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Composite pulses—sequences of pulses with well-defined relative phases—are an efficient, robust, and
flexible technique for coherent control of quantum systems. Composite sequences can compensate for a variety
of experimental errors in the driving field (e.g., in the pulse amplitude, duration, detuning, chirp, etc.) or in
the quantum system and its environment (e.g., inhomogeneous broadening, stray electric or magnetic fields,
unwanted couplings, etc.). The control parameters are the relative phases between the constituent pulses in the
composite sequence, an accurate control over which is required in all composite sequences reported hitherto. In
this paper, we introduce two types of composite pulse sequences which, in addition to error compensation in
the basic experimental parameters, compensate for systematic errors in the composite phases. In the first type
of such composite sequences, which compensate for pulse area errors, relative phase errors of over 10% can be
tolerated with reasonably short sequences while maintaining the fidelity above the 99.99% quantum computing
benchmark. In the second type of composite sequences, which compensate for simultaneous pulse area and
detuning errors, relative phase errors of over 5% can be compensated.

DOI: 10.1103/PhysRevA.100.023410

I. INTRODUCTION

Since their invention in nuclear magnetic resonance
(NMR) 40 years ago [1–13] composite pulses have established
themselves as a major technique for coherent control of quan-
tum systems. Composite pulses offer a unique combination of
ultrahigh accuracy, well below the error threshold in quantum
computation (often referred to as 10−4), with robustness to
parameter errors similar to adiabatic passage techniques [14].
Moreover, they offer great flexibility in shaping the excitation
profile, or even the propagator, in essentially any desired
manner—a feature that is not available in any other quantum
control method.

In recent years composite pulses have remained as popular
a control tool as ever in compensating for systematic field
errors in NMR, including traditional applications [15–24],
development of new types of composite pulses [25–29], appli-
cations to new platforms, e.g., muon spin resonance [30], and
quantum computation [31,32]. Moreover, composite pulses
have enjoyed significant interest and numerous applications
in various fields across quantum physics well beyond NMR. A
few representative examples include qubit control in trapped
ions [33–39] and neutral atoms [40], high-accuracy opti-
cal clocks [41], cold-atom interferometry [42–44], optically
dense atomic ensembles [45], singlet-triplet quantum-dots
qubits [46–49], triple quantum dots [50,51], nitrogen-vacancy
centers in diamond [52], magnetometry [53], optomechanics
[54], etc. We also note recent developments toward arbi-
trary accurate composite pulses [55–57], composite adiabatic
passage [58,59] including nonlinearities [60], concatenated
composite pulses compensating simultaneous systematic er-
rors [61–63], composite quantum gates [64–70], composite
pulses designed using neural-network concepts [71], compos-
ite pulses with non-Markovian noise [72], etc.

Curiously, the concept of composite sequences has been
well known in polarization optics since the 1940s [73–78],
where achromatic wave plates or polarization filters can be
constructed by a set of ordinary wave plates with their fast (or
slow) polarization axes rotated at specific angles with respect
to each other. Recently, the composite idea has been ex-
tended to frequency conversion processes in nonlinear optics
[79,80].

The composite pulse sequence is a finite train of pulses
with well-defined phases, which are used as control param-
eters in order to compensate for experimental errors or to
shape the excitation profile in a desired manner. The most
ubiquitous composite sequences are the broadband π pulses,
which produce unit transition probability not only for a pulse
area A = π and zero detuning � = 0, as a single resonant
π pulse, but also in some (broad) ranges around these val-
ues. Hence a composite π pulse can compensate the pulse
area and detuning errors of a single π pulse and make
a sequence of imperfect pulses act like an ideal π pulse.
Among the broadband composite π pulses, we note those
which compensate pulse area errors, detuning errors, and
both pulse area and detuning errors [13]. Recently, composite
pulses, which compensate experimental errors in any exper-
imental parameter—universal composite pulses—have been
introduced and experimentally demonstrated [81]. Composite
θ pulses, which produce controlled partial excitation with
probability sin2(θ/2), are also available [5,10,82,83] and they
have important applications in quantum computation. There
are two other types of composite sequences: narrowband
[10,84–89] and passband [6–8,10,28,90] composite pulses.
Narrowband pulses squeeze the excitation profile inside a
narrow range around a certain point in the parameter space and
suppress excitation outside of it. Passband pulses combine the
features of broadband and narrowband pulses: highly efficient
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excitation in a certain parameter range and very low excitation
outside.

