipolar pulses (gray shaded areas) with pulse lengths
of 4.6 ms each and excitation frequencies of νrf = ν−, separated by
a phase evolution time Tevol. The first pulse excites the thermalized
magnetron motion of the ion (rtherm

− < 10μm) to rexc
− ≈ 137μm and

thus imprints a magnetron phase. After the second pulse, the two
extreme cases are shown: maximum excitation in red and basically
no excitation in blue.

where the measured potential coefficients are C2 =
−0.5997, C4 = −0.00223(18), C6 = 0.014(4), and
	νz = νz(exc) − νz(cold) is the axial frequency difference
at the deformed trapping voltage. Here, νz(exc) is measured
after the application of the Ramsey-like excitation scheme
and νz(cold) is measured without any excitation. At
maximum magnetron excitation, the axial frequency shift
for the proton is 	νmax

z (p) = −12.3(9) Hz at an absolute
frequency of νz(p) = 739 865 Hz. In comparison with
other energy-dependent axial frequency shifts, the C4 term
dominates the axial frequency shift by 97%. For reliable
switching between the harmonic and the deformed voltage
setting, the required voltage modification is performed by
voltage channel mixing via a relay and a voltage divider, so
that the setting of the high-precision voltage source is not
touched.

The magnetron frequency is found by measuring the mag-
netron phase at two different phase evolution times, e.g.,
Tevol,1 = 0.1 s and Tevol,2 = 40 s:

ν− = 1

2π

φ(Tevol,1) − φ(Tevol,2)

Tevol,1 − Tevol,2
. (20)

One single magnetron phase is determined by the measure-
ment of one period of these Ramsey-like oscillations; see
Fig. 4.

Equations (18) and (19) are used to fit φ0 in a one parameter
fit, where the maximal magnetron radius is determined via

r2
−,max.exc = 4

15

C4

C6
d2

+
√(

4

15

C4

C6
d2

)2

+ 16

45

C2

C6
d4

	νmax
z

νz
. (21)

FIG. 4. One example of the determination of the magnetron
phase by axial frequency shifts. Here, the Ramsey-like excitation
scheme has been applied on a single 12C6+ ion at 11 different
phase evolution times (Tevol = 39.9998, ..., 40 s). On the y axis, the
axial frequency differences 	νz = νz(exc) − νz(cold) are plotted.
The error bars are given by the uncertainties of the axial frequencies
measured at the deformed voltage setting [δ(	νz ) = 70 mHz] and the
intrinsic thermal distribution of the magnetron radius. On the x axis,
the final phase evolution times are indicated, which include voltage
corrections; see Appendix A. The corresponding error bars of the
voltage corrected phase evolution time δT final

evol = 2Tevolδν
harm.volt
z /νoff

z

are given by the axial frequency uncertainties measured at the
harmonic voltage setting (δνharm.volt

z = 50 mHz). In this plot, the
magnetron phase at 39.9998 s and modulo 360◦ is determined by
the fit indicated as a red line with the gray confidence interval:
φ(T final

evol = 39.9998 s) = 249(5)◦.

Here, the miniscule effect of the thermal radius has been
neglected. Moreover, in φ(Tevol) = 2πν init

− Tevol + φ0 the mag-
netron frequency (ν init

− ) is measured at the beginning of the
measurements campaign and set to ν init

− (p) = 4770.96 Hz and
ν init

− (12C6+) = 4771.353 Hz.

B. Measurement cycle

In Fig. 5, the complete measurement cycle is illustrated. In
the beginning of each cycle, either the proton or the carbon
nucleus is randomly chosen and transported into the PT, while
the other ion is confined in an adjacent storage trap (ST).
During the ion transport, different voltages are applied, which
lead to temperature fluctuations in the voltage divider of the
voltage source. A certain relaxation time is required to reduce
the involved temperature changes in the voltage divider. This
is followed by some precooling of the ions’ magnetron and
modified cyclotron motion. Then 2 × 11 Ramsey cycles of
different phase evolution times are applied in random order.
The phase evolution times are predefined and range from 0.1
to 40 s (some at 20 s); see Fig. 4.

In the beginning and at the end of these Ramsey cycles,
three axial dips are recorded: (1) with thermalized magnetron
mode and harmonic potential, for the correction of voltage
fluctuations as described in Appendix A, (2) with thermal-
ized magnetron mode and deformed potential [νz(cold)], and
(3) with maximally excited magnetron mode and deformed
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FIG. 5. Illustration of the measurement cycle. One complete
measurement cycle takes 140 min and reaches a statistical precision
of about 480μHz for the magnetron frequency difference. In total,
120 cycles have been recorded over a period of 23 days, where 73
cycles feature a Tevol,2 of 40 s and the others 20 s.

potential for the determination of the maximal axial shift
(	νmax

z ). After every sixth Ramsey cycle, the axial dip is
measured again to correct the magnetron frequency for volt-
age drifts and fluctuations in the final analysis (ν interpl

z ), when
the ion magnetron mode has thermalized and the potential is
harmonic. Finally, the complete procedure is repeated with the
other ion.

C. Results of the ICS measurement

Averaging over 120 measurement cycles (see Fig. 6) yields
our experimental result:

	ν
exp
− = ν−(12C6+) − ν−(p)

= 393.258 (61) (77) mHz, (22)

where the two numbers in brackets indicate the statistical
and systematic uncertainties, respectively. The systematic un-
certainty arises from the correction of voltage fluctuation.

FIG. 6. Magnetron frequency differences of all 120 measurement
cycles. The red line indicates the average value and the gray band
its 43μHz statistical uncertainty. The fit of the data returns a χ2

of 2. This might be explained by tiny axial frequency fluctuations
caused by tilt fluctuations. Since a disentanglement between voltage
and tilt fluctuations based on the axial frequency is impossible, the
tilt fluctuations are interpreted as voltage fluctuations, which leads
to false corrections of the corresponding magnetron frequencies. To
account for this, the statistical uncertainty is enlarged by a factor
of

√
2 suggested by the reduced χ 2. The total statistical uncertainty

amounts to 61μHz. For details, see text and Appendix A.

There, the axial frequency ratio R = ν−(12C6+)/ν−(p) has
to be calculated with high precision, which is explained in
Appendix A.

