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Leading tests of the Standard Model, like measurements of the electron electric dipole moment or of matter-
antimatter asymmetry, are built upon our ability to laser-cool atoms and molecules to ultracold temperatures.
Unfortunately, laser-cooling remains limited to a minute collection of species with very specific electronic
structures. To include more species, such as polyatomic molecules or exotic atoms like antihydrogen, new
cooling methods are needed. Here we demonstrate a method based on Sisyphus cooling that was proposed
for laser-cooling antihydrogen. In our implementation, atoms are selectively excited to an electronic state whose
energy is spatially modulated by an optical lattice, and the ensuing spontaneous decay completes one Sisyphus
cycle. We show that this method eliminates many constraints of traditional radiation-pressure-based approaches,
while providing similar atom numbers with lower temperatures. This laser-cooling method can be instrumental
in bringing new exotic species and molecules to the ultracold regime.
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I. INTRODUCTION

Precision measurement with cold atoms and molecules
is allowing us to probe the validity and limitations of the
Standard Model [1,2], including searches for the electron
electric dipole moment [3–5], for dark matter [6,7], and for
variations in fundamental constants [8–10]. Recent break-
throughs in laser cooling, focused on using molecules with
close-to-diagonal Frank-Condon factors [11–14], have been
crucial enablers for many of these experiments.

Yet many of today’s most exciting proposals require first
extending these successes to efficiently cool new atomic and
molecular species. For example, the ability to precisely com-
pare the spectra of hydrogen with antihydrogen might shed
light on one of the most important mysteries of physics today,
the asymmetry between matter and antimatter. However, the
ability to generate a robust trapped sample of ultracold anti-
hydrogen [15–20] is strongly constrained by the limitations of
current laser technology at 121.6 nm [21–24]. Other proposals
call for ultracold samples of complex, polyatomic molecules
[25–29]. While the use of radiation pressure has been wildly
successful at slowing some atomic species, the need to scatter
vast numbers of photons makes it difficult to apply these meth-
ods to slow species without very closed cycling transitions.
Common molecules with a myriad of internal states and leaky
transitions typically suffer from heavy losses. There remains
a strong need for the continued development of new laser-
cooling methods in order to tackle these important frontiers.

A range of approaches has been devised to achieve im-
proved performance while relaxing constraints imposed by
traditional Doppler cooling techniques. For example, rapid
cycling using stimulated emission can provide stronger mo-
mentum transfer without spontaneous heating or loss from
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nonclosed cycling transitions. This is demonstrated in bichro-
matic force cooling [30,31], adiabatic rapid passage [32], and
SWAP cooling [33] but it requires intense resonant light not
available for some applications like at the 121.6-nm transition
needed for antihydrogen. Alternatively, Sisyphus-like cooling
methods [34], where kinetic energy is converted into potential
energy, can function effectively even at very low excitation
rates and are routinely applied to beat the Doppler tempera-
ture limit [35]. Examples of this approach include Zeeman-
Sisyphus decelerators [36] and Rydberg-Stark decelerators
[37,38], where a photon excitation changes the internal state,
allowing a significant part of the slowing to be done by an
externally applied electromagnetic field gradient.

In this work, we present a proof-of-principle demonstration
of a class of proposals developed to laser-cool antihydrogen
[39] and other species [40–42]. Our demonstration uses a
Sisyphus-like deceleration mechanism to slow a continuous
stream of strontium atoms without using radiation pressure.
The method uses a one-dimensional (1D) optical lattice act-
ing on the excited 3P1 electronic state, combined with a
selective excitation mechanism that transfers atoms to the
lattice potential minima. We explore the performance of this
method, which we call the Sisyphus optical lattice decelerator
(SOLD). To compare it with traditional radiation pressure
schemes we also substitute the SOLD with a Zeeman slower
using the same transition as our excitation mechanism. In
principle, using a deep lattice very few excitation photons can
be sufficient to bring fast atoms to rest, making the SOLD a
good decelerator candidate for exotic species and molecules
without a closed cycling transition [11–14,25–29].

