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Photoelectron spectra after multiphoton ionization of Li atoms in the one-photon
Rabi-flopping regime
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We calculate two-dimensional photoelectron momentum distributions and energy spectra after multiphoton
ionization of Li atoms subject to intense laser fields in the one-photon Rabi-flopping regime. The time-dependent
Schrödinger equation is solved within the single-active-electron approximation using a model potential which
reproduces accurately the binding energies and dipole matrix elements of the Li atom. Interaction with the
external electromagnetic field is treated within the dipole approximation. We show that the Rabi oscillations
of the population between the ground 2s state and the excited 2p state in the one-photon resonance regime are
reflected in the energy spectra of emitted photoelectrons, which manifest interference structures with minima.
Transformations of the interference structures in the photoelectron energy spectra caused by the variation of the
laser peak intensity and pulse duration are analyzed.
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I. INTRODUCTION

The phenomenon of above-threshold ionization (ATI),
which was discovered about 40 years ago [1], and the study of
the resulting photoelectron angular distributions (PAD) attract
much interest both theoretically and experimentally. Over the
last four decades, this interest has grown significantly, which
is related to the rapid progress of laser technology, namely, the
possibility of generating extremely short and intense pulses
[2]. To get the general picture of the problem the reader can
refer to a number of review papers [3–5].

A Li atom, being the simplest open-shell system, presents
itself as a unique target for laser-atom interaction investiga-
tions, drawing both experimental [6,7] and theoretical [8–13]
attention. From a theoretical perspective, it is important that
the Li atom has a single electron outside a closed shell, which
enables the single-active-electron (SAE) model to come into
play for an accurate description of the electron dynamics
[7,10,12]. For all the laser pulse parameters considered in the
present paper, it is well established that the time-dependent
Schrödinger equation within the SAE formulation is adequate
for describing the ionization process [7].

Photoelectron spectra and two-dimensional (2D)
momentum distributions contain various information
about the ionization process, and also about the atomic
or molecular internal structure. While a typical long-pulse
ATI energy spectrum exhibits a well-known structure of
equally spaced peaks [1], it can also have different subtle
features: Stark-induced Rydberg states resonances (Freeman
resonances) [14], low-energy structure (LES) [15], or an
interference structure originating from interfering electrons,
emitted at different times [16–21]. PAD can be efficiently
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calculated by means of methods involving the partition of
the whole coordinate space into two regions and analytical
propagation of the wave function in the external region
without including the interaction with the atomic core
[22–24], with the approach based on the transition to the
Kramers-Henneberger reference frame [25], or by calculating
a time-dependent flux through a spherical surface placed
far enough from the atomic core [26]. For the processes
considered in the present paper, however, the resulting
photoelectrons have rather small kinetic energies (about
0.05–0.5 eV), which makes it unreasonable to neglect the
Coulomb potential in the final states [15,27,28]. For the
calculation of the PAD we provide a simulation box which is
large enough to capture the dynamics of an ionized electron,
which allows us to obtain the PAD directly projecting the
final wave function onto the unbound states built with the
scattering theory methods, including the interaction with the
atomic core [27,29].

For decades since the pioneering Rabi work [30], pop-
ulation transfer between two electron states, induced by a
resonant external electromagnetic field, has been a powerful
tool of controlling quantum systems. In the recent paper [11]
the high-order-harmonic generation (HHG) of a Li atom was
studied in one- and two-photon Rabi-flopping regimes, reveal-
ing a multipeak oscillatory pattern emerging in HHG spectra,
which corresponds directly to the coherent population transfer
between the ground 2s state and the excited 2p, 3s, and 3d
states. In the present paper, we calculate photoelectron energy
spectra and angular distributions of a Li atom in Rabi-flopping
regime. We show that oscillations of the population of an
excited state lead to the emergence of a prominent interference
structure in the resulting photoelectron spectra.

The paper is organized as follows. In Sec. II we describe
in detail the theoretical and computational methods applied
to the present problem. The results of our calculations and
all necessary theoretical analyses are presented in Sec. III.
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TABLE I. Ionization and excitation energies of Li (in atomic
units) calculated with the Klapisch model potential [Eq. (1)] in
comparison to the experimental data from Refs. [36,37].