In order to isolate the ICS from the measured magnetron
frequency difference in Eq. (22), the following contributions
have to be subtracted. First, the magnetron frequencies of
the two ions in an ideal trap without any systematic shifts
are determined by Eq. (6): ν−(ideal) = 0.5(νc − √

ν2
c − 2ν2

z ).
Here, the modified cyclotron and axial frequency of the proton
are measured, whereas the corresponding frequencies of the
carbon ion are derived from the measured proton frequen-
cies and the given masses. The resulting ideal magnetron
frequency difference has to be further corrected for several
systematic shifts generated by the residual inhomogeneity
of the magnetic field, the tilt between the magnetic and
electric field axis characterized by θmag and φmag,3 and the
elliptic deformation (ε) of the electric field. While the residual
cylindrically symmetric electrostatic field imperfections with
the optimized potential coefficients C4(opt) = 0(1) × 10−6

and C6(opt) = 6.45(16) × 10−4 are negligible at the current
level of precision, the leading-order magnetic inhomogene-
ity B2 = −0.270 (15) T/m2 together with Tz(p) = 3.4 (1.0) K
and Tz(12C6+) = 6.4 (1.0) K contribute a sizable frequency
shift (see Table I). The tilt and ellipticity contributions
are not easily disentangled unambiguously,4 but preliminary

3The angles θmag and φmag are defined according to the definition in
Eq. (2.72) of Ref. [17].

4The angle and its uncertainty has been determined by the follow-
ing relation: ν∗

c − νc = ν−(9/4 θ2
mag − 1/2 ε2) [28], with ν∗

c = ν+ + ν−,
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TABLE II. First, the characteristic trap dimensions ρ0 and z0 are presented. All values are given at a temperature of 4 K. A manufacturing
tolerance of ±10μm is assumed for all trap dimensions. Additionally, the magnetic field strengths and the types of Penning traps are displayed.
This is followed by a comparison of numerical calculations, semianalytical calculations, and measurements of the ICS for three different
high-precision Penning-trap experiments and three different approaches: (1) Semianalytical calculation with simplified geometry, denoted as
(Porto); (2) numerical calculation with simplified geometry, denoted as (COMSOL-Porto), and (3) numerical calculation with full geometry,
denoted as (COMSOL-full). Uncertainties for the LFGs and the free-space cyclotron frequency shift in the scenario (COMSOL-full) are
separately listed: ()sim and ()geo.

Properties FSU-Trap THe-Trap LIONTRAP

Type Hyperb. Hyperb. Cylind.
ρ0 (z0) (mm) 6.96 (6.00) 2.77 (2.29) 5
d (mm) 5.501 2.124 5.107
B0 (T) 8.529 5.915 3.764
Eρ(Porto) in μV/m2 2 818.69(15) 42 458(13) 11 551(2)
Eρ(COMSOL-Porto) in μV/m2 2 816.8(1.6) 42 405(37) 11 545(49)
Eρ(COMSOL-full) in μV/m2 2 839.7(1.6)(11.5) 42 604(37)(366) 11 230.0(48.5)(84.0)
Ez(Porto) in μV/m2 4 200.14(2.0) 80 793(25) 0.00(1.53)
Ez(COMSOL-Porto) in μV/m2 4 198.8(2.1) 80 719(69) 0(2)
Ez(COMSOL-full) in μV/m2 4 225.7(2.5)(21.3) 79 726(69)(1322) 8.1(3.1)(2.2)
	νc(Porto) in μHz/n 91.7850(34) 2 229.37(49) 488.416(58)
	νc(COMSOL-Porto) in μHz/n 91.738(36) 2 225.1(1.4) 488.7(2.1)
	νc(COMSOL-full) in μHz/n 92.416(37)(292) 2 218.8(1.4)(20.3) 475.4(2.1)(3.6)
	νc(measurements) in μHz/n 2 230(90) [12] 471.9(23.9)

measurements indicate ε = 0.011+4
−11 and θmag = 0.56+7 ◦

−8 ,

whereas the insignificant angle φmag cannot be constrained.
After subtracting the above-mentioned contributions from the
measured frequency difference, we obtain the sought-after
ICS:

	ν
exp
− (only ICS) = 2.291 (61) (111) mHz. (23)

This result is in agreement with the calculations presented in
this work; see Table II. The uncertainty of the tilt and the el-
lipticity shift contribute in the uncertainty of the voltage fluc-
tuation, δ(	ν−)θ,φ,ε = 73μHz (see Table IV, Appendix A),
and in the uncertainty of the magnetron frequency difference,
δ(	ν−)θ,φ,ε = 37μHz (see Table I). These uncertainties are
highly correlated so that in the final systematic uncertainty this
effect contributes with δ(	ν−)θ,φ,ε = 110μHz. The uncer-
tainty of the quadratic magnetic inhomogeneity leads to an un-
certainty of the voltage fluctuation (see Table IV, Appendix A)
and to an uncertainty of the magnetron frequency difference
(see Table I). Both uncertainties are directly correlated and
cancel each other out. Thus, the ICS calculations can be
confirmed on a modest 5% level.

V. SIMULATIONS OF THE ICS

As detailed above, a sufficiently precise measurement of
the ICS requires a specially tailored experimental setup, e.g.,
two axial resonators matching the axial frequencies of two
different ions for the same voltage setting and a dedicated
construction to cancel the trap tilt. As most Penning-trap
experiments do not exhibit these special features, a possibility
to directly simulate the size of the ICS and thus correct for

νc = √
ν2+ + ν2

z + ν2−, and the assumption of an upper bound of |ε| �
0.015. Angles are entered in radians in all formulas in this work.

the shift is of great importance. For the very first ICS mea-
surement in 1989 [13], an extremely simple analytical model
provided a successful confirmation of the measured ICS. In
Ref. [13], the hyperbolic geometry of the electrodes has been
approximated by a sphere. Subsequently in 2000, Häffner
derived an analytical first-order approximation for cylindrical
Penning traps [24] by approximating the segmented electrodes
as an infinitely long cylinder, as in Eq. (17). Soon afterward
in 2001, an elaborate semianalytical model was developed by
Porto, which was directly applied on hyperbolic traps [14].
In Appendix C, this method has been reanalyzed in detail.
Here, two minor flaws of this semianalytical model have been
recognized and corrected. In 2013, a further refined analysis
has been modeled by Kretzschmar and others considering also
vertical and horizontal slits of cylindrical traps [15]. All these
methods above are limited by the fact that complicated shapes
of the electrodes have to be simplified in order to calculate
the ICS theoretically. Finite-element simulations as discussed
below overcome these problems with the trade-off of high
demand in computational power.

A. Finite-element approach

Only numerical calculations of the ICS are able to consider
the full electrode geometries of all kinds of Penning traps.
The goal of such simulations is the determination of the LFG
Ei introduced in Eq. (9). As a simulation tool, the program
COMSOL MULTIPHYSICS is chosen, which is a commercial
general-purpose platform software for modeling various phys-
ical applications. The functionality of the basic software cov-
ers the finite-element method of solving differential equations
in complex geometries [29]. The software can be expanded
by the AC/DC module, which covers solving of electrostatic
problems.
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FIG. 7. Illustration of the numerical calculation of the surface
charge density σ [see Eq. (24)] on the electrodes of a cylindrical
Penning trap induced by a single charged particle at x′ = −0.5 mm.
A projection of the surfaces of the cylindrical measurement trap of
the LIONTRAP experiment into the plane is shown.