This paper is structured as follows. In Sec. II we present
the working principle of the SOLD. We describe in Sec. III
our implementation to slow a beam of strontium atoms and
measure its performance. Section IV describes the various
parameter regimes for the removal of an atom’s kinetic energy,
then elaborates on the SOLD efficiency in terms of the re-
quired number of scattered photons. In Sec. V we explain the
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FIG. 1. SOLD working principle. (a) Relevant electronic levels
of strontium and the two transitions used for excitation and optical
lattice creation, both necessary for the SOLD. (b) Schematic of two
typical cooling cycles, from excitation to spontaneous decay.

behavior of the excitation rate, and from this analysis we pro-
vide a simple formula for the capture velocity of this cooling
method. We compare in Sec. VI the SOLD performance with
typical radiation-pressure-based laser-cooling. In Sec. VII we
discuss eventual limitations to the applicability of this method,
and we conclude in Sec. VIII.

II. PRINCIPLE

The working principle of the SOLD relies on a three-
level system coupled by two optical transitions, something
ubiquitous for both atomic and molecular species. Our imple-
mentation using strontium is depicted in Fig. 1(a). An optical
lattice is formed using a pair of coherent counter-propagating
beams with a frequency in the vicinity of the 3P1-3S1 transition.
This produces a spatially modulated coupling between the 3P1

and the 3S1 states and thus a spatially modulated light shift on
the excited 3P1 state. The ground 1S0 state remains essentially
unaffected. By applying a laser resonant with the 1S0-3P1

transition, atoms can be excited into the 3P1 state, where they
experience the force associated with the lattice potential [see
Fig. 1(b)]. If the linewidth � of the 1S0-3P1 intercombination
line is much smaller than the lattice height Ulat � h̄�, this
“excitation” laser can be tuned to selectively address the
bottom of the lattice sites. For a high enough velocity v >

λlat�, atoms excited into 3P1 will then climb a significant
fraction of the lattice potential hills and lose kinetic energy
before spontaneously decaying to the ground state as shown
in Fig. 1(b). As atoms in 1S0 propagate along the lattice axis,
this cooling cycle repeats, forming a Sisyphus mechanism.
By creating a very high lattice, it is theoretically possible to
remove most forward kinetic energy within distances of a few
lattice periods or with a single cycle, as in Rydberg-Stark
decelerators [37,38]. The temperature limit for this scheme is
the higher of an effective Doppler temperature depending on
� [41], or the recoil temperature.

III. EXPERIMENTAL SETUP

To demonstrate the feasibility of the SOLD experimentally,
we implement the setup shown in Fig. 2(a). We start with a
magneto-optical trap (MOT) for 88Sr operating in a steady-
state regime on the 7.4 kHz-linewidth 1S0-3P1 transition, as
described in our previous work (configuration “Red MOT I” in
[43]). We overlap this MOT with an optical dipole trap acting
as a “transport” guide [44]. This 1D guide is ∼35 μK deep

FIG. 2. (a) Side view of the setup. (b)–(d) 1S0-1P1 absorption
imaging pictures of the atomic beam at the decelerator location:
without lattice (b), with lattice (c), and with lattice and reservoir (d).

at the MOT location and propagates horizontally along the z
axis. By adding a “launch” beam resonant with the 1S0-3P1 π

transition and pointed at the overlap between the MOT and
the transport guide, we outcouple MOT atoms into the guide
with a well-controlled mean velocity ranging from 0.08 to
0.25 m s−1 [44]. Atoms then propagate along the guide for
∼3.7 cm until they reach the decelerator region.

We produce a 1D lattice potential with a pair of counter-
propagating laser beams whose frequency is blue-detuned by
�lat ≈ 2π × 30 GHz from the 3P1-3S1 transition. The lattice
beams cross the transport guide at the shallow angle of 6◦,
overlapping the atomic beam for about 3.4 mm. Excitation
from the 1S0 to the 3P1 state is provided by illuminating
the atoms from the radial direction. This is implemented
using a pair of counter-propagating horizontal beams and a
single vertical beam propagating upward, with 1/e2 diameters
of 28.8 and 36 mm, respectively. These “excitation” laser
beams are 15 kHz red-detuned from the π transition and their
combined intensity corresponds to a saturation parameter of
∼1. In addition to state excitation, these beams provide an
optical molasses, which brings the atoms’ radial temperature
to ∼2 μK. Importantly, we do not apply any near-resonant
light capable of slowing atoms in the z axis in the absence
of the SOLD optical lattice. Despite the possibility of other
orientations of the excitation beams, as suggested in Ref. [39],
we initially chose the configuration described above in order
to demonstrate that radiation pressure is not directly involved
in the slowing of atoms, and just climbing the lattice potential
removes the kinetic energy.