Transition Model potential Experiment

2s → continuum 0.198 0.198
2s → 2p 0.0679 0.0679
2s → 3s 0.1238 0.1240
2s → 3p 0.1408 0.1409
2s → 3d 0.1425 0.1425

Section IV summarizes the results. Atomic units are used
throughout the paper (h̄ = m = e = 1), unless specified oth-
erwise.

II. THEORETICAL AND COMPUTATIONAL METHODS

A. Electronic structure of Li atom

For the description of unperturbed electronic states of the
Li atom within SAE, we make use of the Klapisch model
potential [31]

VK(r) = −1

r
(1 + (Z − 1)e−αr + Cre−βr ), (1)

where Z is the nucleus charge (for Li, Z = 3). Other parame-
ters are taken from Ref. [32]:

α = 7.90875, β = 3.90006, C = 10.321. (2)

The eigenvalues and eigenfunctions of the unperturbed one-
electron Hamiltonian are obtained by solving the time-
independent Schrödinger equation in spherical coordinates.
Since the atomic core potential is spherically symmetric, the
eigenfunctions take a form with separated radial and angular
coordinates:

ψnlm(r) = Rnl (r)Ylm(θ, ϕ). (3)

Here Ylm(θ, ϕ) are the spherical harmonics with l and m
being the angular momentum and its projection. The radial
eigenfunctions Rnl (r) are enumerated with the index n for
each l . They satisfy the following equations:

Hl
0Rnl (r) = εnlRnl (r), (4)

Hl
0 = −1

2

[
∂2

∂r2
+ 1

r

∂

∂r

]
+ l (l + 1)

2r2
+ VK(r). (5)

The equations are solved with the generalized pseudospec-
tral (GPS) method (for the details, see, for example,
Refs. [33–35]). In this method, the Hamiltonian operator and
wave functions are discretized on a nonuniform radial grid,
and the resulting matrix eigenvalue problem for each value of
l is solved efficiently with the standard linear algebra routines.

For an accurate description of the resonant processes in-
volving the initial 2s state and higher-lying excited states, the
model must provide accurate excitation energies and dipole
transition matrix elements. To make sure this is the case for the
Klapisch potential, we calculate these quantities for several
excited energy levels of the Li atom. The excitation energies
are listed in Table I. As one can see, they agree very well with
the experimental data from Refs. [36,37].

TABLE II. Transition dipole matrix elements 〈n′l ′|z|nl〉 of Li (in
atomic units) calculated with the Klapisch model potential [Eq. (1)]
in comparison to the matrix elements calculated by the precision
linearized coupled-cluster method [38].

Transition Model potential Coupled-cluster method [38]

2s → 2p 2.35 2.35
2s → 3p 0.129 0.129
2p → 3s 1.72 1.72
2p → 3d 2.26 2.27

The same is also true for the corresponding transition
dipole matrix elements presented in Table II. They show
excellent agreement with the matrix elements obtained by the
precision linearized coupled-cluster method [38].

B. Time propagation of the wave function

To obtain the time-dependent wave function of the active
electron 	(r, t ) in the laser field, we solve the time-dependent
Schrödinger equation (TDSE)

i
∂	(r, t )

∂t
= [H0 + V (r, t )]	(r, t ), (6)

H0 = −1

2
∇2 + VK(r), (7)

for the initial 2s electronic state

	(r, 0) = ψ2s(r). (8)

The interaction with the external electromagnetic field is
treated within the dipole approximation, which is well justi-
fied for the laser field intensities and wavelength used in the
present calculations (see, for example, Ref. [39]). In the length
gauge, the interaction potential V (r, t ) takes the form

V (r, t ) = F(t ) · r, (9)

where F(t ) is the electric field strength. We assume linear
polarization of the laser field along the z axis