After modeling the trap geometry within the software,
physical parameters can be set, e.g., the position and charge
of the pointlike ion and the Dirichlet boundary conditions at
the perfectly conducting electrode surfaces. For the numerical
solution of the static Maxwell equations, the initially imple-
mented shape of the electrodes and the space between them
is approximated by small elements called “mesh.” Minimum
and maximum sizes of the mesh elements can be set for the
algorithm which creates the mesh. The algorithm chooses
automatically the minimum size for areas with detailed struc-
tures, as for example the edges of the electrodes. On the
meshed electrode surfaces, the numerical solution provides
the sought-after induced surface charge density σ ; see Fig. 7.
In a next step, the electric field generated by the induced image
charges on the electrode surfaces is calculated at the position
x′ of the ion:

E image(x′) = −
∫

σ (x, y, z, x′, y′, z′)
4πε0

x − x′

|x − x′|3 dA. (24)

Here, the unprimed letters (x, y, z) are the integration variables
at the electrode surfaces A (dA = dxdydz). In the simulation,
the ion is moved along x′ from −0.5 mm to +0.5 mm in 0.05-
mm steps, where y′ = z′ = 0. For each step, the surface charge
density is simulated and afterward the electric field strength is
calculated at the position of the ion by Eq. (24). The resulting
electric field strengths at the 21 different ion positions are
fitted by an odd polynomial function. The linear coefficient
of these fit polynomials is the searched after E ; see Eq. (9).

Four systematic uncertainties must be taken into account
for the final result:

(1) Numerical uncertainty. The mesh is an approximation
of the real geometry. The size of the smallest mesh element
specifies the accuracy of the trap geometry in the simulation.
The smaller the size, the better the geometry is described. The
simulation mostly converges to a value, which is slight off of
the unknown correct result. In order to test the simulation for
a systematic deviation stemming from the chosen mesh size,
a geometry with an analytic solution, which is close to the

investigated case, should be simulated. Further details can be
found in Appendix B.

(2) Fit uncertainty. The electric field created by the image
charges at the different ion positions has to be described by
a polynomial to retrieve E . The used fit functions give an
uncertainty of the result, as well. This cannot be disentangled
from the uncertainty introduced above, even though their
origins are different. Both 1 and 2 are therefore summed up
in the uncertainty denoted with ()num.

(3) Geometric uncertainty. The geometric uncertainty is
caused by tolerances in the manufacturing process. The real
electrodes can deviate from the design value by up to ±10μm.
To approximate the influence of the geometry on the result,
the worst-case scenario is considered. The characteristic trap
parameters ρ0 and z0 are enlarged by 10 µm. The guard
electrodes are shifted up- and outward by 10 µm, too. The
uncertainty stemming from this is denoted by ()geo.

(4) Higher order terms. The effect of higher order terms
in the image charge field can become sizable in the case of
large motional radii or if the electrostatic center of the trap is
shifted with respect to the geometrical center. Reasons for this
shift can be, for example, alignment imperfections or patch
potentials. The higher order terms of the image charge field
can be parameterized by

�Eimage, h.o. = n × Eh.o. × ρ3 × �eρ. (25)

The prefactor Eh.o. is the scaling of the higher order (h.o.)
effect. Effects in the z direction are neglected as they are
typically strongly suppressed by the usage of the invariance
theorem and in the case of cylindrical traps additionally by
the inherent symmetry.

If, without loss of generality, a parasitic shift ρ̂0 of the trap
center in the ρ direction is assumed, this leads to the leading
order of an effective, additional image charge field of

�Eimage, h.o. eff. = 2n × Eh.o. × ρ̂2
0 × ρ × �eρ. (26)

Independent measurements show that it is reasonable to as-
sume ρ̂0 < 50μm [30]. Therefore, the higher order terms
contribute to the ICS by less than relative 10−2 and are thus
negligible compared to manufacturing tolerances.

B. Semianalytical approach

The finite-element method has become an efficient tool due
to the increase in computer processing power in recent years.
Even geometries with many details can be simulated precisely
in three dimensions, in a reasonable amount of time and with
good precision. In the past, semianalytical approaches were
chosen, which require less computing power but considerably
more effort in setting the right boundary conditions and in
setting simplifications of the simulated geometry. Porto devel-
oped such a concept for the ICS in 2001 [14]. In the following,
a short introduction to this approach is given. A more detailed
explanation can be found in Appendix C.

In order to calculate the electric field of the image charges
numerically efficiently, an approach using a Green’s function
is chosen [see Eq. (C2)]. The solution of this equation is a sum
of associated Legendre polynomials which are scaled with
prefactors [see Eq. (C4)]. The final value of the prefactors
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End-cap

FIG. 8. Showing the four different simulated trap geometries. The values of the characteristic trap dimensions z0 and ρ0 can be found in
Table II. (a) The mass-measurement trap of the THe-Trap experiment consists of a hyperbolically shaped ring electrode, two end-cap electrodes,
and two guard electrodes. The splitting of the guard electrodes is not taken into account for the ICS, because this effect is negligible. In general,
due to the rotational symmetry along the z axis and the mirror symmetry at z = 0, the full information of the trap geometry can be obtained
from looking at one quarter of a cut [see the hatched area surrounded by the red dashed line in panel (a)] of the whole trap. For the other
three traps, therefore, only this quadrant is shown. (b) The precision trap (PT) of the LIONTRAP [31] experiment is a cylindrical Penning
trap and consists of 11 electrodes. The inner three electrodes (the Ring and Cor1) are all azimuthally split into two pieces, which allows
applying different radio-frequency multipoles. The gaps between the electrodes and the split segments is 140 µm. (c) The FSU-Trap is a
hyperbolic Penning-trap mass spectrometer. Similar to THe-Trap, it consists of a ring, two end caps, and two guard electrodes. Like in panel
(a) (THe-Trap), the splitting of the guard electrodes into two segments is also not considered. (d) The Porto-Trap is a simplified version of
the FSU-Trap geometry with the same characteristic dimensions z0 and ρ0. In this approximation, holes in the end-cap electrodes and slits are
ignored. Furthermore, the guard electrodes are simplified and the space between the electrodes is closed. These modifications are necessary to
make the semianalytical treatment possible.

is determined by a minimization approach [see integral in
Eq. (C8)]. This integral can mostly be only calculated nu-
merically and thus this approach is called semianalytical. In
order to be able to carry out this integral at all, the boundary
conditions must be carefully selected. This case means that
the integral only runs in a small range of z and ρ. Setting the
ground potential far away would lead to a diverging integral.
Therefore, the holes in the end caps and the space between
the guard and the other electrodes is closed. This leads to
an increase of the surface of the electrodes facing the ion. In

addition, the shape of the guards is simplified to symmetrize
the bounds of the integrals which need to be carried out. These
changes in the geometry can be seen in the comparison of
actual trap geometry in Fig. 8(c) and the geometry for the
semianalytical treatment in Fig. 8(d).