We operate the decelerator on a guided atomic beam
continuously fed by the MOT, with a homogeneous axial
density across the full field of view of our imaging system
[see Fig. 2(b)]. When the lattice is switched on, the density in
the overlap region between the atomic and the lattice beams
sharply increases, suggesting an accumulation of slowed
atoms, as shown in Fig. 2(c). Without either lattice beam or
with a large (160 MHz) frequency difference between the two
lattice beams, this feature vanishes. Figure 2(c) also shows
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FIG. 3. SOLD efficiency. Measured steady-state number of
atoms slowed by the SOLD and loaded in the reservoir, for varying
lattice heights and four initial velocities. Dashed vertical lines repre-
sent the criterion of Eq. (3) for m = 1. Vertical error bars represent
standard errors from binned data points. The origin of the horizontal
error bars is described in Appendix A.

that some atoms travel completely across the lattice region due
to incomplete slowing or by diffusion. Note that our slowing
mechanism is fully compatible with a steady-state apparatus,
and we perform our measurements after reaching steady state.

For better characterization of the SOLD, and since we are
concerned about diffusion of slowed atoms, we add a second
“reservoir” dipole trap beam. This beam crosses below the
transport guide at the lattice location, with an offset adjusted
to allow slow atoms to pass from the guide into the reservoir
while not significantly disturbing the potential landscape of
the guide. With the help of the radial optical molasses, the
reservoir collects and stores slowed atoms 2 mm away from
the crossing. We show one example of loading into this
reservoir in Fig. 2(d), which also exemplifies a means of
atom extraction from our ultracold atom source. We show in
Fig. 3 the measured atom number loaded into the reservoir
by the SOLD. The efficiency is poor for small lattices, as
not enough kinetic energy is removed before atoms leave
the lattice location. For increasing lattice height, we observe
a clear loading optimum, followed by a slow decrease. As
we discuss in Sec. V, these two features originate from the
behavior of the excitation rate to 3P1.

The SOLD deceleration scheme brings atoms ultimately
to zero mean velocity in the reference frame of the lattice.
By applying a small frequency difference between two lat-
tice beams, a lattice will move at a well-controlled velocity
[45,46]. This implies that the SOLD can ideally decelerate or
accelerate atoms to any desired velocity (see Appendix C).
Here we use the moving lattice to characterize the reservoir
dipole trap. The loading of this reservoir is sensitive both to
the mean velocity of atoms and to the location at which they
end up when reaching zero mean velocity. We characterize
the velocity acceptance of the reservoir by varying the fre-
quency difference between the two lattice beams. The loading
efficiency of the reservoir depending on the lattice velocity is
shown in Fig. 4. It can be fitted by a Gaussian whose width is
σv = 0.0084(4) m s−1, centered at vR ∼ −0.002 m s−1. This

FIG. 4. Velocity selectivity of the reservoir loading, measured by
varying the lattice velocity. The line is a Gaussian fit of the data
with width σv . Inset: The same type of measurement over a much
narrower velocity range, highlighting the center velocity of about
vR ∼ −0.002 m s−1.

slight departure from zero velocity can be explained by the
orientation of the reservoir relative to the guide, which favors
the loading of atoms that move backward. The small velocity
window for which the loading efficiency is substantial exem-
plifies the slowing effect of the SOLD.

IV. KINETIC ENERGY REGIMES AND PHOTON
SCATTERING EFFICIENCY

We can understand the SOLD slowing efficiency observed
in Fig. 3 with a simple semiclassical model describing its
various working regimes, which depend on the relative mag-
nitude of the atoms’ kinetic energy with respect to lattice
height. Consider atoms initially excited into the 3P1 state at
the bottom of the lattice potential. In Fig. 5(a), we plot the
dependence of the average energy lost per cooling cycle Elost

with incoming velocity v and lattice height. For high kinetic
energies compared to the lattice height 1

2 mv2 � Ulat , atoms
travel through several lattice sites and the energy lost tends to

Elost → Ulat
2 /(1 + ( λlat�

4πv
)
2
); see Appendix B. When v � λlat�,

FIG. 5. Theoretical efficiency of our cooling scheme. (a) Average
energy lost Elost during a single cooling cycle, for varying velocities
before excitation. (b) Total number of cycles and excitation photons
needed for the SOLD compared with a Zeeman slower (ZS), depend-
ing on the initial velocity. The black line shows the ZS behavior,
while the dotted, dashed, and dash-dotted lines represent the SOLD
with various lattice heights.
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the energy lost saturates to Elost → Ulat/2. A striking feature
of Fig. 5(a) is that Elost exhibits an efficiency peak for 1

