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All-optical generation of quantum entangled states with strictly constrained ultrafast laser pulses
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We present a quantum optimal control theory study combined with theoretical analysis to determine a pulsed
laser field, capable of generating a maximally entangled state in two trapped two-level atoms. By expanding
the time-dependent unitary operator to the first leading term of Magnus expansion, we reexamine the pulse
area theorem for the trapped atoms driven by an arbitrarily temporary field. Due to the dipole-dipole interaction
blockade, we find that the two trapped atoms described by a three-level ladder system can be reduced into an
equivalent two-level model by using narrow-bandwidth pulses, leading to an analytical solution for generating
the maximally entangled state. We also solve a highly constrained optimization problem to search for optimal
laser pulses with broad bandwidths. A zero pulse-area constraint is employed to remove the dc offset of the
optimized laser pulses, and a fixed fluence limitation combined with a constant pulse-area constraint at the
resonant frequency of the equivalent two-level system are utilized to restrict the unitary evolution of quantum
systems by the first leading term of Magnus expansion. This work provides a potentially useful approach to find
all-optical control schemes for generating the maximally entangled state by using ultrafast laser pulses while
satisfying multiple strict limitations.
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I. INTRODUCTION

Proposed by Richard Feynman decades ago [1], quantum
computers are seen as a successor of contemporary computers,
in which quantum bits (qubits) can represent far more in-
formation than the classical binary bits, massively increasing
computing speed and capacity. To build real-world quantum
computers [2], a number of quantum schemes and technolo-
gies have been demonstrated in superconducting circuits [3,4],
quantum dots [5], nuclear spin [6], trapped ions [7,8], and
neutral atoms [9,10] to search for candidates of qubits defined
by two energy levels of atoms or ions [11]. When two qubits
are separated in space and are coupled through dipole-dipole
interactions, a basic concept in field is to create quantum
entanglement [12–16] in the context of composite qubits with
the help of photons [17–21].

Since perturbations, noise, and other environmental effects
lead to decoherence, a series of closely related schemes have
been proposed for speeding up the generation of entangled
states beyond the adiabatic approaches [22–24]. The use of
ultrafast laser pulses is able to operate qubits on extremely
short timescales before quantum decoherence plays roles
[25,26], which could eventually lead to a breakthrough in
quantum computing. For the two-atom entanglement, recent
ultrafast quantum control experiment has obtained the entan-
gled state with the fidelity of (76 ± 1)% in atomic ion qubits
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[27]. Alternatively, neutral atoms are providing an emerging
platform for qubits with attractive advantages [28]. On the
one hand, they can be extremely well isolated from surround-
ing environmental noise and can also be finely controlled
using optical traps (or tweezers). On the other hand, they
are all identical and can be prepared in well-defined initial
states by using optical pumping techniques. Recent theoretical
and experimental works have demonstrated that a single-
excitation Bell state can be obtained between two neutral
atoms [29,30]. A mechanism referred to Rydberg blockade is
involved through long-range dipole-dipole interactions with
negligible spin-orbit and exchange effects [31], which due
to large dipole moments are still large enough to shift the
double excitation of the system out of resonance, leading to
the inhibition of the excitation of ground-state atoms to the
Rydberg state by the presence of a nearby Rydberg atom.

This work will take the advantages of both neutral atoms
and ultrafast quantum control, and examine how a pulsed
laser field can be designed to generate the maximally en-
tangled states in two trapped two-level atoms. We consider
the dipole-dipole interaction in a resonant coupling approach,
i.e., the Ising model for describing the exchange interaction.
By deriving a pulse area theorem for the two trapped two-
level atoms in the presence of an arbitrarily temporary field,
we find that the double-excitation state can be energetically
forbidden by using narrow-bandwidth laser pulses, leading to
an equivalent two-level system for generating the maximally
entangled state. However, it remains a challenging task to
design the ultrafast laser pulses with broad bandwidths by
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using the pulse area theorem. We thus attempt to access the
solutions with the help of quantum optimal control theory
(QOCT).