In all known composite sequences an accurate control of
the composite phases has been presumed. Because the un-
derlying physical mechanism of composite pulses is construc-
tive or destructive interference of probability amplitudes, the
excitation profile is very sensitive to phase errors. Typically,
the relative phase errors must not exceed 0.1–1% for short
composite sequences, and even values of less than 0.1% for
long sequences are needed to achieve the ultrahigh fidelity
required in quantum computation. This requirement restricts
the application of composite pulses to physical systems
wherein such accuracy is possible. For radio-frequency and
microwave driving fields the composite phases are produced
by the respective generator and this requirement is usually
fulfilled. In the optical domain such accuracy may become
a challenge, especially if the phase shifts are produced by
off-resonant electric or magnetic pulses via Stark and Zeeman
shifts.

In the present paper, we introduce a different type of
composite π pulse, which is robust to systematic phase errors
of the order of 5–15%, e.g., one to two orders of magnitude
larger errors than the existing composite pulses can afford.
Thereby these composite pulses resolve the only vulnerability
of this powerful quantum control method: the necessity to
have very well controlled relative phases between the pulses
in the composite sequences. We present two types of such
phase-error resilient composite sequences: (i) sequences that
deliver double compensation of simultaneous errors in the
pulse area and the composite phases, and (ii) sequences that
produce triple compensation of simultaneous errors in the
pulse area, the detuning and the composite phases.

This paper is organized as follows. In Sec. II we discuss the
mathematical details of the derivation of these new composite
pulses. In Sec. III the double-compensation sequences are
introduced, and the triple-compensation sequences are pre-
sented in Sec. IV. Finally, Sec. V wraps up the conclusions.

II. DESCRIPTION OF THE METHOD FOR CORRECTION
OF PHASE ERRORS

Here we describe the method for construction of compos-
ite pulses that produce excitation profiles which are robust
against simultaneous errors in the pulse area and the com-
posite phases (double compensation). Triple compensation is
derived similarly and the specifics are elaborated in Sec. IV.

The propagator of a coherently driven two-state quantum
system, described by the Hamiltonian H(t ) = 1

2 h̄[�(t )σx +
�(t )σz], is given by the SU(2) matrix

U0 =
[

a b
−b∗ a∗

]
, (1)

where a and b are the (complex) Cayley-Klein parameters
obeying |a|2 + |b|2 = 1. For exact resonance (� = 0), we
have a = cos(A/2) and b = −i sin(A/2), where A is the
temporal pulse area A = ∫ t f

ti
�(t )dt . For a system starting in

state |1〉, the single-pulse transition probability is p = |b|2 =
sin2(A/2).

A phase shift φ imposed on the driving field, �(t ) →
�(t )eiφ , is imprinted onto the propagator as

Uφ =
[

a beiφ

−b∗e−iφ a∗

]
. (2)

Consider a train of N pulses, each with area Ak and phase φk ,

(A1)φ1 (A2)φ2 (A3)φ3 · · · (AN )φN . (3)

In the presence of pulse area errors, we have to replace
the nominal pulse areas Ak by the actual pulse areas Ak =
Ak (1 + α) (k = 1, 2, . . . , N ), where α is the relative pulse
area error. In the presence of phase errors, each nominal
phase φk should be replaced by the actual phase ϕk =
φk (1 + ε) (k = 1, 2, . . . , N ), where ε describes the (system-
atic) phase errors, the compensation of which is our primary
concern here. In the presence of pulse area and phase errors,
the pulse sequence (3) produces the propagator

U(N ) = UϕN (AN ) · · · Uϕ3 (A3)Uϕ2 (A2)Uϕ1 (A1). (4)

Yet, for the sake of brevity, in the notation of the composite
pulse sequence (3) we shall use the nominal pulse areas Ak

and the nominal phases φk .
In this paper, based on numerical evidence, we consider

composite sequences of an odd number N = 2n + 1 (n =
1, 2, . . .) of identical pulses, and nominal pulse area Ak =
π (k = 1, 2, . . . , N ). We also consider symmetric phases,
φk = φN+1−k (k = 1, 2, . . . , n). Using the invariance of the
transition probability to the addition of the same phase shift
to all phases (see Appendix), we set φ1 = φN = 0. Hence, the
phase-error-correcting composite sequences are

