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Quantum-classical hybrid algorithm using an error-mitigating N-representability condition to
compute the Mott metal-insulator transition
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Quantum algorithms for molecular electronic structure have been developed with lower computational scaling
than their classical counterparts, but emerging quantum hardware is far from being capable of the coherence,
connectivity, and gate errors required for their experimental realization. Here we propose a class of quantum-
classical hybrid algorithms that computes the energy from a two-electron reduced density matrix (2-RDM).
The 2-RDM is constrained by N-representability conditions, constraints for representing an N-electron wave
function, which mitigate noise from the quantum circuit. We compute the strongly correlated dissociation of
doublet H3 into three hydrogen atoms. The hybrid quantum-classical computer matches the energies from full
configuration interaction to 0.1 kcal/mol, one-tenth of “chemical accuracy,” even in the strongly correlated limit
of dissociation. Furthermore, the spatial locality of the computed one-electron RDM reveals that the quantum
computer accurately predicts the Mott metal-insulator transition.
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I. INTRODUCTION

Quantum computers hold the promise of tackling some of
the most challenging simulations of many-electron quantum
systems [1,2]. A number of quantum algorithms have been de-
veloped which exhibit lower scaling than their classical coun-
terparts [3–5], but emerging quantum hardware is not cur-
rently capable of long coherence times, arbitrary connectivity,
and low gate error, which are requirements for most of these
algorithms. As a consequence, efforts to maximally utilize the
available devices have taken inspiration from quantum and
classical regimes alike [6–10]. In particular, hybrid quantum-
classical algorithms have been developed, which attempt to
separate efficiently quantum and classical components of a
problem [11–13]. Quantum hardware is used to prepare and
measure a quantum state or encode information, with the
remaining tasks distributed to a conventional computer for
classical execution [11,14]. Attempts to minimize the effect
of the noise through algorithm design are known as error
mitigation. Error-mitigation schemes, recently proposed and
implemented, include those based on extrapolative procedures
or inherent stabilizer codes [15–17].

While recent hybrid quantum-classical algorithms like the
quantum eigensolver method compute the two-electron re-
duced density matrix (2-RDM) to determine the energy, they
are developed with the wave function’s variational principle
and hence, they do not consider the 2-RDM’s variational
principle. The key distinction between these two variational
approaches is that the variational principle of the 2-RDM
contains additional constraints that are necessary for the 2-
RDM to represent at least one N-electron density matrix
or wave function, known as N-representability conditions
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[18–21]. On a classical computer necessary N-representability
conditions allow us to compute a lower bound on the ground-
state energy and an approximate 2-RDM without compu-
tation or storage of the N-electron wave function [20,22–
33]. The variational calculation of the 2-RDM subject to
approximate N-representability conditions can capture strong
electron correlation in molecular systems at a computational
cost that scales polynomially with the number N of electrons
[34–39]. While a perfect quantum computer would be able
to operate with the variational principle of the wave function,
near-term quantum computers operate with substantial noise
that disrupts the N representability of the measured 2-RDM.
The 2-RDM variational principle provides a physical resource
for error mitigation in the form of the N-representability
conditions. Previous work has considered the use of these
conditions to perform quantum tomography of one-electron
RDMs (1-RDMs) and 2-RDMs from noisy experimental data,
and more recent work has proposed the extension of these
ideas to measurements from a quantum computer [40–42].

In this paper we propose and implement a quantum-
classical hybrid algorithm for molecular electronic structure
that uses a 2-RDM variational principle in which the 2-RDM
is constrained by N-representability conditions. Previous elec-
tronic structure calculations on quantum computers have
largely treated 2- or 4-electron atoms or molecules in closed-
shell states without significant electron correlation [9,12,43–
45]. We implement an algorithm for 3-electron molecules
in open-shell, doublet states with significant strong electron
correlation. A pure-state N-representability condition, known
as a generalized Pauli constraint, which was originally dis-
covered by Borland and Dennis at IBM in a series of compu-
tations on a classical computer [46], allows us to express the
N-representable 2-RDM for 3-electron systems as a functional
of only the 1-RDM [47,48]. We optimize the eigenvalues of
the 1-RDM on the quantum computer and its eigenfunctions,
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TABLE I. Quantum-classical hybrid algorithm for the ground-state energy and 2-RDM with error-mitigating N-representability conditions.