2 mv2 =
Ulat. In this case, atoms have just enough energy to climb one
lattice maximum, where they spend most of their time and
are thus more likely to undergo spontaneous emission. The
energy lost in this regime asymptotically reaches Elost → Ulat

for v � λlat�; see Appendix B. Let us note that, in contrast to
Ref. [39], which relies also on a spatial modulation of �, the
effective rate of spontaneous emission in our case is higher on
lattice hills only because of the increased time atoms spend
there.

Laser-cooling techniques can be benchmarked by the aver-
age number of photons that need to be scattered to slow atoms
from some initial velocity to the technique’s temperature limit.
This is particularly relevant for species without a cycling
laser-cooling transition, like most molecules [11–14,25–29],
where there is a small, finite number of photons allowed to
be scattered before the species decays to a dark state and
is lost. Using the results of Fig. 5(a) repeated over several
cycles with decreasing velocity, we calculate the number of
excitation photons needed to reach a kinetic energy equivalent
to a temperature below 2 μK and present it in Fig. 5(b). This
temperature was arbitrarily chosen ∼4 times larger than the
recoil temperature for the 1S0-3P1 transition, the relevant limit
in our case. For comparison with radiation-pressure-based
laser-cooling methods, we also show in Fig. 5(b) the number
of photons required in the case of a Zeeman slower (ZS) [47].
The SOLD always requires fewer cooling photons than the ZS
for a lattice height satisfying Ulat/h > v/λlat .

V. EXCITATION RATE AND CRITICAL VELOCITY

The SOLD ability to slow atoms with high incoming
velocities is strongly dependent on the excitation rate. We
model this rate by solving the optical Bloch equations for
a two-level system corresponding to the 1S0 and 3P1 states,
coupled by the excitation laser with Rabi frequency �. The
time-dependent Schrödinger–von Neumann equation for the
density operator ρ is

dρ

dt
= − i2π

h
[H, ρ] + L, (1)

with h the Planck constant, L the usual term to account for
the spontaneous emission due to �, and the Hamiltonian H
written as

H =
(

0 �/2
�/2 Ulat sin2(2π v t/λlat )

)
. (2)

We numerically solve Eq. (1) with time, starting with all
the population in 1S0 at t = 0. For this calculation, we assume
a constant velocity v, which is valid for 1

2 mv2 � Ulat . After
a variable time, the (�, Ulat, v)-dependent solution for the
excited population reaches a steady state only slightly per-
turbed by the time-dependent detuning produced by traveling
within the lattice. Averaging over this small perturbation, we
get the population in the 3P1 state shown in Fig. 6. Let us note
that solutions for Hamiltonians similar to Eq. (2) have been
analyzed before, in particular, in the frequency domain [48].

The remarkable feature in Fig. 6 is the presence of multiple
resonances where there are high excitation rates. These can

FIG. 6. Population transferred to the 3P1 state depending on the
lattice height and the atom velocity. For clarity, the population is
calculated for a saturation parameter of the excitation transition of
∼1600 instead of the 0.1–10 typically used. Dashed red lines show
the condition of Eq. (3) for m ∈ {1 . . . 7}.

be explained by in-phase multiple π -over-N pulses. Indeed,
only at the bottom of a lattice site is the detuning small
enough to excite a significant population to 3P1. While the
atoms propagate from one site to the next, the distributions
in 1S0 and 3P1 states acquire different phases. Once at the
next site, further population is efficiently excited to 3P1 only
if the dephasing is equal to multiples of 2π , in which case
the steady-state excited population is high. This behavior can
be confirmed by looking at the evolution of the Bloch vector
associated with ρ, displayed in Fig. 7 for two cases.

We can give a simple quantitative criterion for the positions
of these excitation rate resonances. The phase accumulated

FIG. 7. Evolution of the Bloch vector on the Poincaré sphere,
shortly (for five “pulses”) after the application of the SOLD. Atoms
begin in the 1S0 state at the location of a lattice site. The saturation
parameter of the excitation to 3P1 is set to about 60 for clarity, and the
lattice height is h × 600 kHz. The velocity in (a), v = 0.1035 m s−1,
is such that the accumulated phase during the travel time between
two sites is close to 	 = 2π , while in (b), where v = 0.09 m s−1,
this condition is not met.
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TABLE I. Comparison of the SOLD and the Zeeman slower
(ZS). The rows list steady-state atom numbers in the reservoir
(when present), fluxes, 1/e loading times, and reservoir radial (axial)
temperatures Trad (Tz). The various configurations are, in order, the
SOLD in the transport guide, the SOLD plus the reservoir (R), the
ZS plus reservoir, and the combination of both.