�N = π0πφ2 · · · πφnπφn+1πφn · · · πφ2π0, (5)

and the total propagator turns into

U(N ) = U0(A)Uϕ2 (A) · · · Uϕn+1 (A) · · · Uϕ2 (A)U0(A), (6)

with A = π (1 + α) and

Uϕ (A) =
[

cos(A/2) −i sin(A/2)eiϕ

−i sin(A/2)e−iϕ cos(A/2)

]
. (7)

We calculate the product in Eq. (6) and expand U (N )
11 vs α

and ε at (α = 0, ε = 0). Then we set to zero as many terms
as possible in order to obtain a robust excitation profile. If we
denote the ( j, l )th multivariate coefficient in the power series
as

s jl = α jεl

j!l!

(
∂ j+lU (N )

11

∂α j∂εl

)
α=0,ε=0

, (8)

one can easily verify that because of the chosen symmetry in
the phases and pulse areas of the composite sequence, we have

s jl ≡ 0 (for all even j). (9)

Hence the first nonzero derivatives with respect to the pulse
area error α are the first derivatives ( j = 1), then the third
derivatives ( j = 3), etc. With respect to the phase error ε

all derivatives are generally nonzero. Because the primary
objective of the composite pulses is the compensation of
pulse area (and detuning) errors, we limit ourselves to the
cancellation of the low-order (up to first or second) derivatives
with respect to the phase error ε, which already provides
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FIG. 1. Transition probability vs pulse area deviation α and
phase error ε for a single pulse (left) and the B3 sequence (11) (right).
The numbers m = 2, 3, 4 on the contours correspond to probability
levels of 1–10−m.

significant improvement over the existing composite pulses.
Generally, for N = 2n + 1 pulses we have n different phases,
with which we can nullify n different derivatives.

III. COMPENSATION OF PULSE AREA AND
PHASE ERRORS

A. Composite sequences of three pulses

We first consider a sequence of three pulses. We calculate
the product in Eq. (6) and expand U (3)

11 at α = 0 and ε = 0.
We obtain for the first nonzero coefficient in the expansion

s10 = α
π

2
[1 + 2 cos(φ2)]. (10)

We can nullify this coefficient by setting φ2 = 2π/3. The
resulting composite sequence

B3 = π0π 2
3 ππ0 (11)

is one of the best known broadband composite pulses for
compensation of pulse area errors [2]. Hence we do not obtain
additional compensation in the phase error because of the
absence of free phases. (Letting φ3 be nonzero does not help
annul s11.) Longer sequences with N > 3, studied below, do
allow such compensation.

In Fig. 1 the transition probability for the composite se-
quence B3 is plotted as a function of the pulse area error α and
the systematic error ε in the phases. We also plot the excitation
profile of a single pulse (N = 1), which is insensitive to
systematic phase error (as far as the transition probability is
concerned), but it lacks compensation in the pulse area.

B. Composite sequences of five pulses

We now consider a sequence of five pulses. Similar to
the N = 3 case, we calculate the product in Eq. (6) and
expand U (5)

11 at (α = 0, ε = 0). We obtain for the first nonzero
coefficients in the expansion the expressions

s10 = −π

2
α[1 + 2 cos(φ2 − φ3) + 2 cos(2φ2 − φ3)], (12a)

s11 = παε[(φ2 − φ3) sin(φ2 − φ3)

+ (2φ2 − φ3) sin(2φ2 − φ3)]. (12b)

FIG. 2. Transition probability vs pulse area deviation α and
phase error ε for the six different composite sequences of five π

pulses given by Eqs. (13) and (14) (denoted by the labels in the
frames). The numbers m = 2, 3, 4 on the contours correspond to
probability levels of 1–10−m.

The set of equations s10 = 0 and s11 = 0 does not have an
analytic solution because the latter of these is transcendental.
The values of φ2 and φ3, which nullify s10 and s11, can be
found numerically. One of the solutions is (approximately)
φ2 = 0.743π , φ3 = 0.395π , and hence the composite se-
quence reads

�5 = π0π0.743ππ0.395ππ0.743ππ0. (13)

This composite sequence eliminates errors in the pulse area
up to order O(α2) and in the phases up to order O(ε1).