Algorithm: Quantum-classical hybrid algorithm for the 2-RDM with error-mitigating N-representability conditions
Given a convergence threshold ε.
Choose the initial unitary transformation to prepare �.
Repeat until convergence of the ground-state energy.

Step 1: Prepare � via unitary transformations (quantum computer).
Step 2: Perform tomography to measure the elements of the 2-RDM (quantum computer).
Step 3: Correct 2-RDM for a set of N-representability conditions (classical or quantum computer).
Step 4: Compute the energy from the 2-RDM from Tr(2K 2D) (classical computer).
Step 5: Minimize the energy with respect to orbital rotations (classical computer).
Step 6: Update parameters in the unitary transformations from derivative-free optimization (classical computer).

which are not restricted by N representability, on the classical
computer. The eigenvalues of the 1-RDM are represented by a
3-electron wave function on the quantum computer. Compu-
tation of the strongly correlated dissociation of molecular H3

yields its potential energy surface and an accurate prediction
of its Mott metal-to-insulator transition [49]. Energies are
computed with errors of about 0.0001 atomic units (or less
than 0.1 kcal/mol).

II. THEORY

After discussing a general quantum-classical hybrid algo-
rithm for computing the ground-state energy and 2-RDM with
error-mitigating N-representability conditions in Sec. II A, we
examine the details of implementing such an algorithm for
three electrons in six orbitals in Secs. II B and II C.

A. Quantum-classical hybrid algorithm with N-representability
conditions

For an N-electron system (N � 2), we can write the 2-
RDM as

2D(12, 1̄2̄) =
∫

ψ (123 . . . N )ψ∗(1̄2̄3 . . . N )d (3 . . . N ). (1)

The 2-RDM of a system has all the information necessary
for calculating the energy and other molecular properties. For
instance, the energy of a molecular system is obtained as

E = Tr(2K 2D), (2)

where 2K is the reduced Hamiltonian. Although the energy
is expressible as a linear functional of the 2-RDM, the 2-
RDM must be constrained by N-representability conditions
for it to be representable by at least one N-electron density
matrix or wave function [19–21,50]. Necessary ensemble-
state and pure-state N-representability conditions are known
[21,50,51].

A general quantum-classical hybrid algorithm for comput-
ing the ground-state energy and 2-RDM with error-mitigating
N-representability conditions is given in Table I for N-
electron quantum systems. After the quantum state is prepared
on the quantum computer through a series of unitary transfor-
mations, tomography is performed to measure the elements of
the 2-RDM. Unlike traditional algorithms, the 2-RDM in step
3 is corrected for errors from hardware or noise by accounting
for additional constraints on the 1- or 2-RDM [40–42] such as
ensemble or pure-state N-representability conditions on the
2-RDM [21,50]. For example, in the next section, we discuss

using a pure N-representability condition for three fermions,
and more generally, Foley and Mazziotti [40] discuss general
corrections of RDMs for ensemble N-representability con-
ditions through semidefinite programming. The performance
of orbital rotations on the classical computer, as proposed
here in step 5, can be applied to any electronic system with
any number N of electrons because N-representability condi-
tions are invariant to unitary transformations of the orbitals
[18]. Orbital rotations of the 2-RDM can be performed with
polynomial-scaling cost on the classical computer, which sim-
plifies the quantum circuit required on the quantum computer,
thereby decreasing the effects of hardware errors and noise. In
step 6 the unitary transformations that prepare � are updated
via a derivative-free optimization algorithm. Finally, steps 1–6
are repeated until the ground-state energy converges below a
given threshold ε.