SOLD SOLD + R ZS + R SOLD + ZS + R

Atoms (×106) 0.78(01) 0.69(01) 1.87(04) 2.00(10)
Flux (×106 s−1) 0.74(04) 0.65(03) 2.11(14) 2.80(15)
Loading (ms) 705(20) 625(52) 434(43) 507(55)
Trad (μK) 1.53(02) 1.08(04) 1.34(02)
Tz (μK) 2.30(06) 5.67(94) 2.59(10)

during the propagation through one lattice period is 	 = � T ,
with T = λlat

2v
the propagation time and � the dephasing,

taken as the average detuning due to the lattice, giving � =
2π 1

h
Ulat

2 . The condition 	 = m × 2π (with m ∈ N) leads to
the relation

Ulat

h
= m × 4v

λlat
. (3)

This criterion is shown as dashed red lines for m ∈ {1, . . . , 7}
in Fig. 6. Due to the high density of the lines with m > 1,
for low incoming velocities the loading efficiency optima
observed in Fig. 3 correspond mainly to fulfilling the criterion
of Eq. (3) for the case m = 1.

Including both the average lost energy Elost and the excita-
tion rate, both depending on (Ulat, v), we model the behavior
of the SOLD by solving classically the evolution of the atoms’
velocity with time, under an effective force F (Ulat, v) =
−� × ρ3P1

(Ulat, v) Elost (Ulat, v). We reproduce qualitatively
all features of the experimental data (see Appendix B). The
criterion of Eq. (3) with m = 1 effectively dictates the capture
velocity of the SOLD:

vc = Ulatλlat

4h
. (4)

Let us note that, for a lattice height thus matching the atoms’
velocity, the condition Ulat/h > v/λlat given in Sec. IV is
verified. Therefore, when working under nominal conditions,
the SOLD requires fewer photons than standard radiation-
pressure-based laser-cooling methods like the ZS.

VI. COMPARISON WITH RADIATION-PRESSURE-BASED
COOLING

We now experimentally compare the SOLD performance
with that of a Zeeman slower. The varying magnetic field for
the ZS is provided by the existing MOT quadrupole field,
whose gradient in the guide axis is 0.23 G/cm. We then
add a laser beam counter-propagating to the transport guide,
focused in the SOLD region and with a circular polarization
set to address the high-field-seeking 3P1 mJ = −1 state. We
demonstrated in previous work that it is possible to operate
a ZS on the narrow Sr intercombination line [43]. In Table I,
we report a comparison between the two slowing methods.
Both give similar results for fluxes and final atom numbers,
with an advantage for the ZS, which we attribute mainly to

the spatial selectivity of its optical excitation. However, we
observe a clear difference in the final axial temperatures Tz

within the reservoir, which effectively reflects the final mean
velocities. For the SOLD, Tz is almost as low as the radial
temperature Trad provided by the molasses cooling, whereas
Tz is 2.5 times hotter for the ZS. This is because a Zeeman
slower is unable to decelerate atoms to zero velocity, as they
remain somewhat resonant with ZS photons and are pushed
backwards. By contrast, the final mean velocity for the SOLD
is stationary in the frame of the optical lattice, which itself can
be chosen arbitrarily [45,46].

An additional difference is that, since the SOLD does not
rely on radiation pressure from the excitation beam to cool,
it is possible to use a much broader class of transitions than
for standard laser-cooling methods. It is, for example, also
possible to use the ZS beam as an excitation beam that features
both spatial and velocity selectivity. The lattice, now acting on
atoms in 3P1 mJ = −1, is the one charged with decelerating
atoms to zero axial velocity. In the presence of both lattice
and ZS beams, we observe the best number of atoms in the
reservoir, while keeping the low-temperature Tz due to the
SOLD (see Table I).