VI. STUDIED PENNING TRAPS

In the following, the ICS is studied for three specific
experimental setups: THe-Trap, LIONTRAP, and FSU-Trap;
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see Fig. 8. Furthermore, a simplified Penning trap geometry,
the so-called Porto-Trap, is studied, which has been intro-
duced by Porto for a semianalytical calculation of the ICS in
the FSU-Trap [14]. The Porto-Trap is analyzed by a revised
semianalytical approach (see Appendix C) and by a finite-
element simulation. This offers the chance to compare the new
semianalytical result with the result achieved by Porto and to
perform a systematic test of the finite-element simulation.

VII. COMPARING DIFFERENT ICS DETERMINATION
METHODS

In this chapter, ICS results of the finite-element simulation
are compared with the most precise ICS measurements and
the semianalytical treatment; see Table II. For all three ge-
ometries, the LFGs Eρ, Ez, and the final shift in the cyclotron
frequency have been calculated in three ways: (1) Semianalyt-
ical calculations based on the approach by Porto and therefore
denoted as “Porto.” (2) In order to compare the numerical
simulations with the semianalytical predictions, also the sim-
plified geometries have been calculated in COMSOL MULTI-
PHYSICS denoted as “COMSOL-Porto”. This serves as a cross-
check. (3) The complete geometries without simplifications
have been calculated in COMSOL MULTIPHYSICS for the final
determination of the ICS, entitled as “COMSOL-full.”

The relative deviation of less than 0.2% between the
semianalytical and finite-element approaches shows how well
the numerical approach works. The difference of 2.7(4)%
between the simplified “COMSOL-Porto” and the model con-
taining all details, which are relevant for the image charge
shift “COMSOL-full” in the LIONTRAP case illustrates the
importance of taking geometric subtleties into account. Here,
2.2(4)% are caused by the horizontal slits and 0.5(4)% by the
azimuthal slits in the Cor1 electrodes and the ring electrode.

Further improvements are not limited by the available
computational power. The largest uncertainty in the finite-
element approach comes from the manufacturing tolerances.
In total, the ICS calculation by the FEM simulation has an
uncertainty of 1%, which is a factor of four better than the best
measurement so far. The effect of deviation from cylindrical
symmetry, resulting in first order in an effective ellipticity of
the image charge field, has been estimated and is negligible
on the current level of precision.

The new ICS measurement reaches precision similar to
the measurement by Van Dyck. The ICS measurement of
the LIONTRAP experiment confirms the prediction by the
simulation. As it agrees with both the previous method by Van
Dyck and the new (see Sec. IV), the simulation serves as an
excellent cross-check and shows its predictive power.

VIII. CONCLUSION AND OUTLOOK

The ICS is one of the leading sources of systematic un-
certainty in modern high-precision Penning-trap experiments
with uncertainties below 10−10. In this paper, we demonstrate
that modern finite-element simulations confirm the result
of the semianalytical treatment of the ICS, as introduced
by Porto. Both methods reach the same precision, if they
are applied to the same, simplified geometry. Moreover,

finite-element simulations show that slits and holes in the
electrodes shift the result by up to 2.7%.

Numerical uncertainties of finite-element simulations have
been significantly reduced. For this reason, numerical cal-
culations of the ICS are now limited by the manufacturing
tolerances of the trap electrode.

On the experimental side, we developed a technique to
measure the ICS, completely avoiding the complex frequency
shifts due to many-ion interactions. The unknown contribution
of the tilt fluctuation limits our result. In the future, this
uncertainty will be reduced by implementing an elaborate
mechanical mechanism to adjust and cancel the tilt. In this
way, the impact of tilt fluctuations, which scales linear with
absolute tilt, will be significantly lowered. Second, we will
use a different ion pair with very similar charge-to-mass ratio,
e.g., a deuterium nucleus against a carbon nucleus. Here, the
shift of the magnetron frequency difference due to tilts and
ellipticity is significantly reduced. With these improvements,
we will be able to measure the ICS with similar precision as
our current simulations.
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APPENDIX A: CORRECTION OF VOLTAGE
FLUCTUATIONS IN THE NEW ICS MEASUREMENT

To reduce the statistical uncertainty of the new Ramsey-
like ICS measurement by one order of magnitude, we cor-
rect the measured magnetron frequencies (ν− ∝ U0) of the
single proton and the single 12C6+ ion for voltage fluctua-
tions. These voltage fluctuations are permanently monitored
by measuring the axial frequency every 16 min. Finally,
the magnetron frequency is corrected for the interpolated
axial frequencies ν

interpl
z by applying the following shift to

the magnetron phase evolution time, Tevol, shown on the
x axis of Fig. 4: T final

evol = Tevol/[1 − 2(ν interpl
z − νoff

z )/νoff
z ],

where νoff
z (12C6+) = 525143.659 Hz is a fixed offset value

and νoff
z (p) = νoff

z (12C6+)/R.
The predicted ratio of axial frequencies corrected by calcu-

lated values for trap imperfections is Rcalc = 0.709772039(6).
To determine this ratio, the measured axial frequency νoff

z (p)
and modified cyclotron frequency of the proton are corrected
for (1) an energy-dependent frequency shift due to the residual
magnetic inhomogeneity B2 and (2) a tiny frequency shift,
which depends on the axial dip position on the resonator,
see below. After applying these corrections, we receive the

023411-10



IMAGE CHARGE SHIFT IN HIGH-PRECISION PENNING … PHYSICAL REVIEW A 100, 023411 (2019)

TABLE III. Characteristics of the two axial detection systems.
Here, the signal-to-noise ratio (SNR) denotes the ratio between the
maximal thermal noise of the resonator and the thermal noise of the
amplifier.

Properties For 12C6+ For p

νres (Hz) 525 128 739 863
Q value 2500 4400
L (mH) 3.4 1.7
Dip width (mHz) 1100 660
SNR (dB) 14 13

unshifted frequencies: ν̄z(p) and ν̄+(p). To consider also the
trap-tilt, the following equation system is solved [17]:

ν̄2
+ν̄2

z ν̄2
− = 1

4
ν̃6

z (1 − ε2), (A1)

ν̄2
+ν̄2

z + ν̄2
+ν̄2

− + ν̄2
z ν̄2

−

= ν2
c ν̃2

z

(
1 − 3

2
sin2 θmag

)
− ν2

c ν̃2
z

1

2
ε sin2 θmag

× cos 2φmag − 3

4
ν̃4

z

(
1 + 1

3
ε2

)
, (A2)

ν̄2
+ + ν̄2

z + ν̄2
− = ν2

c , (A3)

where ν̃z is the axial frequency for ε = θmag = φmag = 0,

without any systematics. Here, ν̄z(p), ν̄+(p), ε, and θmag are
input parameters. By solving these equations analytically, we
extract ν̄−(p), νc(p), and ν̃z(p). To calculate the respective
νc(12C6+) and ν̃z(12C6+) for the same B0 and U0, we apply
the following two equations [see Eqs. (5) and (7)]:

ν̃z(12C6+) =
√

6
m(p)

m(12C6+)
ν̃z(p), (A4)

νc(12C6+) = 6
m(p)

m(12C6+)
νc(p), (A5)

where m(p) and m(12C6+) are the masses of the proton and the
carbon ion respectively [4]. Finally, the two frequency shifts
due to the magnetic inhomogeneity B2 and the dip position
on the resonator have to be added on ν̃z(12C6+) to determine
νoff

z (12C6+) and thus Rcalc.
The second frequency correction, which we mention

above, depends linearly on the detuning of the axial fre-
quency of the ion from the resonator frequency νres of the
axial detection system: 	νres

z = ν
dip
z − νres; see also Table III.