The pure-state N-representability conditions of the 1-
RDM, also known as the generalized Pauli constraints
[46–48,50–57], are in the form of linear inequalities on the
set of 1-RDM eigenvalues (natural occupation numbers) for
a given number of electrons and orbitals. In 1972 Borland
and Dennis [46] discovered these constraints that extend the
Pauli exclusion principle in the case of three electrons in six
orbitals, and in 2006 Klyachko (and in 2008 with Altunbulak)
generalized their derivation for potentially arbitrary numbers
of electrons and orbitals [51,52]. In general these constraints
are not saturated by the natural occupation numbers of corre-
lated quantum systems [50]. However, these constraints are
often quasisaturated (or quasipinned) [53], and in the case
of atoms and molecules with three electrons in six orbitals
it has been computationally demonstrated that in many cases
the generalized Pauli constraints are saturated by the natural
occupation numbers [47,54].

In this work we focus on the 3-electron-in-6-orbital system,
which has eigenvalues of the 1-RDM, or natural occupation
numbers, {ni} (and 1 � i � 6, i ∈ N), where ni � ni+1. The
constraints on {ni} in this case, known as the Borland-Dennis
constraints [46], are as follows:

n5 + n6− n4 � 0, (3)

n1 + n6 = 1, (4)

n2 + n5 = 1, (5)

n3 + n4 = 1. (6)
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When a wave function saturates the inequality, then its expan-
sion contains only Slater determinants that also saturate the
inequality, which is known as a selection rule, and hence, in
this case only three determinants contribute to its expansion
[57–59]:

|ψ〉 = α|111000〉 + β|100110〉 + γ |010101〉, (7)

where |γ |2 = (1 − |α|2 − |β|2), 1 � |α|2 � |β|2, and |α|2 �
|β|2 + |γ |2. Any two ni, n j of the 1-RDM, where i + j �= 7,
are linearly dependent basis vectors of the wave function |ψ〉
up to phases. As discussed in the paragraph above, this satu-
ration has been demonstrated computationally for the ground
states of a wide variety of 3-electron-in-6-orbital atoms
and molecules [47,54]. The 3-electron-in-6-orbital atoms and
molecules need not be pinned to the Borland-Dennis inequal-
ity [47,48,53], but such pinning has been observed in Li, the
potential energy surface of H3, and the π system of C3H3, as
well as other systems [47,57]. Using this pruned expansion,
we are able to reconstruct the 2-RDM from the 1-RDM (see
Appendices B–D). The reconstruction of the 2-RDM in this
case is equivalent to the correction of the 2-RDM by N-
representability conditions in the general algorithm.

B. Error-mitigation scheme

While the N-representability condition itself acts like a
form of error correction by constraining the 1- and 2-RDMs
to be representable by a wave function, in obtaining 1-RDM’s
from a quantum computer an additional error-mitigation
scheme can be implemented to ensure that all permissible
1-RDM eigenvalues are explored. The set of occupation num-
bers that satisfies the pure constraints on a system forms a
multidimensional convex set with “flat” sides known as a
polytope. For instance, in the case of three electrons in six
orbitals, the Pauli exclusion principle defines four “planes” in
the space spanned by {n4, n5, n6}:

n6 − n5 = 0, (8)

n5 − n4 = 0, (9)

n6 = 0, (10)

n4 − 1
2 = 0, (11)

where Eqs. (8) and (9) are from the ordering constraints,
and Eqs. (10) and (11) are from Pauli exclusion limits on
occupations. The generalized Pauli constraints provide an-
other plane, defined as Eq. (3) [which actually is stronger
than Eq. (10)]. The intersection of these planes provides the
relevant polytope. The Hartree-Fock (or initialized qubit) state
is one extrema of the polytope with the constraints defining
the facets of the polytope, given as vHF = (0, 0, 0).

The basic principle of the error mitigation is to remap the
extrema of the polytope to adjust for errors detected through
an initial set of measurements. In other words, let the set of all
points in the polytope under the pure constraints be A, and the
set of measurable points under error be A′. Then, we introduce
a mapping T :

T : A′ → A, (12)

and A includes the desired region. In the present work we
employ this as a simple affine transformation.

C. Hybrid variational algorithm

The optimization of the 1-RDM is carried out in the
natural-orbital basis set on the quantum computer. Orbital
rotations, which are necessary to determine the energetically
optimal natural orbitals, scale polynomially with the number
of orbitals and hence are treated on the classical computer.
This partitioning of tasks between the quantum and classi-
cal computers, physically motivated by the structure of the
N-representability conditions, reduces the complexity of the
optimization.