In Fig. 2 the transition probability generated by the com-
posite sequence �5 is plotted as a function of the pulse area
error α and the systematic error ε in the phases, and compared
to five well-known previous five-pulse sequences with the
same nominal total pulse area 5π ,

S1 = π0π0π 2
3 ππ 1

3 ππ 2
3 π , (14a)

BB1 = π0πχπ3χπ3χπχ , (14b)

U5a = π0π 5
6 ππ 1

3 ππ 5
6 ππ0, (14c)

U5b = π0π 11
6 ππ 1

3 ππ 11
6 ππ0, (14d)

B5a = π0π 4
5 ππ 2

5 ππ 4
5 ππ0, (14e)
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FIG. 3. Transition probability vs pulse area deviation α and
phase error ε for phase-error-compensating sequences with N =
7, 9, 11, 13 pulses. The phases are given in Table I. The numbers m =
2, 3, 4 on the contours correspond to probability levels of 1–10−m.

with χ = cos−1(−1/4) ≈ 0.5804π ≈ 104.5◦. Here S1 is the
five-pulse sequence of Tycko and Pines [84], BB1 is the
five-pulse sequence of Wimperis [10], U5a [55,81] and U5b
[81,84] are universal composite pulses (designed to compen-
sate errors in all experimental parameters but the phases), and
B5a is the five-pulse sequence of Ref. [55]. Obviously, the
phase-compensating composite pulse �5 provides an ultra-
accurate transition probability (p > 99.99%) over a much
broader region than the other composite pulses. Note that
the composite pulse B5a is fairly resilient to phase errors,
although not as much as the dedicated phase-error-correcting
composite pulse �5. The reason is that the values of its phases
are not too far from the ones of �5, see Eqs. (13) and (14e).

C. Longer composite sequences

We continue with a sequence of seven pulses, which
presents us three phases to be used as free control parameters.
We choose the nonzero coefficients, which we want to nullify,
to be s10, s11, and s30. The explicit expressions for these
coefficients are too cumbersome to be presented here, but
their numeric cancellation is straightforward. In such a way,
we obtain numerous solutions for the phases, one of which is
φ2 = 0.591π , φ3 = −0.307π and, φ4 = −0.575π . Hence the
corresponding seven-pulse composite sequence reads

�7 = π0π0.591ππ−0.307ππ−0.575ππ−0.307ππ0.591ππ0. (15)

Figure 3 (top left) shows the excitation profiles of this
phase-compensating composite sequence. Clearly, the high-
probability area is larger than for the �5 sequence in Fig. 2.

For longer sequences we can proceed in a similar man-
ner. The additional free phases allow us to cancel higher-
order terms s jl . Representative examples of the composite

TABLE I. Nullified s jl terms and the corresponding nominal
phases for phase-error-compensating composite sequences with dif-
ferent length N . All phases are in units π . Note that all terms s jl with
even j are zero, see Eq. (9), and hence they are not listed here.

�N Null terms and composite phases

�5 (s10, s11)
(0, 0.7433, 0.3951, 0.7433, 0)

�7 (s10, s11, s30 )
(0, 0.5906,−0.3069,−0.5749,−0.3069, 0.5906, 0)

�9a (s10, s11, s12, s30 )
(0, 0.8095, 0.5444, 1.1007, 0.1715, 1.1007, 0.5444, 0.8095, 0)

�9b (s10, s11, s30, s31)
(0, 1.4073, 0.2688, 0.6144, 1.6587, 0.6144, 0.2688, 1.4073, 0)

�11a (s10, s11, s30, s31, s50 )
(0,0.6713,0.3049,1.0965,0.7176,0.0956,

0.7176, 1.0965, 0.3049, 0.6713, 0)
�11b (s10, s11, s12, s30, s31)

(0, 0.6934, 0.3176, 1.1303, 0.7420, 0.1010,

0.7420, 1.1303, 0.3176, 0.6934, 0)
�13a (s10, s11, s30, s31, s50, s51)

(0, 0.8097, 0.2288,−0.0720,−0.9158,−0.1132, 0.8688,

−0.1132,−0.9158, −0.0720, 0.2288, 0.8097, 0)
�13b (s10, s11, s12, s30, s31, s32 )

(0, 0.8150, 0.2523, 0.6393,−0.2552,−0.4568, 0.2744)
−0.4568,−0.2552, 0.6393, 0.2523, 0.8150, 0)

�13c (s10, s11, s12, s30, s31, s50 )
(0, 0.7639, 0.1842,−0.1071,−0.8840,−0.0756, 0.8432

−0.0756,−0.8840,−0.1071, 0.1842, 0.7639, 0)

sequences derived in this manner and the corresponding null
s jl terms are presented in Table I. In Fig. 3 we plot the
excitation profiles for sequences of length N = 7, 9, 11, 13. A
systematic improvement of the excitation profile is observed
as the length of the composite sequences increases, with the
tolerance ranges exceeding 40% for pulse area errors and 10%
for phase errors.