This small shift, which can be interpreted as an imperfect
correction of the frequency pulling of the axial resonator,
sometimes also denoted as the image current shift, is due to
a blurring of the axial dip by voltage fluctuation during the
90-s averaging time. Our setup allows for the first time the
direct measurement of this effect by shifting the resonator
by a varactor diode and measuring the axial dip for differ-
ent varactor diode settings. For a 12C6+ ion, we measured
an axial frequency shift of δνz = −1.5(2) × 10−4	νres

z . All
systematic uncertainties of the calculated frequency ratio Rcalc

are presented in Table IV.

TABLE IV. Systematic uncertainties of the calculation of the
axial frequency ratio R = νz(12C6+)/νz(p). In the second column,
the uncertainties of the calculated axial frequency ratio and in the
third column the corresponding uncertainties of the final magnetron
frequency difference are presented. A shift due to the quadratic
magnetic field inhomogeneity, the dip position on the resonator, and
the trap tilt had to be considered.

Effect δRcalc (10−9) δ(	ν−) (µHz)

B2 1.5 21
θmag, φmag, ε 5.4 73
Dip position on the resonator 1.0 13
Quadratic sum 5.7 77

Probing this prediction of the measured axial frequency
ratio, 1000 measurements have been averaged, including the
datasets of the ICS as well as the complete proton mass [4]
measurement campaigns: Rmeas = 0.709772038(6). This ratio
is in excellent agreement with the calculation given above.

Further careful analysis revealed a severe limitation of such
voltage correction, since by some smaller but considerable
extent axial frequency fluctuations seem to be caused by
fluctuations of the trap tilt. These tilt fluctuations cannot be
disentangled from voltage fluctuations, but have a very dif-
ferent scaling than voltage fluctuations: δν tilt fluc

− (p) ≈ 1.4 ×
10−5δν tilt fluc

z (p) and δνvolt.fluc
− (p) ≈ 1.3 × 10−2δνvolt.fluc

z (p).

APPENDIX B: NUMERICAL UNCERTAINTY OF THE
FINITE-ELEMENT SIMULATION

To estimate the numerical uncertainty of the finite-element
method, an electrode geometry should be simulated where the
analytic solution is known. The relative deviation between
the simulated and the analytic solution can be taken as a
numerical uncertainty for various Penning traps. The simplest
geometry, a hollow sphere, cannot be used as both solutions
agree perfectly. An appropriate geometry is a long and closed
cylinder, with length lcyl. and radius ρ0. If lcyl. > 10ρ0, the
effects of the ends of the cylinder are sufficiently suppressed
in the trap center and the analytical solution of an infinitely
long cylinder can be used. At the position of the trapped
ion, the electric field of the induced image charges Eimage is
analytically described as [15,33,34]

Eimage(ρ) = 1.0027n
e

4πε0ρ
3
0

ρ = nẼρ, (B1)

where ρ = |�ρ| is the distance of the trapped ion from the
center of the cylinder. The LFG is introduced as Ẽρ =
1.0027 e

4πε0ρ
3
0
. To model geometries with ρ0 = 2.7 to 7 mm

sufficiently well, an average mesh density of 30 to 100 mesh
elements per mm2 has to be chosen. At this minimal mesh
density, the result of the simulation does not change signifi-
cantly, when the mesh size is decreased further. Moreover, the
mesh algorithm in COMSOL MULTIPHYSICS ensures that areas
with small structures, such as the slits in the electrodes, are
meshed with the smallest element size. Then, the mesh size
is increased gradually toward areas with less detail, e.g., the
vacuum between the electrodes. Hence, the size of the largest
mesh element is about 500 µm, whereas the smallest mesh
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TABLE V. The relative deviation 	E of the simulated linear field
gradient Eρ from the analytical prediction Ẽρ [see Eq. (B1)] in a long
cylinder with various radii. The optimal fit order gives the order of
the point symmetric polynomial that has to be chosen to minimize
	E .

Cylinder radius ρ0 Optimal fit 	E
Experiment (mm) order (10−4)

THe-Trap 2.78 5 8.1(2.4)
LIONTRAP 5 5 7.3(1.2)
FSU-Trap 6.96 3 5.7(5)

element is about 1 µm, which is ten times smaller than the
manufacturing tolerances of the electrodes. One mesh element
is represented by one tetrahedron.

As a consistency check, the LFG in the z direction is
simulated. Because of the translation invariance of an infinite
cylinder, no significant LFG in this direction is expected.
The resulting Ez = 1.5(3.1)μV/mm2 is consistent with zero
within the fit error bars.

The ICS and Eρ are investigated for three different cylinder
radii (see Table V), corresponding to the radii of the investi-
gated Penning-trap geometries (see Sec. VI). The relative de-
viation of the simulated results from the analytical prediction
Ẽ is calculated as 	E = |(Eρ − Ẽρ )/Eρ |; see Fig. 9. It turns
out that higher than first orders of odd polynomials are needed
to minimize 	E . This is caused by the nonorthogonality of the
coefficients of the polynomials. Even though only the linear
order is of interest, the linear order coefficient changes if
higher orders are included.

The uncertainty ()num is estimated from the cylindrical test
case

()num = Eρ,z	E, (B2)

where Eρ,z are the LFG of the simulated trap geometries and
	E is taken from Table V.

FIG. 9. Relative deviation of the simulated ICS of a pointlike
charge inside a hollow cylinder with radius 2.78 mm and a total
length of 30 mm compared to the analytical calculation as a function
of the mesh size. While the linear fit does not show any significant
decrease of 	E for a finer mesh, higher order polynomials do.
Finally, the fifth-order polynomial is sufficient to minimize 	E .
Higher order polynomials than the fifth order describe the data as
well as the fifth-order polynomial but with a larger uncertainty.