VII. DISCUSSION

Let us now turn to considerations for further applications of
this cooling scheme. First, it is clear from Fig. 6 that, at high
velocities, excitation rates are low unless the lattice height
matches the conditions of Eq. (3). This can be dealt with
by temporal modulation of the lattice intensity, which varies
the resonance locations. Second, for lattices much higher
than the transport guide depth, we observe a clear spread of
the atomic beam out of the guide. This is due both to the
radial anticonfinement from the blue-detuned lattice beams
and the slight angle between lattice and transport beams. A
red-detuned lattice could remedy this by confining the atoms
radially, but this will make correctly tuning the excitation
frequency dependent on the lattice intensity.

Third, if the lattice detuning �lat is insufficient, atoms in
the 3P1 state can be optically pumped by the lattice light to
3S1. If this occurs, atoms can decay from 3S1 to the metastable
3P0 and 3P2 states and exit the cooling cycle. Figure 8 shows,
for several lattice laser detunings �lat , the effect of optical
pumping to 3S1 depending on the lattice height. For detunings
that are a few GHz away from the 3P1-3S1 transition, we see
a clear reduction of the maximum atom number slowed and
captured in the reservoir. For detunings above 20 GHz, the ef-
ficiency seems to converge toward a unique curve, indicating
no significant optical pumping. A repumping scheme such as
the one used in Ref. [49] can optically pump atoms back to
3P1 in a time short compared to that for the propagation of the
atoms along the lattice. Alternatively, a higher detuning with
a correspondingly increased intensity solves this issue. Aside
from the data in Fig. 8, we operate at a lattice detuning of
�lat ≈ 2π × 30 GHz, for which optical pumping is negligible
and the required optical power for the best efficiency is only
1.2 mW for each of the two 100 μm-waist beams.

Finally, the initial velocities decelerated in this proof of
principle are low compared with several applications of in-
terest, in part due to the small lattice height and deceleration
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FIG. 8. Effect of optical pumping by the lattice light to the 3S1

state. The data show the number of atoms loaded into the reservoir
as a function of the lattice height for various detunings of the lattice
laser from the 3P1-3S1 transition.

region used. In the proposal of Wu et al. [39], the lattice
is 78.5 MHz high and the capture velocity is set to vc,H̄ ≈
25 m s−1. This proposal is designed to cool trapped antihy-
drogen, with velocities up to 80 m s−1 and long interaction
times including several oscillations of particles in the trap. As
a comparison attempt, under these conditions it would take
about 20 photon scattering events for an equivalent SOLD
setup to bring antihydrogen close to the recoil limit, which,
as shown in Fig. 5(b), is similar to the numbers demonstrated
in this work. Let us note that one strength of this laser-cooling
method is that the high optical power requirement is on the
lattice transition and not on the, far more technologically
challenging, 121.6 nm excitation transition.

VIII. CONCLUSION

To summarize, we experimentally demonstrate a Sisyphus-
like deceleration mechanism to slow and cool strontium atoms
without using radiation pressure. Our work validates a class of
proposals developed for laser-cooling antihydrogen [39] and
other species [40–42]. We characterize the SOLD technique in
the steady-state regime both experimentally and theoretically.
We compare the SOLD with a typical radiation-pressure-
based scheme (Zeeman slower) and find similar atom numbers
but lower axial temperatures. By combining both techniques,
we benefit from the ZS spatial and velocity selectivity and
improved SOLD end temperatures. We also consider some
improvements and applications to the case of antihydrogen.

Using the SOLD method requires only three easily met
conditions: a three-level system, selective excitation in a
lattice with Ulat � h̄�, and an initial velocity satisfying v >

λlat�. Such simple requirements can be fulfilled by many
systems where laser-cooling to the ultracold regime remains
a challenge. Already, recent independent work has shown
similar Sisyphus cooling effects in optical tweezers [50],
and adapting the present laser-cooling method to new exotic
species and (polyatomic) molecules [11–14,25–29] is the
next logical step. Furthermore, by careful choice of the time
sequence for the lattice velocity and intensity, a pulsed version

of the SOLD could bring an atom wave packet to any desired
velocity while scattering only a handful of photons.
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APPENDIX A: LATTICE HEIGHT DETERMINATION

We need an accurate determination of the lattice height to
characterize the SOLD. The potential of a 1D lattice acting on
the 3P1 state depends on its dynamic dipole polarizability α.
In the two-level approximation, valid here because the lattice
laser detuning �lat is only a few tens of GHz, the polarizability
is given by

α ≈ 3ε0λ
3
lat

8π2

�eff

�lat
, (A1)

where ε0 is the vacuum permittivity. The effective rate
�eff = η A3P1−3S1

is the effective transition rate for the
5s5p 3P1-5s6s 3S1 transition, with η = 1/2 due to the lattice
laser polarization. The relative uncertainties of the parameters
contributing to the determination of the lattice height are listed
in Table II. All parameters contributing to the lattice height
and their uncertainties are determined experimentally, except
for A3P1-3S1

that we derive from the literature in the following
manner.