F(t ) = ezF0 f (t ) sin ωt, (10)

where ω and F0 are the carrier frequency and peak field
strength, respectively, while f (t ) is a slowly varying pulse
envelope. We make use of the trapezoidal pulse shape with
smooth edges to reduce the effects of varying intensity on the
leading and trailing edges of the laser pulse

f (t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2
(

πt
2�T

)
if 0 � t � �T,

1 if �T � t � T − �T,

sin2
(

π (t−T )
2�T

)
if T − �T � t � T,

0 if t < 0 or t > T,

(11)

where �T = 0.1T is the switching duration, and T is the
pulse duration. For a pulse containing N optical cycles of the
frequency ω, it is defined as

T = 2πN

ω
. (12)

In the present work we set the carrier wavelength to 671 nm
(photon energy 0.0679 a.u.), which corresponds to a resonant

023407-2



PHOTOELECTRON SPECTRA AFTER MULTIPHOTON … PHYSICAL REVIEW A 100, 023407 (2019)

one-photon transition between 2s and 2p states, and the peak
intensities vary in the range from 1010 to 1012 W/cm2. The
laser pulse contains 20 optical cycles (duration is about 44 fs)
unless specified otherwise.

To solve Eq. (6) numerically, we apply the time-dependent
general pseudospectral (TDGPS) method [40] (for the de-
tails of the method, see also Refs. [35,41]). Here we briefly
outline our computational procedure. For the external field
(10) linearly polarized along the z axis, the projection of the
electron angular momentum on this axis is conserved. Then
the time-dependent wave functions can be expanded on the
basis of spherical harmonics with m = 0:

	(r, t ) =
lmax∑
l=0

gl (r, t )Yl0(θ, ϕ). (13)

Here lmax is the maximum angular momentum used in the
calculations. For the initial state (8), one has

gl (r, 0) = R20(r)δl0. (14)

The time propagation method is based on the split-operator
technique in the energy representation [40]. The short-time
propagator is defined by the following expression:

	(r, t + �t ) = exp

[
−i

�t

2
H0

]

× exp

[
−i�tV

(
t + �t

2

)]

× exp

[
−i

�t

2
H0

]
	(r, t ),

(15)

where �t is the time step and

exp

[
−i

�t

2
H0

]
=

lmax∑
l=0

|Yl0〉 exp

[
−i

�t

2
Hl

0

]
〈Yl0|. (16)

Equation (15) is applied recursively starting at t = 0 until the
final wave function is obtained at t = T . As one can see from
Eq. (16), the unperturbed propagator is actually reduced to
the radial propagators corresponding to the individual angu-
lar momenta l , thus the angular momentum representation
of the wave function (13) perfectly suits this propagation
method. The unperturbed propagators exp [−i(�t/2)Hl

0] are
time-independent and need to be calculated only once before
the propagation procedure starts. For this purpose, we use the
spectral expansion:

exp

[
−i

�t

2
Hl

0

]
=

∑
n

exp

(
−iεnl

�t

2

)
|Rnl〉〈Rnl |. (17)

Using this expansion, we can also control the contributions
of extremely high-energy states (large n), which are irrelevant
for the physical processes under consideration, improving the
numerical stability of the computations. The matrix dimen-
sions of the radial propagators could be much smaller than
that of the total propagator depending on the largest angular
momentum lmax used. On the contrary, the external field
part of the total propagator, exp [−i�tV (t + �t/2)], is best
calculated in the coordinate (r and θ ) representation where
it appears as a multiplication operator. As any multiplication

operator is diagonal in the GPS method, its calculation is not
time-consuming, even though it is time-dependent and must
be calculated at each time step. For the present numerical
scheme to work, the wave function has to be transformed
forth and back between the angular momenta l and coor-
dinate θ representations at each time step. Of course, such
transformations take additional computer time, but it is well
compensated by the speedup due to the optimal propagator
representation.