APPENDIX C: SEMIANALYTICAL TREATMENT

This section recapitulates Porto’s method [14], focusing
entirely on image charges, while following Porto’s notation
closely.5 This method can be also used to calculate compo-
nents of the electrostatic potential when voltages are applied
to the electrodes. Let us consider a pointlike ion with charge
q at position r′ in the trap with all electrodes grounded. The
total potential at the general position r is then given by

�ion(r, r′) = q

4πε0
G(r, r′) (C1)

= q

4πε0

[
1

|r − r′| + F (r, r′)
]
, (C2)

where the first term describes the ion’s Coulomb potential
and the second term is due to the image charges. The im-
plicitly defined G(r, r′) is the spatially dependent potential.
The resulting electric field at the position of the ion is then
calculated as

E image(r′) = − q

4πε0
∇rF (r, r′)|r=r′ . (C3)

First, the expression is derived with respect to the general
coordinate r. Then, the substitution r → r′ is made in order
to evaluate the electric field at the position r′ of the ion.

We now turn to the condition that determines the contribu-
tion F (r, r′) of the image charges to the total potential. Let �

denote the conducting trap surfaces, which are held at ground.
Since these (perfectly) conducting surfaces remain equipoten-
tial surfaces even in the presence of the ion with its Coulomb
field, the total potential on the trap surfaces must vanish:
�ion(�, r′) = 0. The contribution by the image charges must
therefore compensate for the ion’s Coulomb potential. Like
any source-free electrostatic potential, the potential produced
by the image charges fulfils the Laplace equation �rF (r, r′) =
0 inside the trap, where there are no image charges. The
most general solution without singularities is given in terms
of associated Legendre polynomials Pm

l by

F (r, r′) = 1

d

∞∑
l=0

( r

d

)l l∑
m=0

Pm
l (cos θ )

× [
Cm

l (r′) cos(mφ) + Sm
l (r′) sin(mφ)

]
, (C4)

where Cm
l (r′) and Sm

l (r′) are dimensionless coefficients. These
depend on the position r′ of the ion. To save some space
by not having to distinguish between the cases of m = 0
and m �= 0, we use the convention P0

l ≡ Pl , where Pl is the
ordinary Legendre polynomial. As usual, we use r = |r| as
the length of the vector r, and we will employ this convention
with the symbol r′ to the position r′ of the ion shortly. The
characteristic trap dimension d from Eq. (2) has been included
in the denominator in order to emphasize that the overall term
has the dimension of inverse length, like the 1/|r − r′| term

5If you are familiar with Porto’s paper [14], brace for four minor
differences here: (1) the use of the constant 1/(4πε0 ) in conjunction
with the charge for SI units; (2) no separate expressions for m = 0
and m > 0; (3) no use of the truncation parameter N as an index; and
(4) no suppression of the superscript m.
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in the Coulomb potential. For r′ < r, this term is expressed in
products of associated Legendre polynomials as

1

|r − r′| = 1

r

∞∑
l=0

(
r′

r

)l l∑
m=0

εm
l

× Pm
l (cos θ )Pm

l (cos θ ′) cos[m(φ − φ′)] (C5)

with the factor

εm
l =

{
1 for m = 0
2 (l−m)!

(l+m)! for m �= 0 . (C6)

With the trigonometric angle sum identity

cos[m(φ − φ′)] = cos(mφ) cos(mφ′)

+ sin(mφ) sin(mφ′), (C7)

the similarity between the expansions (C4) and (C5) is
enhanced.

For technical reasons, we truncate the infinite series at
a maximum lmax = N . While this probably means that the
approximate potential �ion(r, r′), or equivalently G(r, r′), no
longer vanishes exactly on the trap electrodes, we check how
well the condition G(�, r′) = 0 is met by integrating the
squared deviation [G(r, r′)]2 over the trap surfaces �. The
goal is to choose the coefficients Cm

l (r′) and Sm
l (r′) such that

the expression ∫
�

[G(r, r′)]2d� (C8)

is minimized.
Plugging in the expansions (C4) and (C5) and carrying out

the square result in trigonometric cross terms of the kinds
cos(m1φ) cos(m2φ) and sin(m1φ) sin(m2φ). Upon integration
over φ from 0 to 2π , these terms vanish for two integers
with m1 �= m2. For this integration range, the cross terms
cos(m1φ) sin(m2φ) vanish for arbitrary integers m1 and m2.
This reminds us of the fact that the cosine and the sine
terms in the solution (C4) of the Laplace equation represent
two independent degrees of freedom. The cancellation of
different-m cross terms for cylindrical symmetry means that
the contributions of terms with cos(mφ) and sin(mφ) can
be minimized separately. This tremendous simplification is
no longer applicable without cylindrical symmetry, thereby
greatly complicating the matter.

In Ref. [15], the effect of the slits—both vertical and
horizontal—is estimated by calculating the image charge dis-
tribution initially without the slits and then ignoring the image
charges that sit at the position of the slits, assuming that the
slits do not lead to a major redistribution of image charges
elsewhere on the remaining electrode surfaces. Along these
lines, reducing the integration range of the angle variable φ

might have constituted a first attempt to account for the effect
of the vertical slit here. However, we have discussed above
that such a reduction has unintended consequences.

Having convinced ourselves of the importance of cylin-
drical symmetry for the method and shied away from the
computational complexities that result in its absence, we

continue on the same path as Ref. [14].6 With cylindrical
symmetry, we are free to place the ion on the x axis without
loss of generality. Because of the choice of φ′ = 0, the sine
terms sin(mφ) vanish in the expansion (C5), necessitating
Sm

l (r′) = 0 to remove the sine term in Eq. (C4). We are thus
left with the cosine terms cos(mφ) and the optimization of the
coefficients Cm

l (r′). For a fixed m, the expression that needs to
be minimized reads∫

�

{
N∑

l=m

[
1

d

( r

d

)l
Pm

l (cos θ )Cm
l (r′)

+ εm
l

r

(
r′

r

)l

Pm
l (cos θ )Pm

l (cos θ ′)

]}2

d�. (C9)

Deriving this expression with respect to the specific coeffi-
cient Cm

l (r′) and equating the result to zero yields the equation

N∑
l=m

Bm
klC

m
l (r′) = −

N∑
l=m

Dm
klA

m
l (r′) (C10)

with

Am
l (r′) =

(
r′

d

)l

Pm
l (cos θ ′), (C11)

Bm
kl =

∫
�

( r

d

)k+l
Pm

k (cos θ )Pm
l (cos θ ) d�, (C12)

Dm
kl = εm

l

∫
�

( r

d

)k−l−1
Pm

k (cos θ )Pm
l (cos θ ) d�. (C13)

In this process, the order of the integration and the summation
were exchanged, which is fine because the sum involves only
a finite number of terms after truncation. Equation (C10) still
involves a sum over the coefficients Cm

l (r′). Formally, the
solution for a single coefficient is given by

Cm
l (r′) =

N∑
k=m

Cm
lkAm

k (r′) (C14)

with the element Cm
lk = −[(Bm)−1Dm]lk . The missing sub-

scripts of Bm and Dm indicate matrices with entries Bm
kl and

Dm
kl according to Eqs. (C12) and (C13), respectively. The

superscript −1 stands for the inverse matrix.
In combination with Eq. (C11), it becomes clear that the

coefficient Cm
l (r′) contains a sum over terms (r′)kPm

k (cos θ ′).
These are multiplied with similar terms of the kind
rlPm

l (cos θ ) in the image term (C4). We now need to select
the right combination of k, l , and m that produce the relevant
lowest-order terms. The general conversion

rlPm
l (cos θ ) = (−1)m (l + m)!