Building on pioneering efforts, QOCT has demonstrated
wide success in a variety of quantum systems to determine
the temporal shape of an applied external field [32–36]. The
optimal solutions are always accessible in the case of free
constraints, though they are usually complex for insights. In
practice, there are always restrictions on the applied fields,
which may significantly limit the searching space to access
globally optimal solutions [37–45]. In this work, we will
demonstrate the fact that the constraints can be utilized to
find the temporal shapes of the optimized fields in an all-
optical control approach, consisting of two time-delayed laser
pulses. We employ a recently developed QOCT method [44]
to search for an ultrafast laser pulse, capable of generating the
maximally entangled state while satisfying multiple strict lim-
itations. First, the dc offset of the fields vanishes for all-optical
control. Second, we restrict the fluence of the optimized fields
to be the same as the initial input, and therefore no further
energy consuming is required. In addition, the pulse area of
the optimized fields is fixed at the resonant frequency between
the ground state and the maximally entangled state, which
provides access to gain insights into the breakdown of the
derived pulse area theorem.

The paper is organized as follows. In Sec. II, we derive a
pulse area theorem, and then we review briefly the optimiza-
tion algorithm we use. We present the results of numerical
simulation in Sec. III. We conclude our paper in the final
section.

II. THEORETICAL METHODS

We consider a system of two identical two-level atoms
in controlled arrays of optical dipole traps separated by a
distance d , as shown in Figs. 1(a) and 1(b). Each of the traps
contains an individual atom that consists of two levels |0〉
and |1〉 with transition frequency ω0 and dipole moment μ

along the same direction, which has an angle α with the line
connecting the two atoms. We focus on the system interacting
through Ising coupling and the field-free Hamiltonian of the
system reads (h̄ = 1)

H0 = ω0

2

2∑
i=1

Sz
i + Vdd

2∑
i �= j=1

S+
i S−

j , (1)

where S+
i , S−

i , and Sz
i denote the raising, lowering, and energy

difference operators of the ith atoms, and the dipole-dipole
potential between the atoms Vdd takes the form,

Vdd = 3

4
γ

{(
1 − 3 cos2 α

)[ sin (kd )

(kd )2 + cos (kd )

(kd )3

]

− (1 − cos2 α)
cos (kd )

kd

}
, (2)

with γ = ω3
0μ

2

3πε0c3 and k = ω0/c [46].
In the absence of dipole-dipole coupling, i.e., Vdd = 0,

the basis states of two atoms can be written by four product
states |00〉, |01〉, |10〉, and |11〉 with eigenvalues E00 = −h̄ω0,
E01 = 0, E10 = 0, and E11 = h̄ω0, as sketched in Fig. 1(c).
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FIG. 1. (a) Schematic illustration of the theoretical model con-
sisting of two ultracold neutral atoms trapped in an array of optical
traps, and (b) diagrammatic representation of such a system in space.
Collective states of the two atoms (c) in the absence of and (d) in the
presence of the dipole-dipole interaction.

In the presence of dipole-dipole coupling, i.e., Vdd �= 0, the
perturbed eigenvalues of H0 can be given by Eg = −ω0,
Ea = −Vdd , Es = Vdd , and Ee = ω0, and the corresponding
eigenstates can be represented by the basis of Dicke sates
|g〉 = |00〉, |a〉 = (|01〉 − |10〉)/

√
2, |s〉 = (|01〉 + |10〉)/

√
2,

and |e〉 = |11〉, as shown in Fig. 1(d). The symmetric state
|s〉 and antisymmetric state |a〉 are known as the maximally
entangled two-qubit Bell states. When such a pair of trapped
atoms are simultaneously interacted with a time-dependent
electric field E (t ) along the direction of the dipole moment,
the unitary evolution of the system obeys the equation,

ih̄
∂U (t, t0)

∂t
=

⎡
⎣H0 − μE (t )

2∑
j=1

(S+
j + S−

j )

⎤
⎦U (t, t0), (3)

with U (t0, t0) ≡ I. We consider the system initially in state |g〉
and thus the time-dependent probability of three states can be
obtained by Pi(t ) = 〈g|U †(t, t0)|i〉〈i|U (t, t0)|g〉 with i = g, s,
and e. This work aims to design the temporal shapes of control
fields E (t ) to drive the quantum system from the initial state
|g〉 at t = t0 to the Maximally entangled Bell state |s〉 at t = t f .