For the highest laser peak intensity 5.5 ×1011 W/cm2 used
in our calculations, the numerical parameters are as follows:
the largest angular momentum is lmax = 50, the simulation box
size is Rmax = 400 a.u., the number of radial grid points is
311, and the number of time steps per optical cycle is 5000.
For lower intensities, the parameters’ values may be reduced.
The GPS discretization assumes zero boundary conditions for
the wave function at r = Rmax. We do not use any special
absorber at large distances to prevent spurious reflections from
the box boundary. In this paper, we study the photoelectron
distributions within the first ATI peak only, and the compo-
nents of the wave packet corresponding to the first ATI peak
(with the energies less than 0.023 a.u.) do not reach the box
boundary by the end of the laser pulse. The components with
higher energies may be reflected but they are very small (the
second ATI peak is two to three orders of magnitude weaker
than the first one) and do not affect the dynamics of the
process. Convergence of the results has been checked with
respect to the variation of the numerical parameters. Some
calculations were also performed using the velocity gauge of
the interaction with the laser field and confirmed reliability of
the corresponding length gauge results.

C. ATI electron spectra

At the end of the laser pulse, the transition amplitudes to
various electronic states can be obtained by projecting the
final wave function onto the corresponding eigenfunctions of
the unperturbed Hamiltonian. We should note here that the
initial wave function represents an excited (2s) state of the
model SAE Hamiltonian, so the transitions to the ground 1s
state are also possible. This is an obvious deficiency of the
SAE model, since in the real Li atom the 1s state is occupied
by two electrons with opposite spins, and transitions to this
state are not permitted by the Pauli principle. For the laser
field frequency and intensities used in the present calculations,
however, the spurious transitions to the 1s state after the laser
pulse are negligibly small. For relatively weak fields, the prob-
abilities of multiphoton transitions depend strongly on the
number of photons involved in the process. The probability of
the process drops rapidly as the number of photons increases.
In our case, three photons are required to ionize the 2s state
while 27 photons must be emitted when a transition from the
2s state to the 1s state (unoccupied in our one-electron model)
occurs. One can expect that the probability of this transition
would be very small compared to the ionization probability
of the 2s state. Our results confirm that the population of the
1s state remains negligibly small after the laser pulse for all
the intensities used in the calculations. For the same reason,
excitation and ionization probabilities of the 1s electronic
shell in the real Li atom are also extremely small, so we
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can draw a conclusion that the SAE model properly describes
the physical processes under consideration. The situation may
change if different laser field parameters are used. Transitions
between the 1s and other states may become noticeable for
the field with the higher intensity and/or higher frequency,
and this would indicate the breakdown of the present SAE
model. Since fully ab initio three-electron calculations are not
feasible at this time, one may think about using approximate
multielectron approaches, such as a model of independent
electrons moving in a mean field with the wave function
described by a Slater determinant or the time-dependent
density functional theory with some approximate exchange-
correlation functional. However, multielectron approaches are
beyond the scope of this paper because they are not really
required by the physics for the laser field parameters used in
the present calculations.

The photoelectron angular and energy (or momentum) dis-
tribution (PAD) can be calculated at the end of the laser pulse
by projecting the wave function 	(r, T ) onto the continuum
eigenfunctions 	−(k, r) of the unperturbed Hamiltonian, cor-
responding to the energy E = k2/2 and asymptotic momen-
tum direction k̂. The functions 	−(k, r) can be represented
by the partial wave expansion [42]:

	−(k, r) =
√

2

π

lmax∑
l=0

l∑
m=−l

il e−iδl ψl (k, r)Y ∗
lm(r̂)Ylm(k̂), (18)

where δl are the scattering phase shifts. The partial waves
ψl (k, r) satisfy the following equation:

Hl
0ψl (k, r) = k2

2
ψl (k, r), (19)

and should be normalized according to the asymptotic form at
r → ∞:

ψl (k, r) ≈ 1

kr
sin

(
kr − π l

2
+ 1

k
ln(2kr) + δl

)
. (20)

Equation (19) is solved by the finite-difference Numerov
method [using a power series expansion of the function
ψl (k, r) in the vicinity of r = 0], providing both the partial
waves and phase shifts. Then the full wave function 	−(k, r)
is constructed according to Eq. (18).