D. Discussion

It is important to note that in the absence of phase errors
(ε = 0) different composite pulses can produce the same
excitation profile due to the invariance of the transition prob-
ability to various transformations of the phases, see Ap-
pendix. However, in the presence of phase errors, the picture
changes drastically. For example, we cannot add or subtract
phases 2π to or from any chosen phase because the phase
error ε multiplies the phases φk and φk ± 2π differently and
hence these different phases will lead to different excitation
profiles.

To this end, here we have restricted ourselves to solutions
for the composite phases in the ranges [0, 2π ] or [−π, π ]. For
some of the presented composite sequences there exist other
sequences of the same length which produce slightly better
(i.e., broader) profiles which, however, have phases lying out-
side these ranges. For example, the seven-pulse sequence with
phases (φ2, φ3, φ4) = (1.1703, 1.4334, 2.9010)π produces a
slightly broader profile than the �7 sequence presented here.
We have deliberately omitted these other sequences because
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the presented sequences already produce significant phase-
error compensation, and also to avoid ambiguity in experi-
mental implementation.

Indeed, if the phase shifts are created by electric or mag-
netic fields as time-integrated Stark or Zeeman shifts then
phases φ and φ ± 2π are physically different and it makes
sense to consider the respective composite sequences as differ-
ent. It is less obvious if phases φ and φ ± 2π can be physically
different if created by other mechanisms, e.g., by a microwave
generator or an acousto-optical modulator. Therefore, to avoid
ambiguity, we have presented only composite sequences with
phases in ranges of length 2π , i.e., (0, 2π ) or (−π, π ). It is
important that any experimental realization of our sequences
should consider this argument and should use the phases as
reported here.

IV. COMPENSATION OF PULSE AREA, DETUNING,
AND PHASE ERRORS

We can apply the idea of phase-error-compensating com-
posite pulses to produce sequences which compensate errors
in more than one parameter. The derivation of the phases is
done in a way much similar to the one described in Sec. II.
For instance, to derive sequences that are insensitive to errors
in the Rabi frequency, the detuning, and the composite phases,
we proceed as follows. First, we should specify the pulse
shape in order to obtain the explicit formula for the single-
pulse propagator. In our derivation, we assume rectangular
pulses. Then we calculate the total propagator by taking the
product of the constituent propagators. Next we calculate
the multivariate coefficients in the expansion of the total
propagator vs the Rabi frequency, the detuning, and the phase
error, at the point of perfect population transfer. Finally, we
cancel as many of these derivative terms as possible.

We call these composite pulses triple compensating and
denote them with TN . For instance, the anagram composite
sequence of nine rectangular pulses,

T9 = π0πφ2πφ3πφ4πφ5πφ4πφ3πφ2π0, (16)

with phases

φ2 = 1.348π, φ3 = 1.257π, φ4 = 0.166π, φ5 = 0.167π,

(17)

is robust against errors in the Rabi frequency, the detuning,
and the composite phases. In Fig. 4 we compare the transition
probabilities of this composite pulse (right column) with the
transition probability, produced by the nine-pulse universal
composite sequence U9, derived in Ref. [81] (left column),
which has the same form as Eq. (16) but with the phases

φ2 = 0.635π, φ3 = 1.35π, φ4 = 0.553π, φ5 = 0.297π.

(18)

As seen in the figure, with attention to the 99.99% contour
(label 4), the universal sequence U9 produces a more robust
excitation profile in the absence of phase errors (top frames),
but when phase errors are present, the phase-compensating
sequence T9 outperforms the universal sequence U9.