In the basis of Dicke states, the antisymmetric state |a〉
is decoupled from the states |g〉, |s〉 and |e〉, and therefore
the system is reduced into a three-level system with the
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Hamiltonian (see the proof in Refs. [47,48]),

Hd (t ) =
∑

p=g,s,e

|p〉Ep〈p| − μdE (t )

⎛
⎝ g,s∑

p�=q

|p〉〈q|+
s,e∑

p�=q

|p〉〈q|
⎞
⎠,

(4)

which can be written in the interaction picture without using
RWA by

Hd
c (t ) = −μdE (t )

⎡
⎣ g,s∑

p�=q

|p〉〈q|eiωpqt +
s,e∑

p�=q

|p〉〈q|eiωpqt

⎤
⎦, (5)

with ωpq = (Ep − Eq) and μd = √
2μ. We start with the

derivation of an analytic solution for such a three-level system
interacting with an arbitrarily time-dependent control field
E (t ). We employ Magnus expansion to describe the time-
dependent unitary operator [49,50],

U (t, t0) = exp

[ ∞∑
n=1

S(n)(t )

]
, (6)

where the first leading term can be written as S(1)(t ) = iA(t )
with

A(t ) = −
∫ t

t0

dt1Hd
c (t1) (7)

for describing the first-order interactions between states. The
time-dependent unitary operator with the first leading term
U (1)(t, t0) = exp[iA(t )] can be described as [51]

U (1)(t, t0)

= eiE0(t )|ψ0〉〈ψ0| + eiE+(t )|ψ+〉〈ψ+| + eiE−(t )|ψ−〉〈ψ−|, (8)

where E0(t ) = 0, E−(t ) = −θ (t ), and E+(t ) = θ (t ) are the
eigenvalues of A(t ), and the corresponding eigenstates are

|ψ0〉 = |θsg(t )|
θ (t )

(
−θ∗

es(t )

θsg(t )
|g〉 + |e〉

)
, (9)

|ψ−〉 = 1√
2

|θes(t )|
θ (t )

(
θ∗

sg(t )

θes(t )
|g〉 − θ (t )

θes(t )
|s〉 + |e〉

)
, (10)

|ψ+〉 = 1√
2

|θes(t )|
θ (t )

(
θ∗

sg(t )

θes(t )
|g〉 + θ (t )

θes(t )
|s〉 + |e〉

)
, (11)

with θsg(t ) = μd
∫ t

t0
dt ′E (t ′)eiωsgt ′

, θes(t ) = μd
∫ t

t0
dt ′E (t ′)

eiωest ′
, and θ (t ) = √|θsg(t )|2 + |θes(t )|2.

We can obtain an analytic solution |ψ (1)(t )〉=U (1)(t, t0)|g〉
by applying the first-order term S(1)(t ) to the time-dependent
unitary operator, i.e.,

|ψ (1)(t )〉 = |θes(t )|2 + |θsg(t )|2 cos θ (t )

θ2(t )
|g〉

+ iθsg(t ) sin θ (t )

θ (t )
|s〉+ θsg(t )θes(t )

θ2(t )
[cos θ (t ) − 1]|e〉,

(12)

for a three-level ladder system, which in form is similar to the
solution of a three-level 
 system with a conjugate of θes(t ),
but is different from the solution of a three-level V system;
see details in Ref. [50]. The solution by Eq. (12) combined

with that for the three-level 
 and V systems in Ref. [50]
establishes a full pulse area theorem for all three types of
three-level systems, whereas the forms of the time-dependent
wave function are dependent on the initial state |ψ (t0).

It can be seen from Eq. (12) that the Maximally entan-
gled Bell state |s〉 can be obtained if the control field E (t )
satisfies two conditions θsg(t f ) = π/2 and θes(t f ) = 0. Since
the state |s〉 is shifted out of resonance of individual atoms
at ω0, a long laser pulse centered at ωsg = ω0 + Vdd with a
narrow bandwidth of �ω < Vdd can be utilized to resonantly
excite state |s〉 while blocking state |e〉, leading to a coherent
superposition of the ground state |g〉 and the Bell state |s〉, i.e.,
cos θ (t )|g〉 + i sin θ (t )|s〉.