The differential ionization probability for the electrons
emitted with the momentum k into the unit energy and solid
angle intervals is calculated as

dP(k)

dEd�
= k| 〈	−(k, r)|	(r, T )〉 |2. (21)

Photoelectron energy spectrum can be obtained by the inte-
gration of PAD (21) over the angles:

dP(E )

dE
=

∫
dP(k)

dEd�
d�. (22)

Then the total ionization probability can be calculated per-
forming additional integration of the spectrum (22) over the
emitted electron energy:

P =
∫ ∞

0

dP(E )

dE
dE . (23)

The same quantity can be obtained by projecting the wave
function 	(r, T ) onto the eigenstates of the unperturbed
discretized Hamiltonian with positive energies:

P =
∑
εnl >0

|〈ψnl (r)|	(r, T )〉|2. (24)

Strictly speaking, the results returned by Eqs. (23) and (24) are
not identical since the wave functions (18) are not the eigen-
states of the discretized unperturbed Hamiltonian. However,
when the numbers of radial grid points and angular momenta
are large enough to ensure convergence of the calculations,
these results must be close to each other. In all our calculations
the difference between the ionization probabilities obtained
with Eqs. (24) and (23) is less than 0.5%.

III. RESULTS AND DISCUSSION

A nonresonant ionization process in the presence of an
intense laser field is usually characterized in terms of the
tunneling ionization (TI) and multiphoton ionization (MPI)
models. The separation of these two regimes is related to
the value of Keldysh parameter [43] γ = √

Ip/2Up, with
Up = F 2

0 /4ω2 being the ponderomotive energy for linearly
polarized field, and Ip being the electron ionization potential.
A slowly varying strong field corresponds to γ 
 1 and the TI
model, γ � 1 corresponds to the MPI regime. In our present
calculations, the Keldysh parameter varies from 8 to 80, which
restricts us to the MPI regime. Photoelectron spectrum within
this model contains (in the weak-field regime) equally spaced
peaks separated by a photon energy value (sharp peaks for
a monochromatic external field) [1]. The positions of these
peaks can be roughly estimated as En = −Ip + nω − Up, so
with the increasing intensity the peaks are supposed to shift to
the lower-energies’ region.

In the present study, we set the laser wavelength to 671 nm,
which matches the one-photon resonance between 2s and
2p states of the Li atom described with the Klapisch model
potential (the experimental value is also 671 nm). For a
description of the Rabi oscillations between the two states,
we introduce the Rabi frequency and the pulse area. The
Rabi frequency � is defined as � = F0d , where F0 is an
electric field strength, and d is the transition dipole matrix
element between the resonant atomic states. The pulse area �

is defined as a product of the Rabi frequency and the full width
at the half maximum (FWHM) of the laser pulse τ : � = �τ .
For the trapezoidal envelope (11), τ = T − �T . When the
pulse area reaches the value of π (the π pulse), the population
of the initially occupied 2s state is completely transferred to
the 2p state.

We present in Fig. 1 the intensity dependence of the final 2s
and 2p populations as well as the total ionization probability.
Rabi oscillations between the 2s and 2p states are clearly
visible on the picture. Within the intensity range we used for
all our calculations, the total ionization probability does not
exceed 0.3. Such a choice of the intensity range guarantees
no substantial ionization on the leading edge of the pulse.
At higher intensities, other excited states, namely 3s and 3d
states, begin to play a significant role in the ionization process.
With larger ac Stark shifts [44], resonant transitions to these
states via two-photon absorption by the 2s electron come
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FIG. 1. Ionization probability and final population of 2s and 2p
states of a Li atom exposed to linearly polarized laser pulse. Carrier
wavelength is 671 nm, which corresponds to resonance between 2s
and 2p states. The pulse contains 20 optical cycles. Pulse envelope is
given by Eq. (11).