The branching ratios from the 3S1 state to the three
5s5p 3PJ states can be calculated taking into account the fine-
structure splitting that produces frequency-dependent cor-
rection factors. The resulting branching ratios are 3S1 to
(3P0,

3P1,
3P2) = (12.02 %, 34.71 %, 53.27 %). The transi-

tion rate for 5s5p 3P0–5s6s 3S1 was precisely determined ex-
perimentally and theoretically in Refs. [51] and [52]. By scal-
ing this known transition according to the branching ratios, we
arrive at a transition rate A3P1-3S1

= 2.394(24) × 107 s−1.

APPENDIX B: SOLD MODEL

Here we give a description of our model of the SOLD that
is an extended version of the description given in the text.

TABLE II. Relative uncertainties on the relevant parameters used
to calculate the lattice height for the 3P1 state.

Uncertainty

Lattice beam power ±3.0 %
Lattice beam waist ±1.4 %
Lattice frequency detuning �lat ±0.1 %
Total transition rate A3PJ -3S1

±1.0 %
Total uncertainty ±4.2 %
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In order to model our cooling scheme in an insightful way,
we split the problem into two parts: the average energy lost
per cooling cycle and the excitation rate. The excitation rate
has been described extensively in the text. As for the energy
lost, we give more details below. We then use both energy lost
and excitation rate results to simulate the time evolution of the
atoms’ velocity.

1. Energy lost

We begin with a study of the energy lost due to the presence
of the lattice. We assume that the atoms are excited into the 3P1

state at the bottom of the lattice and we solve the differential
equation for the motion z(t ) along the lattice propagation axis,

1

2
mv2

0 = Ulat sin2 klatz + 1

2
m

(
dz

dt

)2

, z(t = 0) = 0, (B1)

with m and v0 being, respectively, the mass and the initial
velocity of the atom. Ulat is the lattice depth and klat = 2π

λlat
is the wave vector of the lattice light with wavelength λlat.
The solution of this equation can be written in terms of the
Jacobi amplitude JA:

z(t ) = 1

klat
JA

(
klatv0 t,

2Ulat

mv2
0

)
. (B2)

Since the process relies on spontaneous emission towards
1S0, we determine the average energy lost Elost (Ulat, v0) by
integrating the lattice height explored for a duration set by the
natural linewidth � of the 1S0-3P1 transition,

Elost = �

∫ ∞

0
e−�t Ulat sin2(klatz(t )) dt . (B3)

In Fig. 5(a), we show the evolution of Elost for several
lattice heights and depending on the incoming velocity. We
observe that for high incoming kinetic energies compared
to the lattice height 1

2 mv2
0 � Ulat , the energy lost Elost satu-

rates. In this case, atoms travel through several lattice sites,
and their propagation tends to z(t ) → 1

klat
JA(klatv0 t, 0) = v0 t .

Equation (B3) gives the relation Elost → Ulat
2 /(1 + ( �

2klatv0
)
2
).

In our experiment v0 � λlat�, so the average energy lost
saturates to Ulat/2. One striking feature of Fig. 5(a) is that
the energy lost exhibits a sharp resonance for 1

2 mv2
0 = Ulat ,

where cooling is the most efficient. In this case, atoms have
just enough energy to climb on top of the first lattice hill, so
they spend most of their time at this location, which makes
them more likely to spontaneously emit there and therefore to
lose most of their kinetic energy. Indeed, the explored lattice
height becomes U (t ) → Ulat tanh2(klatv0 t ), which for v0 �
λlat� gives an average energy lost reaching asymptotically
Elost → Ulat.