The use of ultrashort pulses with broad bandwidths of
�ω > Vdd will break the above two-level model, giving rise
to a challenge to obtain analytical solutions. To that end,
we employ a QOCT method developed recently in Ref. [42]
to solve this raised problem to search for optimal control
fields, which are able to generate the maximally entangled
Bell state while simultaneously satisfying multiple equality
constraints hm[E (·)] = Cm for m = 1, ..., M. By introducing a
dummy variable x, the optimization problem is demonstrated
as follows:

dPs(t f )

dx
=

∫ t f

t0

δPs(t f )

δE (x, t )

∂E (x, t )

∂x
dt � 0, (13)

dhm[E (x, ·)]
dx

=
∫ t f

t0

∂hm[E (x, ·)]
∂E (x, t )

∂E (x, t )

∂x
dt = 0. (14)

A solution to simultaneously satisfying Eqs. (13) and (14) can
be obtained by considering

∂E (x, t )

∂x
= S(t )

M∑
j=0

[−1]0 jc j (x, t ), (15)

with c0(x, t ) = δPs(x)/δE (x, t ), and cm(x, t ) = ∂hm/∂E (x, t )
for m = 1, ..., M. In Eq. (15), a smooth envelope function
S(t ) is used to restrict the variation of E (x, t ) with respect
to dummy variable x, and the matrix  is composed of
the elements  j j′ = ∫ t f

t0
dtc j (x, t )S(t )c j′ (x, t ). Note that this

QOCT method can strictly fix multiple constraints. In this
work, we impose three equality constraints on the search di-
rections with h1 = ∫ t f

t0
E (x, t )dt , h2 = ∫ t f

t0
E2(x, t )dt and h3 =∫ t f

t0
E (x, t ) cos(ωsgt )dt . The first constraint h1 at zero can be

used to vanish the dc component for all-optical control, the
second one h2 keeps the total energy unchanged, and the third
one h3 can be used to restrict the optimized fields to satisfy
a condition of θsg(t f ) = π/2, so that the first leading term
S1(t ) plays dominant roles in achieving the control target.
We therefore get c1(x, t ) = 1, c2(x, t ) = 2E (x, t ), c3(x, t ) =
cos ωsgt . We then solve Eq. (15) from an initial guess E (x0, t )
to obtain the optimized laser field E (xmax, t ) in an iterative
approach. The details for this optimization method and its
extensions can be found in our previous papers [42–45]. Note
that this work extends the application of the optimization
algorithm of Eq. (15) to include three equality constraints,
which is different from that examined in Ref. [42] by only
considering the first two constraints. The application of the
algorithm for the system combined with the results obtained
in this work is also different from that in Ref. [42].
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FIG. 2. (a) Final populations of Pi(t f ) in states |g〉, |s〉, and |e〉
as a function of the bandwidth �ω by using Gaussian laser pulses,
and (b) the time-dependent population of the three states induced
by using an extremely long pulse with bandwidth of �ω = 0.02Vdd ,
where Vdd denotes the strength of dipole-dipole interaction between
atoms.

III. RESULTS AND DISCUSSION

To illustrate our method, two electronic levels 5S1/2 and
5P1/2 of individual rubidium-87 atoms are used to repre-
sent |0〉 and |1〉 of qubit with transition frequency ω0 =
12578.95 cm−1 and transition dipole moment μ = 7.61 De-
bye. We consider the dipole-dipole interaction of Vdd =
12.35 cm−1, corresponding a case of d = 100 a.u. and α =
π/2. We employ a Gaussian laser laser pulse,

E (t ) =
√

π

2

ϑ

μdτ
e

−t2

2τ2 cos (ωct ), (16)

to excite the trapped atoms. In our simulations, we take the
initial time of t0 = −4τ and the final time of t f = 4τ . By
making Fourier transform of E (t ) into the frequency domain,
we can verify that the choice of such a pulse is able to satisfy
the condition of θsg = π/2 with ϑ = 1 and ωc = ωsg for an
arbitrary duration of τ . Figure 2(a) shows the final populations
in states |g〉, |s〉, and |e〉 as a function of the bandwidth �ω