into play, making the ionization process more complicated.
Photoelectron energy spectra calculated for several laser peak
intensities are shown in Fig. 2. In the multiphoton ionization
regime under consideration, the first ATI peak (corresponding
to the absorption of three photons) is by far dominant in
the spectrum; in what follows, we will focus on the energy
distribution within this peak. Here one can see a clear interfer-
ence pattern that builds up in the spectrum with the increase
of intensity (hence the Rabi pulse area �) with two stable
minima emerging near the energies of 0.01 and 0.005 a.u.,
labeled on the picture as A and B. To reveal the origin of these
minima and obtain quantitative estimates of their positions,
one can look at the time-dependent 2s and 2p populations.
According to the definition of �, the final populations of the
2s and 2p states oscillate as the peak value of the electric
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FIG. 2. Photoelectron spectra of a Li atom exposed to a linearly
polarized laser pulse for different laser peak intensities. The laser
wavelength is 671 nm, the pulse contains 20 optical cycles. Pulse
envelope is given by Eq. (11).
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FIG. 3. Scaled ionization rate �(t ) and the time-dependent pop-
ulation of the unperturbed states of a Li atom exposed to a linearly
polarized laser pulse. Laser field peak intensity is 3 × 1011 W/cm2,
laser wavelength is 671 nm, which corresponds to resonance between
2s and 2p states. The pulse contains 20 optical cycles (o.c.). Pulse
envelope is given by Eq. (11).

field and/or the pulse duration increase. In the multiphoton
ionization regime (γ � 1), the ionization probability has a
sharp dependence on the number of absorbed photons. Ion-
ization from the 2p state requires absorption of two photons,
and we expect this ionization channel to be dominant when the
2p state is populated because three photons are still required
to ionize the Li atom directly from the ground 2s state. Let
us define the time-dependent populations of the unperturbed
states ψnl :

Pnl (t ) = |〈ψnl (r)|	(r, t )〉|2 (25)

and the ionization rate as a time derivative of the instantaneous
unbound-states population:

�(t ) = d

dt

∑
εnl>0

Pnl (t ). (26)

We note that the quantities defined by Eqs. (25) and (26)
are not observable when the external field is still on; how-
ever, they may be used to illustrate the dynamics of the
excitation and ionization processes. For the laser peak in-
tensities such as � > 3π [for the trapezoidal pulse enve-
lope (11), it corresponds to I > 2.5 × 1011 W/cm2], the
rate �(t ) exhibits two distinct maxima corresponding to the
peaks of the time-dependent 2p-state population. Figure 3
shows the time-dependent probabilities of some unperturbed
states for the laser peak intensity I = 3 × 1011 W/cm2. We
also show the averaged scaled ionization rate �(t ). The
maxima of the ionization rate are certainly correlated to
the maxima of the 2p-state population. The second (right)
maximum of the ionization rate is also influenced by the
right edge of the pulse envelope where the instantaneous
intensity as well as ionization rate drop rapidly. The dominant
ionization channel is thus controlled by the population transfer
between the resonant 2s and 2p states, which “opens” and
“closes” this channel with the Rabi frequency �, even when
the laser field intensity remains constant. The pattern in the

023407-5



TUMAKOV, TELNOV, PLUNIEN, AND SHABAEV PHYSICAL REVIEW A 100, 023407 (2019)

ATI energy spectra (Fig. 2) can be qualitatively understood
based on the lowest order of the time-dependent degener-
ate state perturbation theory. First, the zeroth-order approx-
imation for the wave function is obtained nonperturbatively,
when the two-level system of strongly coupled resonant (2s
and 2p) states is solved using the rotating wave approxi-
mation. The 2s and 2p populations oscillate with the Rabi
frequency:

P2s(t ) = cos2

(
1

2
�t

)
, P2p(t ) = sin2

(
1

2
�t

)
. (27)

The probability amplitudes of subsequent excitation and ion-
ization are described by the corresponding multiphoton ma-
trix elements of the perturbation. In the multiphoton (γ �
1) regime, the ionization probability of the 2p state is
much larger than that of the 2s state because the ionization
of the 2s state requires absorption one extra photon. For
the range of the laser intensities under consideration, there
are only two time moments within the pulse when the pop-
ulation of the 2p state reaches its maximum. According to
Eq. (27), they are separated by the time interval equal to
2π/�. In the vicinities of these time moments one can see the
highest ionization rate in Fig. 3. The phase difference �R(E )
between the contributions to the ionization amplitude from
these time moments follows from the time dependence of the
multiphoton ionization amplitude:

�R(E ) = 2π (E − ε2p − nω)/�, (28)

where E is the energy of the ejected electron and n = 2 is
the number of photons absorbed. Equation (28) predicts an
interference structure in the electron energy spectra with the
adjacent minima A and B separated by the Rabi frequency
�. We note that the interference oscillatory structure of ATI
peaks can only be detected for laser pulses of finite duration;
for continuous wave laser fields, the ATI energy spectrum in
the resonant ionization case consists of two series of equally
spaced narrow peaks shifted from each other by the Rabi
frequency.