FIG. 4. Transition probability vs Rabi frequency and detuning
for composite sequences of nine rectangular pulses. The left column
shows the excitation profile for the universal sequence U9 (16)
with the phases of Eq. (18) [81], while the right column shows the
profiles for the phase-error-corrected sequence T9 with the phases of
Eq. (17). The error in the phases is 0%, 2%, 5%, and 10%, from top
to bottom.

We have derived composite phases of sequences of up
to 11 constituent pulses. The explicit values of these phases
are given in Table II. The transition probabilities of these
composite pulses are displayed in Fig. 5, where we have used
the phases with the label “a” from Table II for each sequence.
As the figure shows, efficient compensation of systematic
phase errors of up to 5% is achieved in all cases. As the
sequences get longer, the high-fidelity domains expand, as
expected.
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FIG. 5. Transition probability vs Rabi frequency and detuning for triple-compensating composite sequences of five, seven, nine, and eleven
rectangular pulses. The error in the phases is 0%, ±2%, ±5%, as labeled.

V. DISCUSSION AND CONCLUSIONS

In the present work we presented an approach to build
composite pulses, which are insensitive to systematic errors
in the composite phases. We have shown explicit results for
sequences of up to 13 pulses, with simultaneous compensation
of pulse area and phase errors, but these results can be readily
extended to a larger number of pulses, e.g., by concatenation.
We have also presented triple compensation of errors in the
pulse area, the frequency detuning, and the phases. These
phase-error-corrected composite sequences have the potential
to eliminate the main limitation of the composite pulses: the
requirement for accurate phase control. They should make it
possible to extend the application of this powerful and flex-
ible technique to physical platforms wherein accurate phase
control is difficult or impossible.

One possible application of the proposed phase-
compensating composite pulses is in situations when the
composite phases are generated by electric or magnetic
fields via AC Stark or Zeeman shifts. For instance, the phase
shift generated by a far-off resonant field is

∫ tf
ti

�2/(4�)dt

if first-order adiabatic elimination is considered. Higher
orders have been derived in [91]. Therefore, the phase is
proportional to a certain area (an integral), and the error is
naturally proportional to the phase. The derived phases can
be also useful in implementations of the recently proposed
generalization of the composite concept to detuning pulses
[92], in which a sequence of detuning pulses is used, with the
areas of these pulses being the control parameters. Another
application of these phase-error resilient composite sequences
could be for achromatic devices for frequency conversion
in nonlinear optics [79,80]. There the composite approach
is implemented by using nonlinear crystals of different
materials and different thicknesses: alternating thick slabs
of one material used as analogs of π pulses, and thin slabs
of another material used for the phase jumps (via controlled
phase mismatch). Systematic errors in the composite phases
occur naturally because the phases are proportional to the
thickness of the corresponding slabs and scale differently for
different frequencies.

We note that in this work we only study systematic errors in
the phases. The more general situation of independent errors
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TABLE II. Nominal phases for triple-compensating composite
sequences with different number of pulses N . All phases are in
units π .

TN Composite phases

T5a (0, 1
6 , − 1

3 , 1
6 , 0)

T5b (0, 5
6 , 1

3 , 5
6 , 0)

T5c (0, 7
6 , 5

3 , 7
6 , 0)

T7a (0, 0.8626, 1
3 ,−0.8626, 1

3 , 0.8626, 0)

T7b (0, 0.7924, 1
3 ,−0.7924, 1

3 , 0.7924, 0)

T7c (0, 0.4639, 1
3 ,−0.4639, 1

3 , 0.4639, 0)

T9a (0,1.0979,1.3797,0.9631,0.1139,

0.9631, 1.3797, 1.0979, 0)
T9b (0, 1.3482, 1.2567, 0.1663, 0.1673,

0.1663, 1.2567, 1.3482, 0)
T9c (0,0.4765,1.3853,0.7006,0.4038,

0.7006, 1.3853, 0.4765, 0)
T9d (0,0.8712,0.5542,1.2371,0.3424,

1.2371, 0.5542, 0.8712, 0)

T11a (0, 0.6965, 0.1551, 0.3586, 0.7252, 1.4409,

0.7252, 0.3586, 0.1551, 0.6965, 0)
T11b (0, 0.8750, 0.5264, 1.3863, 0.5052, 1.2364,

0.5052, 1.3863, 0.5264, 0.8750, 0)
T11c (0, 0.6179, 0.0723, 0.2972, 0.5752, 1.2186,