To stay in the natural-orbital basis, we use the following
3-qubit gate sequence:

Û (θ1, θ2) = C1
2 Ry

2(θ2)C3
1 Ry

1(θ1), (13)

where C j
i and Ry

j (θi ) are the controlled-NOT and Y-rotation
gates. This series of transformations was derived to ensure
that the set of resulting states spans the plane of occupations
in Eq. (3)–(6). The quantum state has a diagonal 1-qubit
RDM, and a standard qubit measurement in the computational
basis is sufficient to obtain the 1-RDM. Equation (13) is
the state preparation which can be replaced with unitary
transformations of increasing complexity for any number N
of electrons. Furthermore, in step 3 of the general algorithm
in Table I the Borland-Dennis constraint can be replaced with
a set of more general N-representability conditions [21,50],
using an RDM-correction scheme such as the one described
in Ref. [40].

The set of possible occupation numbers of a 1-RDM gen-
erated by Eq. (13) forms a curved two-dimensional surface
within the polytope. A transformation Ti from the qubit space
to the molecular space of Eq. (7) is given by

Ti = GiQ
−1
i ,

Ti : C23 → ∧3H6, (14)

where Gi are vertices of the space spanned by Eq. (7) subject
to ordering constraints, and Qi are vertices of the measured
set of the algorithm [see Eq. (13)]. The i indices correspond
with the triangulation of the curved surface. Note that when
compared with Eq. (12), we use a composition to map directly
to the desired 3-electron-6-orbital Hilbert space.

During the optimization, the 1-qubit RDM is measured on
the quantum computer, the error-mitigating transformation Ti

is applied, and the 2-RDM is constructed classically from the
corrected 1-RDM elements. Following the convergence with
respect to 2D, Givens rotations are carried out classically on
the 2K matrix to minimize the energy according to Eq. (2).
The process is carried out iteratively until both methods
converge. The Nelder-Mead simplex or steepest descent al-
gorithms were used for both optimizations. See Appendix A
for more details.
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III. RESULTS AND DISCUSSION

A. Dissociation of linear H3

Figure 1 presents the dissociation of the linear H3 molecule
in its ground doublet state into three hydrogen atoms from
equal stretching of the two bonds. Calculations were per-
formed in the Slater-type-orbital minimal basis set (STO-3G)
with results compared to those from classical full config-
uration interaction (FCI). Using the RDM method on the
quantum computer (RDM-QC), we obtain a highly accu-
rate potential energy curve for the H3 dissociation even for
values of the internuclear distance greater than 2 Å where
strong electron correlation is present due to the spin entan-
glement among the energetically degenerate H-atom 1s or-
bitals. Second-order many-body perturbation theory diverges
as the bond is stretched beyond 2 Å. Throughout the disso-
ciation curve energy errors from RDM-QC are consistently
less than 0.0001 a.u. (or less than 0.1 kcal/mol) relative to
FCI. Because the RDM reconstruction guarantees a physical,
N-representable 2-RDM, the energy curve obtained is an
upper bound to the FCI energy curve. While uncertainty from
sampling on the order of 0.002–0.0002 a.u. is larger than
the energy errors, the rigorous variational principle from the
N-representability constraints allows us to obtain energies
that are much more accurate than the noise in the quantum
computer. To the best of our knowledge, these are some of
the most accurate energies obtained to date with a generalized
quantum architecture. The tolerances of the algorithm are
well suited for low iterations on the IBM device, but can be
tightened to accomplish lower error rates.
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FIG. 1. Dissociation curve for the doublet H3 with respect to the
bond distance from the center H to the two exterior H atoms in
a linear geometry. The crosses were calculated with a variational
quantum algorithm on the quantum computer, while the line was
generated with a full configuration interaction (FCI) calculation
on a classical computer. Energies are listed in hartree. The inset
plot depicts the error from the full-CI method as a function of the
separated distance, reported in millihartree. The dashed line is at
1.6 millihartree, which corresponds to 1.0 kcal/mol, a number that is
generally used as a guide for chemical accuracy. The effect of errors
is discussed in the text and in Appendix A. Variability from a single
run is on the order of 2–0.2 millihartree, and in our optimization we
purposefully over sample the target region.
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FIG. 2. Shows the sum of squares of the off-diagonal elements,
τ , of the 1-RDM of H3 in the local Löwdin atomic orbital basis along
the dissociation curve of H3. Here, τ = ∑