These predictions based on a simple model of Rabi os-
cillations in the two-level system can be checked against the
results of our numerical calculations for the positions EA and
EB of the minima A and B in the energy spectrum. Let us
define two phase shifts, ��R and �� as follows:

��R = 2π (EB − EA)/�, (29)

�� = (EB − EA)�t, (30)

where the time delay �t is obtained directly from the peak
positions of the calculated time-dependent ionization rate
�(t ): while ��R makes use of the theoretically predicted
time delay 2π/� in the two-level system, �� is calculated
with the numerical data. Values of �� and ��R, calculated
for the laser intensities from 2.5 × 1011 to 5.5 × 1011 W/cm2

are listed in Table III. As one can see, the phase difference
between the two adjacent minima in the energy spectra is
close to 2π for both �� and ��R, as expected from the
interference pattern. The deviation from 2π becomes larger
for ��R at higher intensities. This result is well understood:
the two-level system approximation becomes less accurate

TABLE III. The phase shifts ��R and �� defined by Eqs. (29)
and (30), respectively, calculated for different laser peak intensities.

Peak intensity, W/cm2 ��R/2π ��/2π

2.5 ×1011 1.08 1.09
3.0 ×1011 0.99 1.09
3.5 ×1011 0.95 1.05
4.0 ×1011 0.91 1.04
4.5 ×1011 0.88 1.00
5.0 ×1011 0.88 1.03
5.5 ×1011 0.86 1.02

for higher intensities as the other higher-excited electronic
states begin to play a more important role in the ionization
process.

The interference oscillations in Fig. 2 show up on top
of the ATI peak in the energy range 0 to 0.02 a.u. where
the ionization signal is the strongest and comes through the
dominant ionization channel related to the resonant popu-
lation transfer to the 2p state. As one can see, these os-
cillations disappear for the energies higher than 0.02 a.u.
The energy range 0.02 to 0.035 a.u. in Fig. 2 lies already
beyond the first ATI peak, and the ionization signal here is
two to three orders of magnitude weaker than that at the
top of the peak. Various parts of the laser pulse in the time
domain (including those where the 2p state is not significantly
populated) can make comparable contributions to the ioniza-
tion signal here. Since the ionization channel responsible for
the interference oscillations is not dominant in this energy
range, one cannot expect to see a clear interference pattern
here.

For the intensities smaller than 2.5 × 1011 W/cm2, cor-
responding to the Rabi pulse area � < 3π for the pulse
containing 20 optical cycles, only one peak appears in the
ionization rate, controlled by the ionization from significantly
populated 2p state (it can also be influenced by the pulse
envelope edge, see Fig. 4). Let us introduce the width of the
peak δt and consider the interference of the electrons ionized
during this time interval. Assuming the ionization rate to be
equal to some mean value �(E ), the differential probability

0

1

0 20

(a)

0

1

0 20

(b)

FIG. 4. The laser pulse envelope [Eq. (11)] (dotted line), the Li
2p state population (solid line), and a schematic plot of the resulting
ionization rate �(t ) (dashed line) for the Rabi pulse area (a) � =
0.6π and (b) � = 2π . The pulse contains 20 optical cycles (o.c.).
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FIG. 5. Photoelectron spectra of a Li atom exposed to a linearly
polarized laser pulse for various pulse duration [13–20 optical cycles
(o.c.)]. The laser peak intensity I = 1010 W/cm2, carrier wavelength
is 671 nm. Pulse envelope is given by Eq. (11).

can be presented as follows:

dP(E )

dE
∼ �(E )

∣∣∣∣
∫ δt

0
ei(E−ε2p−2ω)τ dτ

∣∣∣∣
2

∼ �(E )

∣∣∣∣ sin(E − ε2p − 2ω)δt

(E − ε2p − 2ω)δt

∣∣∣∣
2

. (31)

While �(E ) corresponds only to the energy conservation, the
second factor approximately describes the interference of the
ionized electrons, similar to the considerations of Ref. [20].
The minimum appearing in the spectra corresponds to the
first node of this factor: with the increase of the peak width
δt (which can be done by increasing either the intensity or
the pulse duration) the position of the minimum shifts to the
main peak in the spectrum according to Eq. (31), which is
clearly seen in the results for the small peak intensity I = 1010

W/cm2 and pulses containing 13 to 20 optical cycles (see
Fig. 5).