(i.e.,1/τ ) with θsg(t f ) = π/2. Due to θes(t f ) �= 0, the double
excitation to state |e〉 plays roles in the regime of �ω > Vdd ,
whereas in the regime of �ω 
 Vdd it is blocked, leading to
the maximally entangled state |s〉. As an example, Fig. 2(b)
shows the time-dependent populations of three states by using
a pulse with �ω = 0.02Vdd (τ = 22000 fs). A fidelity of
Ps(t f ) > 0.9999 is obtained while significantly suppressing
the time-dependent population of the double-excitation state
|e〉 to a very small value of Pe(t ) < 10−4. That is, the dipole-

0 1.0 2.0 3.0
0.0

0.5

1.0

P
s(

tf)

sg ( )

2LA 3LN

units of

FIG. 3. The final population Ps(t f ) as a function of θsg(t f ) by
varying the value of ϑ from 0 to 6 for the laser pulse defined
by Eq. (16) while fixing the bandwidth of the exciting pulse at
�ω = 0.02Vdd . The black line denotes two-level analytical (2LA)
simulation by using Eq. (12) at θes(t f ) = 0, and the blue circles
correspond to the three-level numerical (3LN) results by solving
Eq. (3) with the three-level Hamiltonian defined by Eq. (4).

dipole interactions between single-excitation states prevent
the further transitions from |s〉 to |e〉, and therefore the three-
level system by Eq. (4) is reduced into an equivalent two-level
system, in good agreement with the pulse area theorem by
Eq. (12).

We further examine such a case of �ω = 0.02Vdd by vary-
ing the values of ϑ . Figure 3 shows the final population Ps(t f )
as a function of θsg(t f ) based on the two-level analytical (2LA)
solution by using Eq. (12) and the three-level numerical (3LN)
solution with the “exact” method by Eqs. (3) and (4) without
using any Magnus-type expansion of U . We examine the pulse
area θsg(t f ) from 0 to 3π , which corresponds to a variation
of ϑ from 0 to 6 by Eq. (16). The population Ps(t f ) in the
entangled state |s〉 oscillates between 0 at the integer multiple
of π and 1 at the half-integer multiple of π , in good agreement
with the pulse area theorem of the two-level system. Thus,
Rabi oscillations are exhibited, which are similar to the typical
single-atom Rabi oscillations between the ground state |0〉 and
the excited state |1〉, but here the ground state |g〉 couples to
the Bell state |s〉 with an effective transition dipole moment
μd = √

2μ and a blue-shifted transition frequency of ω0 +
Vdd . We can also see that the 3LN simulations are consistent
with the 2LA solution, indicating that the first leading term
S(1)(t ) can be used to describe the time-dependent unitary
operator U (t, t0) at high precision. As a result, we are able
to obtain an analytical solution for generating the maximally
entangled Bell state. Note that the solution in Eq. (12) is
general for an arbitrary time-dependent laser field. Although
we perform the simulations in Figs. 2 and 3 by tuning the
center frequency of ωc to the resonance frequency ωsg, the
blockade of double excitation and Rabi oscillations within the
two-level model can also be observed by using the pulses with
ωc at a single-excitation frequency ω0 of individual atoms as
well as other frequencies, as long as the pulsed fields satisfy
the two conditions of θsg(t f ) = π/2 and θes(t f ) = 0.

We now perform the optimization to search for optimal
laser pulses with the bandwidths of �ω � Vdd while fixing
the values of ωc = ωsg and ϑ = 1. We examine three different
initial fields E (x0, t ) with �ω ≈ 4.0Vdd (τ = 100 fs), �ω ≈
1.7Vdd (τ = 250 fs), and �ω ≈ 1.0Vdd (τ = 400 fs), and then
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FIG. 4. The time-dependent populations of the state |s〉 for both
three different initial fields (a)–(c) and the corresponding optimized
fields (d)–(f). In each panel, the black line denotes the two-level
analytical (2LA) results by using Eq. (12) while ignoring the level
|e〉 in Fig. 1(d), the red line corresponds to the three-level analytical
(3LA) results, and the blue line is the three-level numerical (3LN)
results by solving Eq. (3) with the three-level Hamiltonian defined
by Eq. (4).