2m

×
� l−m

2 �∑
i=0

(−1)i

22i

zl−m−2iρm+2i

i!(m + i)!(l − m − 2i)!
(C15)

6Remarkably, Ref. [14] considers boundary conditions without
cylindrical symmetry in its Eq. (13) when voltages are applied to
the electrodes.
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TABLE VI. Conversion of rl Pm
l (cos θ ) from spherical to cylin-

drical coordinates for the lowest-order terms.

rl Pm
l (cos θ ) m = 0 m = 1 m = 2

l = 0 1 0 0
l = 1 z −ρ 0

l = 2 z2 − ρ2

2 −3zρ 3ρ2

from spherical to cylindrical coordinates [23] is helpful by
showing that the resulting polynomial in z and ρ is homo-
geneous with degree l .

Since we are interested in terms that are linear in either ρ ′
or z′ after taking a derivative with respect to ρ or z and then
making the substitution ρ → ρ ′ or z → z′ in order to evaluate
the term at the position of the ion, we do not need to look
beyond degree 2. These first few terms are shown in Table VI.

Terms without dependence on ρ or z, respectively, can be
ignored right away. Consequently, the expressions must at
least be of degree 1 in ρ or z. The lowest-order terms that
contribute to the image-charge effect are given by

F (r, r′) � 1

d3

[
C0

11z′z + C1
11ρ

′ρ + C0
20

(
z2 − ρ2

2

)]
(C16)

with the coefficients from Eq. (C14). Following the procedure
from Eq. (C3) and comparing it with Eq. (9) yields the linear
field gradients

Eρ = − e

4πε0d3

(
C1

11 − C0
20

)
, (C17)

Ez = − e

4πε0d3

(
C0

11 + 2C0
20

)
. (C18)

The shift (14) to the free-space cyclotron frequency via the
invariance theorem is rewritten as

	νc ≈ − ne

16π2ε0d3B0

(
2C1

11 + C0
11

)
. (C19)

It does not depend on the coefficient C0
20. This was already to

be expected from the spatial shape of the associated potential
(C16), which is the same as the ideal quadrupole potential
(1) in the trap. Consequently, the coefficient C0

20 effectively
describes a slight modification of the trapping potential, which
is covered by the invariance theorem (8).

Having established the theoretical foundations of the
method, we turn to some practical simplifications for the
traps that we will be modeling. These models are not only
cylindrically symmetric, they possess mirror symmetry at the
xy plane, too. Since the parity of the associated Legendre
polynomials Pm

l flips for different parities of l , the integrals
(C12) and (C13) for the matrix elements Bm

kl and Dm
kl , respec-

tively, vanish over a trap with such mirror symmetry when
k and l have opposite parity. Thus, we limit ourselves to the
calculation of submatrices with equal parity of k and l—either
both even or both odd—and we reduce the integration to the
upper octants (and the xy plane), where 0 � cos(θ ) � 1 or,
equivalently, z � 0. Such a quadratic submatrix has a size—
number of rows or columns—of

Nsp =
⌈

N − m + 1

2

⌉
(C20)

when m has the same parity as k and l and a size of

Nop =
⌊

N − m + 1

2

⌋
(C21)

when m has the opposite parity of k and l . The subscripts
“sp” and “op” are short for same parity and opposite parity,
respectively. We will use Nsm for the size of either submatrix
in contrast to the size N . Roughly speaking, the submatrices
that we deal with have size N/2, give or take 0.5 to 1.

Because of cylindrical symmetry, the integration over the
surfaces reduces to a one-dimensional integration with a sur-
face factor. With the trap surfaces described as functions ρ(z)
or z(ρ) that are revolved around the z axis, the corresponding
surface factors to replace d� are given by

2πρ(z)

√
1 +

(
∂ρ

∂z

)2

dz and 2πρ

√
1 +

(
∂z

∂ρ

)2

dρ,

(C22)

respectively. For most geometries, the square roots in the
surface factors shatter all hopes of analytical integration. That
is why Porto’s method is referred to as semianalytical: The
integration and the inversion of the matrices require numerical
methods. Combined with the mirror symmetry, the description
of the trap surfaces as surfaces of revolution explains why
the traps are defined entirely by their cross section in the first
quadrant; see Fig. 8.

Before we finally get to results of the actual calculation, we
pick up on one of Porto’s suggestions—a weighting function
w(r). Instead of minimizing [G(r, r′)]2 as in Eq. (C8), one
can minimize [w(r)G(r, r′)]2 over the trap surfaces because
G(r, r′) is supposed to vanish there. Porto suggested using
1/r3 as a weighting function [14] in order to relax “the
boundary condition on distant parts of the trap in such a way
that errors in the approximate solution of G(r, r′) contribute
equally from all parts of the trap” (p. 023403–4). In fact, any
weighting of the kind rw, where w is a number rather than
a function here is readily implemented by including w in the
exponent of r in the integrals (C12) and (C13).

We have worked with w = 0 (no weight) and w = −3 to
check whether the solutions converge to the same value. If
they do within the error that we attribute to each solution
individually, we feel confident saying that the solutions have
converged accurately. Otherwise, we would have checked
for numerical issues or assigned a systematic uncertainty. In
general, the coefficients calculated with the weight w = −3
are initially closer to the limiting value at a given size of the
submatrix, but the plateau is reached at similar sizes for both
weights (see Fig. 10).

While Porto’s 2001 publication [14] truncated the series at
N = 44, thereby using associated Legendre polynomials Pm

l
up to degree N , it was possible to go up to about N = 480
using MATLAB. However, there is little use in pushing N to the
numerical limits because the scatter of the solution increases
well before due to numerical instabilities. Fortunately, the
results agree apart from occasional outliers. A reasonable
choice that almost certainly contains the region of greatest
stability is N = 200. Problems with the numerical integration,

023411-14



IMAGE CHARGE SHIFT IN HIGH-PRECISION PENNING … PHYSICAL REVIEW A 100, 023411 (2019)

FIG. 10. The evolution of the coefficients for the Porto-Trap as
a function of submatrix size. The values from Table VII have been
subtracted and the difference scaled by 105 such that one unit on the
vertical axis corresponds to a change of 1 in the least significant digit
of the quoted coefficients. The blue crosses and red open diamonds
correspond to a weight of w = 0 and w = −3, respectively. The lines
connecting the points serve as a guide to the eye in terms of order and
highlight data outside the selected range.

which are particularly prevalent at larger m,7 slow down
the evaluation disproportionately. The offending part of the
integrand is often found near cos θ = 1, that is, on or close
to the z axis. Here, certain combinations of the associated
Legendre polynomials Pm

k Pm
l in the integrals (C12) and (C13)

become steeply oscillatory and thus notoriously difficult to

7Here, large m starts at 1. In order to calculate higher order
contributions to the image-charge potential, which are not featured
in this article, matrices up to m = 3 were calculated, and the problem
was found to become even more prevalent.

evaluate. As the matrix elements (C12) and (C13) do not
depend on N—apart from the fact that they are not calculated
for k > N or l > N—one always has the option of using fewer
matrix elements than one has calculated. In fact, this is how
the convergence is checked.