i �= j ‖1Di
j‖2 where i, j are

orbital indices in the Löwdin atomic orbital basis. The Hartree-Fock
result is shown as a dashed-dotted line, the FCI result is solid, and our
variational quantum computation is shown as crosses. The bottom
dashed line shows the dissociated limit where τ = 0, and the natural
orbitals approach the atomic ones. That H3 serves as a Mott insulator
can be seen between these distances, as τ → 0 with increasing
distance, highlighting the mean field and 2-electron approaches.

B. Mott metal-insulator transition for H3

Using the computed 1-RDM, we can also calculate one-
electron properties of the system. Upon dissociation, molec-
ular H3 undergoes a Mott transition from a metal to an
insulator. The transition can be observed from the sum of the
squares of the off-diagonal elements of the 1-RDM in the
local atomic-orbital basis set. Figure 2 compares the sum of
squares from the RDM calculation on the quantum computer
(RDM-QC) with the corresponding results from Hartree-Fock
(HF) and FCI. We observe that HF theory fails to capture the
metal-to-insulator transition, remaining metallic throughout
the dissociation, but the RDM-QC correctly predicts the tran-
sition in close agreement with FCI. RDM-QC captures this
transition because its parametrization captures the requisite
strong electron correlation.

The expression of the pure N-representability condition in
terms of the natural orbitals suggests a natural partition of the
electronic structure calculation between the quantum and clas-
sical computers. Minimization of the energy as a functional
of the 2-RDM in the natural-orbital basis set is performed
on the quantum computer while optimization of the natural
orbitals is performed by inexpensive, polynomially scaling
orbital rotations on the classical computer. In the language
of quantum information, the nonlocal degrees of freedom,
responsible for multiparticle entanglement, are optimized on
the quantum computer, and the local degrees of freedom
are optimized on the classical computer [60,61]. In classical
electronic structure the separation of the orbital optimization
has precedent in methods like self-consistent-field methods,
Brueckner-orbital coupled-cluster theory, and natural-orbital
functional theories [20,62–66].
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IV. CONCLUSION

A quantum-classical hybrid algorithm for molecular elec-
tronic structure is implemented that uses a 2-RDM-based
energy variational principle in which the energy is minimized
with the 2-RDM constrained by N-representability condi-
tions. Computations are performed for the strongly correlated
dissociation of the H3 molecule. The QC-RDM calculation
accurately captures the potential energy curve within an error
of about 0.1 kcal/mol even in the dissociation region where
classical single-reference methods fail. It also yields the 1-
and 2-RDMs with the 1-RDM revealing the Mott transition
from a metal to an insulator.

While previously employed hybrid algorithms like the
variational quantum eigensolver also compute the 2-RDM en
route to the energy, the present work uses a 2-RDM-based
variational principle in that we explicitly constrain the 1- and
2-RDMs to be pure N representable. The N-representability
conditions provide a physically motivated error-mitigation
scheme which is critical to achieving accurate results on
near-term quantum computers which are noisy and prone to
errors. While the present work employs an N-representability
condition for 3-electron systems proposed by Borland and
Dennis, the 2-RDM-based variational principle on a quantum
computer is applicable to systems with arbitrary N through
the use of more general N-representability conditions. The
present work provides an important step toward harnessing
two-electron reduced density matrix theory within the context
of quantum computing for accurate computations of many-
electron molecules and materials.
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APPENDIX A: COMPUTATIONAL DETAILS

The electronic structure package PYSCF [67] was used to
obtain electron integrals and to perform restricted open-shell
Hartree-Fock and full configuration interaction calculations.
For the quantum computation we used the IBM Quantum
Experience devices (ibmqx4), available online, with a 5-
transmon quantum computing device [68]. These cloud ac-
cessible quantum devices are fixed-frequency transmon qubits
with co-planer waveguide resonators [68,69]. Experimental
calibration and connectivity of these devices is included in
Appendix E. The quantum information package QISKIT was
used for interfacing with the device [70].