0.5752, 0.2972, 0.0723, 0.6179, 0)
T11d (0, 0.5738, −0.2390, −0.3017, 0.3330, −0.1340,

0.3330, −0.3017, −0.2390, 0.5738, 0)

in the phases is not considered and is left as a potential
future project. As such, the present work can be considered
useful in physical systems, where the phase shifts may have
proportional errors, as the ones described above. Nevertheless,
even if the phases are generated by radio-frequency and
microwave generators, electro-optic or acousto-optic modula-
tors, one might still want to use the proposed method. This
is because even in such very well controlled devices, the
generated phases might still contain some systematic error.
The reason is that a phase jump in the field never occurs
instantly but it takes some (short) time, which, depending
on the device, can take a fraction of a microsecond or less.
The jump is always followed by a transient interference effect
visible as small damped oscillations. The amplitude of this
transient effect is proportional to the size of the phase jump
(positive or negative) and hence the resulting phase error is
proportional to the phase, e.g., it is systematic.
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APPENDIX: NONEQUIVALENCE OF COMPOSITE
PULSES IN THE PRESENCE OF PHASE ERRORS

In the absence of phase error (ε = 0) different composite
pulses can produce the same excitation profile due to the

FIG. 6. Transition probability vs pulse area deviation α and
phase error ε for the four different B5 sequences of Eq. (A3). The
numbers m = 2, 3, 4 on the contours correspond to probability levels
of 1–10−m.

invariance of the transition probability to various transforma-
tions of the phases [83]. Examples of population-preserving
transformations are (i) the simultaneous sign flip of all com-
posite phases, {−φ1,−φ2, . . . − φN }; (ii) the addition or sub-
traction of arbitrary integer multiples of 2π to any compos-
ite phase, {φ1 + 2k1π, φ2 + 2k2π, . . . φN + 2kNπ}, where k j

are arbitrary integers; (iii) the application of the composite
sequence in the reverse order, {φN , φN−1, . . . φ1}; (iv) the
addition of the same phase shift, e.g., φ0, to all phases in the
sequence. Given a composite pulse sequence, these four fea-
tures allow one to construct other composite sequences, which
deliver the same transition probability. In addition, because
the composite phases are derived from a set of trigonometric
equations, there are multiple solutions which cannot be ob-
tained from each other by using the above operations but still
deliver the same transition probability.

For example, the symmetric composite sequences Bn of
Ref. [55], which are of type (5), with phases

φk = k(k − 1)n

N
π (k = 1, 2, . . . , N ), (A1a)

produce the same excitation profiles as the pulse sequence
with the phases

φk = k(k − 1)

N
π (k = 1, 2, . . . , N ). (A1b)

For N = 3 pulses, both Eqs. (A1a) and (A1b) give the
well-known sequence (11) [2,55]. By inverting the sign of
the second phase and adding 2π we find another equivalent
sequence,

π0π 4
3 ππ0. (A2)
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For N = 5 pulses, Eqs. (A1a) and (A1b) produce the two
sequences [55]

B5a = π0π 4
5 ππ 2

5 ππ 4
5 ππ0, (A3a)

B5b = π0π 2
5 ππ 6

5 ππ 2
5 ππ0. (A3b)

Using the transformations described above we can generate
two other sequences,

B5c = π0π 6
5 ππ 8

5 ππ 6
5 ππ0, (A3c)

B5d = π0π 8
5 ππ 4

5 ππ 8
5 ππ0. (A3d)

All four of these sequences produce the same transition
probability in the absence of phase errors. In addition we
can add or subtract multiples of 2π to or from any phase in

the above sequences and generate infinitely many equivalent
sequences.

However, in the presence of phase errors, the picture
changes drastically. The symmetry properties (i) and (iv)
listed above still stand as well as property (iii), which is
irrelevant for our symmetric sequences (5). However, property
(ii) is not valid any more because the phase error ε multi-
plies the phases. Then the replacement φk → φk ± 2π of any
phase will lead to a different excitation profile. For example,
Fig. 6 shows the transition probability produced by the four
sequences of Eqs. (A3) versus the pulse area error α and the
phase error ε. The first of these sequences, Eq. (A3a) clearly
outperforms the others in the presence of phase errors, but still
underperforms the dedicated error-correcting sequence �5 of
Eq. (13), see Fig. 2.
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