optimize the laser pulse for each by using the algorithm of
Eq. (15). For comparisons, Fig. 4 shows the time-dependent
populations of the state |s〉 for initial and optimal fields based
on the 2LA, the three-level analytical (3LA) and the 3LN
simulations, respectively. The initial inputs in Figs. 4(a)–4(c)
are able to generate the maximally entangled state |s〉 based on
the 2LA model by ignoring the double excitation to state |e〉.
However, the broad-bandwidth pulses open the transition to
|e〉, destroying the two-level model. In addition, there is a dif-
ference between 3LA and 3LN simulations, which is slight for
the case of �ω ≈ 4.0Vdd but becomes obvious for the cases of
�ω ≈ 1.7Vdd and �ω ≈ 1.0Vdd . Since the analytical solution
in Eq. (12) only includes the first leading term S(1)(t ) to denote
the unitary operator U (t, t0), this difference indicates that the
high order terms in Magnus expansion play roles.

The optimized pulses, as shown in Figs. 5(a)–5(c), are
able to improve the fidelity of |s〉 with Ps(t f ) = 0.7416 for
�ω ≈ 4.0Vdd , Ps(t f ) > 0.99 for �ω ≈ 1.7Vdd , and Ps(t f ) >

0.999 for �ω ≈ 1.0Vdd in Figs. 4 (d)–4(f), respectively. It is
interesting to note that the bigger difference between 3LA
and 3LN simulations observed in Figs. 4(a)–4(c), the higher
fidelity of entangled state can be obtained in Figs. 4(d)–4(f).
Figures 5(d)–5(f) plot the Fourier transforms of the initial in-
puts and the corresponding optimized fields scaled by a factor
of

√
2μ. The spectra are kept unchanged at ωsg [i.e., θsg(t f ) =

π/2], whereas the optimized spectra at ωes [i.e., θes(t f )] are
decreased but not to zero. It implies that the optimization
algorithm under the constraints is to search for optimal pulses
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FIG. 5. (a)–(c) The initial fields (blue line) and the optimal fields
(red line) used for Fig. 4, and (d)–(f) the corresponding spectral
amplitude scaled by a factor of

√
2μ.

by reducing the pulse area θes(t f ) while modulating the contri-
butions of high-order terms of Magnus expansion to state |e〉.
As can be seen from Figs. 5(b) and 5(c), the temporal shapes
of the optimized pulses look simple and smooth, consisting
of two time-delayed pulses, which could be designed in quan-
tum coherent control experiments. However, the underlying
control mechanism is different from the typical double-pulse
coherent control schemes [52], which usually takes advantage
of quantum interference between pulses. This pulse shaping
approach is also different from the spectral-phase shaping
techniques [43,53], which prolong the temporal shapes of the
optimized fields. That is, the optimized fields exhibit three
main features. First, the center frequency of the second pulse
is shifted from the critical frequencies, i.e., ωsg, ωes of the sys-
tem. Second, the optimized pulses in the present problem are
found to reduce transitions to |e〉 by decreasing the value of
θes(t f ). Third, the optimized fields are utilized to modulate the
nonlinear transitions between states by the higher order terms
of Magnus expansion. As a result, quantum state transfer to |s〉
is enhanced by suppressing the transfer to |e〉. To further gain
an insight into the quantum dynamics of the system, Fig. 6
plots the time-dependent populations in three states |g〉, |s〉,
and |e〉 driven by the initial pulses and Figs. 6(d)– 6(f) the
optimized pulses. The population dynamics induced by the
optimized pulses change as compared with that induced by
the initial pulses, and the corresponding controlling schemes
also vary from case to case. By decreasing the duration of
the laser pulse, the quantum state transfer to state |e〉 induced
by the initial pulses becomes more and more visible from
Fig. 6(c) to Fig. 6(a). It exhibits a strong dependence of Pe(t )
on the bandwidth of the laser pulse. The optimized fields
are capable of suppressing this transfer to |e〉 by using a
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FIG. 6. The time-dependent populations in three states |g〉, |s〉,
and |e〉 driven by (a)–(c) the initial pulses and (d)–(f) the optimized
pulses in Fig. 5.