1. Porto-Trap

Since the coefficients C0
20 = 0.0629(5), C0

11 = 0.4174(3),
and C1

11 = 0.3603(4) for Porto’s model of the FSU-Trap are
shown in his original publication [14], this trap became the
first test case. The two characteristic dimensions are z0 =
6.00 mm and ρ0 = 6.96 mm. For the semianalytical calcu-
lation, the trap is truncated at a distance of 2.2d , and the
remaining openings are closed by spherical segments, sloppily
called backplane despite the spherical shape. Such backplanes
which are not actual trap surfaces may be necessary for
numerical stability. When too large a range of angle θ is left
unconstrained by not subtending any electrode, the minimiza-
tion may try to push most of the overlap into the gap, thereby
leading to a bad solution on the trap electrodes.

Despite the truncating backplane being artificial, one has
to resist the urge of retracting it as far as possible because
the integrals (C12) and (C13) depend strongly on the distance
r from the origin, most notably for large k and l in the
case of Bm

kl and a strong difference between k and l in the
case of Dm

kl . If the distances r vary considerably over the
trap electrodes that are modeled, the numerical precision may
become insufficient as the contributions to the overlap from
the nearby surfaces, which dominate the image charge effect,
are swamped by larger contributions from the most distant
surfaces, which play a much smaller role in terms of image
charges. We will face this problem to a larger extent when
dealing with a cylindrical trap in Sec. C3. Hyperboloidal traps
are much easier to calculate than open-end-cap8 cylindrical
traps [36] in this regard because the ring and the end cap are
at comparable distances, resulting in much less of a variation
in r over these electrodes.

Figure 10 shows the evolution of the coefficients for the
Porto-Trap. At a submatrix size of about Nsm = 40—above
the submatrix sizes of 22 or 23 that result from the maxi-
mum N = 44 of Ref. [14] according to Equations (C20) and
(C21)—the trend in the coefficients for Porto’s trap flattens
out to better than 10−5 on an absolute scale. At about Nsm =
60, the scatter increases visibly. Yet, the overwhelming major-
ity of the points still deviates by less than 10−4 up to Nsm =
100. We attribute the scatter to increased numerical instability
rather than poor convergence of the solution because there
is no general trend in the coefficients. Averaging over the
range of least scatter from 40 to 60 gives the values shown
in Table VII. The standard deviation in this region of largest
stability—and we hope the most accurate convergence—is
even smaller than the error we give. Rather than go for another
digit, we tend to be a bit more cautious. We inspect medians,

8In terms of distances, cylindrical traps with flat-plate end caps [35]
are much more similar to hyperboloidal traps, and they are closed
almost naturally. Consequently, Porto used such a trap to verify his
calculation of the electrostatic potential [14].
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TABLE VII. Low-order coefficients of the image-charge poten-
tial (C16) for different traps as outcome of the semianalytical ap-
proach introduced above. These coefficients are needed to calculate
the ICS, based on (C19).

C0
20 C0

11 C1
11

Porto-Trap −0.034 12(1) −0.417 34(1) −0.359 99(1)
THe-Trap −0.054 19(8) −0.429 45(3) −0.336 83(3)
LIONTRAP +0.219 45(5) −0.438 90(10) −0.849 28(10)

which are less sensitive to outliers than averages, and play
with the ranges in order to ensure that such alternate values
are within the range of errors we quote. The results obtained
with our code for all four traps are summarized in Table VII.

2. THe-Trap

The geometry is based on the trap shown in Fig. 8. First, the
end cap is extended all the way to the z axis, thereby closing
the hole. Then, the electrodes are truncated and closed by a
sphere with a radius of 2.5d . This truncation radius is larger
than the 2.2dFSU in Porto’s model of the FSU-Trap because
the tip of the guard electrode in THe-Trap is at a distance of
2.22d . In order to retain at least some properties of the guard
electrode, the truncation radius had be to increased.

Because of the anisotropic shrinking of the THe-Trap
geometry and the following displacement of the end cap,
THe-Trap needs a slightly more complicated routine for the
integration over the end cap than the two previous hyper-
boloidal traps.

The coefficients whose averages are shown in Table VII are
most stable between submatrix sizes of 45 and 65. The overall
scatter is larger than for the previous trap, which is why larger
errors have been assigned.

3. LIONTRAP

The mathematical model of this cylindrical trap is based
on Fig. 8. All the slits are closed on the inside, and a spherical

cap is put on the remaining opening. Overall, there are four
distinct surfaces. The characteristic trap dimension d shown
in Table II results from Eq. (2) with ρ0 = 5.00 mm (the inner
radius for most of the trap, most notably near the center)
and z0 = 6.8220 mm (the smallest axial coordinate of the end
caps).

The most stable range for the coefficients lies between
submatrix sizes of 15 to 35. For larger values, the coefficients
scatter on an absolute level of 10−3, which is the largest
scatter of all traps considered here. We attribute the issue
to numerical problems that arise from the distance having
to cover the largest range. The dimensionless distance r/d
reaches from 0.92 at the electrode closest to the center to 3.70
at the furthest electrode, thus varying by a factor of 4, which
is almost twice the factor for the hyperboloidal trap. A similar
argument explains why this trap produces the largest deviation
between the solutions for the two different weights w = 0 and
w = −3.

We test the result for the radial gradient against the analyt-
ical prediction [see Eq. (B1)] for a cylinder of infinite length
and inner radius ρ0. Comparing it with Eq. (C17) shows that,
in this case, the difference of two coefficients would yield the
value

C1
11 − C0

20 = −1.0027

(
d

ρ0

)3

, (C23)

which is −1.068 71 when plugging in values on the right-hand
side and −1.068 73(12) when plugging in the values on the
left-hand side. When ignoring the slits, the LIONTRAP seems
to be reasonably close to an infinite cylinder as far as image-
charge fields are concerned. We can interpret the agreement
as a success of Porto’s semianalytical method. On the other
hand, the effort may not be warranted if there is so little to
be gained. Unfortunately, a more accurate representation of
reality requires a method that manages to deal with the slits in
the electrodes.
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