For the other pulse envelope functions, like Gaussian or
sine-squared, the effects caused by the edges of the envelope
may be more significant, leading to the emergence of complex
interference structures in the spectra [16,18]. However, as
we checked by performing calculations with the sine-squared
pulse envelope function, the interference mechanism studied
here remains dominant for this pulse shape as well, at least for
relatively long pulses. The insensitivity of the Rabi-flopping
interference pattern in the photoelectron spectrum to the pulse
shape could facilitate its observation in the experiments.

In Fig. 6, we present the PAD after multiphoton ionization
of the Li atom calculated by Eq. (21) for the laser peak
intensity I = 5 × 1011 W/cm2. The angular distribution has
a well-known ring structure. Here we show the first two rings,
corresponding to the ionization by three and four photons. As
known from the literature (see, e.g., Ref. [27]), the number of
nodes in the angular distribution equals to the dominant value
of the angular momentum l in the final continuum state. For
the first ring in the PAD, the dominant l = 3, as anticipated
since only three photons are required for the ionization. The
radial structure of the stripes corresponds to the interference

0
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−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

E
si

n
θ

E cos θ
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FIG. 6. Photoelectron angular and energy distribution after
above-threshold ionization of a Li atom exposed to a linearly po-
larized laser pulse with peak intensity I = 5 × 1011 W/cm2. The
pulse contains 20 optical cycles, the laser wavelength is 671 nm and
corresponds to the resonance between the 2s and 2p states. The pulse
envelope is given by Eq. (11). The PAD intensity scale is logarithmic
and shown as a color map.

mechanism discussed above. As one can see, it is indepen-
dent of the electron emission angle and reproduces the same
features as the photoelectron energy spectrum.

IV. CONCLUSION

In this paper, we present photoelectron angular distribu-
tions and energy spectra after multiphoton above-threshold
ionization of Li atoms in the one-photon Rabi-flopping
regime. The Li atom is described by the single-active-electron
model with a quality core potential, which reproduces accu-
rately the excitation and ionization energies, as well as transi-
tion dipole matrix elements. The interaction with the linearly
polarized laser field is treated in the dipole approximation us-
ing the length gauge. The time-dependent Schrödinger equa-
tion is solved efficiently with the help of the time-dependent
generalized pseudospectral method. The calculations are per-
formed for the laser peak intensities in the range 1 × 1011 to
5.5 × 1011 W/cm2. The carrier wavelength is set to 671 nm, so
the photon energy matches the experimental transition energy
between the 2s and 2p states of the Li atom.

We show that the population transfer between the ground
2s and excited 2p states in the resonant laser field is re-
flected in the photoelectron energy spectra which manifest
interference oscillatory structures with the spacing between
the adjacent minima equal to the Rabi frequency �. The main
ionization channel is controlled by the excited state population
and switched on at specific moments in time when the ion-
ization rate is the highest, thus implementing the double-slit
interference picture in the time domain [17]. The transfor-
mations of the interference structures with the increase or
decrease of the pulse area are also revealed and analyzed.

For all our calculations reported in this paper, we use the
trapezoidal pulse envelope function to minimize the interfer-
ence effects in the electron spectra related to the pulse shape
[16,18] and not caused by the Rabi flopping. However, we
also performed similar calculations for the sine-squared pulse
envelope and find that the interference pattern due to the res-
onant population transfer in the Rabi-flopping regime is still
dominant. We should also note that the interference structures
emerging in the electron spectra in the Rabi-flopping regime
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are not specific to the Li atom and can be observed for the
other atomic or molecular targets with similar properties of
the electronic energy levels.
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