double-pulse controlling scheme, in which the second pulse
not only transfers population to |s〉 but also suppresses the
transfer to |e〉. As a result, a steplike behavior of population
dynamics is visible in Fig. 6(d), and becomes more clear
in Fig. 6(e), and then disappears in Fig. 6(f). Note that the
optimized fields and the corresponding population dynamics
will become more complex than those in Figs. 5 and 6 if
we release the second and third constraints starting with an
arbitrarily guess. The controlling schemes in Figs. 6(d)–6(f)
also indicate that the population transfer dynamics induced
by the optimized pulses is not an adidabatic process, because
clearly visible populations appear in the excited state |e〉 in the
presence of the laser pulses, whereas by using the adiabatic
schemes the system can be adiabatically transferred from the
initial state to the target state while suppressing the population
transfer to the intermediate state. In addition, although a
three-level system is used in our model, the optical transitions
are also different from a typical stimulated Raman adiabatic
passage (STIRAP) [54,55] in the three-level 
 system and
adiabatic passage by light-induced potentials (APLIP) [56]
with three electronic states of molecules in a ladder config-
uration.

Finally, we discuss the application of the present method
to practical quantum systems. The use of the ultrafast laser
pulse under strict constraints is still able to generate the Bell
state beyond the two-level model. Usually, the optimal time
control of quantum state transfer cannot be reached to its
quantum speed limit in practice [57], due to bounds in the
control strength, phase, and bandwidth. As can be seen from
Fig. 4(a) the optimal field with a bandwidth of �ω > 4.0Vdd

only improves the fidelity of entangled state to a value of
0.7416. To that end, we have to keep in mind the fact that
we use a two-level model to describe individual atoms by

ignoring other levels. The choice of the bandwidth of ultrafast
pulses in our system is limited by the level 5P3/2, which is
only above 5P1/2 about 20Vdd in energy. Thus, the bandwidth
of the optimized pulses is also expected to be far below this
limit. Our method is able to search for optimal solutions under
these strict constraints on both systems and control fields.

IV. CONCLUSION

We combined QOCT with theoretical analysis to show how
to generate a maximally entangled state in a prototype quan-
tum system of two identical neutral atoms interacting through
Ising coupling. We reexamined the pulse area theorem to
obtain an analytical wave function for describing the system
within a three-level ladder system. We found that the three-
level model can be reduced into an equivalent two-level model
by interacting with a pulsed laser field in the extremely narrow
bandwidth regime. It, in turn, provides an analytical approach
to generate the perfect Bell state while exhibiting the dipole-
dipole interaction blockade and Rabi oscillations. Since the
ultrafast laser pulses break down the two-level model, we
solved a highly constrained optimization problem to calculate
an optimal control field. We imposed multiple constraints
simultaneously to strictly fix the optimized pulses with no dc
offset, a constant pulse area at resonant transition frequency,
and a constant pulse fluence. By analyzing the results with
three different level descriptions, we found that the constraints
strongly limited the searching space to obtain the optimal
solutions but resulted in simple and smooth solutions. We
gained insights into the underlying control mechanism by
using the optimized pulses. That is, the first-order term of
Magnus expansion plays a leading role in the time-dependent
unitary operator, whereas the higher-order terms play a role
in eliminating the effect of other states. Our method presents
a potentially useful approach to access all-optical control
of quantum systems by shaping ultrafast laser pulses under
multiple strict limitations. In principle, our method can also
be applied to other quantum control problems and systems,
e.g., consisting of a few spins or Rydberg atoms [58]. It is also
interesting to examine our approach for a model of Ref. [46],
in which the antisymmetric state |a〉 couples to other levels
due to the spatial variation of the laser phase.

For practical applications, the spectral limitations of ultra-
fast laser pulses should be taken into account the optimization
algorithm [37,38,40], and therefore it is an important exten-
sion of our multiple constraint QOCT methods in Ref. [42] to
include the spectral constraints. A more direct approach is to
search for the optimized fields by using the frequency-domain
QOCT algorithm in line with the current ultrafast pulse shap-
ing technique, which has been addressed recently in Ref. [43].
For the accuracy of the modeling system, the theoretical
model can be further extended to include other levels excluded
in the two-level approximation. In addition, the perturbations
by noise and other experimental uncertainties may also affect
the fidelity of generating maximally entangled state, which
requires a design of optimal pulses robust against such uncer-
tainties. Recently, we have demonstrated an efficient approach
to search for optimal pulses to achieve robust control of
quantum state transfer by using the frequency-domain QOCT
algorithm [45].
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