2. Overall evolution

In order to model the complete behavior of the SOLD,
we solve classically the evolution of the atoms’ velocity
v with time, under an effective force F (Ulat, v) = −� ×
ρ3P1

(Ulat, v) Elost (Ulat, v). We carry out this calculation for a
packet of atoms whose velocity distribution follows a (1D)
Boltzmann distribution corresponding to the temperature of
our MOT of 6 μK summed with an offset corresponding to the

FIG. 9. Comparison between (a) the experimental data shown in
Fig. 3 and (b) the results of the theoretical model (see text) for the
same initial mean velocities.

measured mean velocity given by the launch beam. The cap-
ture probability in our reservoir is determined by the velocity-
dependent efficiency extracted from the measurement shown
in Fig. 4, corresponding to a Gaussian function with a width
σv = 0.0084 m s−1. We thus simulate the time evolution of
the loaded population in the reservoir depending on the lattice
height, for the four mean starting velocities shown in Fig. 3.
In Fig. 9 we compare the results from this model with our
experimental data.

We see a good qualitative agreement concerning the overall
behavior with both the lattice height and the starting mean
velocity. In particular, the locations of the optima of loading
efficiency are well reproduced by our model. These corre-
spond to the case when the starting mean velocity v0 verifies
the criterion of Eq. (3) (with m = 1). Indeed, in that case
atoms are efficiently excited to the 3P1 state and typically
lose a significant amount of energy Ulat/2. After spontaneous
emission, their velocity is much lower and atoms are in the
(Ulat, v) region where the density of lines for m � 2 is high.
They are therefore very likely to keep decelerating efficiently.
On the contrary, for a high velocity v0, in the region 0 	
Ulat

h 	 4v0
λlat

, atoms will not get excited to 3P1. Our model is thus
able to estimate the capture velocity vc of the SOLD, which is
given by

vc = Ulatλlat

4h
. (B4)

Let us note that our model makes several approximations.
Indeed the results of the calculations shown in Fig. 9(b)
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are given for one particular evolution time, t = 1.4 ms, that
has been chosen for the best match with the steady-state
experimental data. Since no decay mechanism has been added
in the model, the final loading would be with unity efficiency.
This chosen deceleration time is rather short, because in this
case the saturation parameter of the 1S0-3P1 transition is set to
∼320, for which the calculations suffer fewer numerical er-
rors compared to more realistic, lower saturation parameters.
Nonetheless, the simulations always exhibit the same overall
behavior no matter the value of the saturation parameter. An-
other limitation of our model is that no selection criteria have
been chosen for the position of atoms, whereas they must be
in the vicinity of the crossing between the transport guide and
the reservoir to be loaded. Similarly, atoms expelled from the
guide by the barrier formed by the blue-detuned lattice and the
effects of the lattice’s slight angle with the guide are not taken
into account. Finally, the constant-velocity approximation
made when solving the optical Bloch equations is not valid
for 1

2 mv2 � Ulat . To obtain a better quantitative agreement, a
more advanced theoretical study would be required [53].

APPENDIX C: SISYPHUS OPTICAL LATTICE
ACCELERATOR

The SOLD deceleration scheme brings atoms ultimately
to zero mean velocity in the reference frame of the lattice.
By applying a small frequency difference between two lattice
beams, a lattice will move at a well-controlled velocity. This
implies that the SOLD can ideally decelerate or accelerate
atoms to any desired velocity. We test this using a 1.53(2)-μK
stationary cloud produced by loading a MOT into a dipole
trap, at the location of the lattice. We shine both lattice
and excitation light onto this cloud for 100 μs and, after
20 ms, observe the number of atoms in a displaced cloud

FIG. 10. Acceleration of a stationary strontium cloud by a mov-
ing lattice, for various lattice heights. The abscissa gives the lattice
velocity, and the ordinate, in arbitrary units, is proportional to the
fraction of atoms in the moving frame measured after 100 μs of
acceleration followed by 20 ms of evolution.

corresponding to the moving lattice frame. The results are
shown in Fig. 10. We observe an increase in the displaced
fraction with lattice height, which we attribute to the increase
in energy ∼Ulat/2 given to the atoms for each scattering event.
We also observe an optimal lattice velocity for a given lattice
height, which roughly corresponds to our model criterion of
Eq. (3) with m = 1. The variation in the location of these
efficiency peaks is more visible in Fig. 10 than in Fig. 3,
because here the SOLD is pulsed for a short duration instead
of operating in the steady-state regime, so the effects of each
resonance corresponding to Eq. (3) are more pronounced.
Note that due to the initial size of the cloud and its location
with respect to the lattice, our estimation of the effective
lattice depth is much rougher than for the data in Fig. 3.
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