A compact qubit mapping was utilized, similar to previous
work with a 3-electron-in-6-orbital system [71], although
adapted for the current work. Each evaluation of the quantum
computer had 2048 measurements on the 3-qubit populations,
with no additional tomography required. About two macro-
iterations were required for most distances (with only one
taking five iterations). The stopping criteria on the quantum
computer was a distance of 0.1◦ of the simplex vertices to the
centroid (although repeatability errors for set parameters were
on a larger scale than this). A threshold of 0.1 millihartree be-
tween the quantum computation and the orbital rotations was
required for the macro-iterations to terminate. We illustrate
the optimization with data taken from the point d = 1.34 in
Fig. 3.

Despite the relatively high sampling error on the quantum
computer, the algorithm is able to find much higher accu-
racy answers due to repeated sampling across the valley of
the energy surface, as well as ensuring that a system is N
representable. Because sampling even within a distance of
2◦ may lead to highly variable results, the strict criteria of
convergence for the simplex implies that the region is well
sampled.

APPENDIX B: MAPPING THE WAVE FUNCTION

Here we explicitly describe the mapping of the wave
function. We first map the computational qubit states (qik ,
where i is qubit number, k is the qubit state, 0 or 1) to the GPC
orbitals (ni), though these mappings can vary as the qubits are
not inherently ordered. Then, we use an additional mapping
from the GPC orbitals to the molecular spin orbitals (φi). The
mappings are as follows:

q3,0 ↔ n1 ↔ φ1α, (B1)

q2,0 ↔ n2 ↔ φ2α, (B2)

q1,0 ↔ n3 ↔ φ1β, (B3)

q1,1 ↔ n4 ↔ φ3α, (B4)

q2,1 ↔ n5 ↔ φ2β, (B5)

q3,1 ↔ n6 ↔ φ3β. (B6)

These mappings, albeit useful for the present implementation,
are not unique. The parameters in Appendix D and the prepar-
ing gates in Eq. (13) account for the selected ordering.

APPENDIX C: RECONSTRUCTION OF THE 2-ELECTRON
REDUCED DENSITY MATRIX (2-RDM)

The wave function which is pinned to the Borland-Dennis
constraint is given in Eq. (7). We can also parametrize
this in terms of the eigenvalues (occupations) of the 1-
electron reduced density matrix (1-RDM) ni, and a coefficient
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FIG. 3. Energy errors of the (a) first and (b) second macro-iterations of the Nelder-Mead simplex optimization of H3 are shown as a
function of the number of energy evaluations. The variational design of the algorithm allows for lower errors in the final energy than present
in the sampling. The energy errors in millihartree are measured relative to the energies from full configuration interaction. The blue dashed
line shows the energy of the best simplex point along the optimization, while the green dotted line shows the “chemical accuracy” threshold
of 1.6 millihartree. Error bars correspond to a 90% confidence interval based largely on sampling errors in the quantum computer. The edge
hydrogens in H3 have a separation of 1.34 Å.

phase pi.

|ψ〉 = pα

√
1 − n5 − n6|111000〉 + pβ

√
n5|100110〉

+ pγ

√
n6|010101〉. (C1)

The choice of n5, n6 is somewhat arbitrary, but shows that
having only two nonmatching ni is sufficient to represent the
wave function. From this, the 2-RDM in the GPC basis can
be constructed as follows. We choose a Sz = +1/2 spin state
with the following α/β orbital assignment: α ∈ {1, 2, 4}, β ∈
{3, 5, 6}. An element of the 2-RDM is given by

2Di,k
j,l = 〈ψ |â†

i â†
k âl â j |ψ〉, (C2)

where â†
i , âi are the second-quantized creation and annihi-

lation operators, respectively. The αα and αβ blocks of the

2-RDM are given by

2Dα,α
α,α =

⎛
⎝

1 − n5 − n6 0 0
0 n5 0
0 0 n6

⎞
⎠, (C3)

with the column basis {â2â1, â4â1, â4â2}, used
in the αα block, and the column basis
{â3â1, â5â1, â3â2, â6â2, â5â4, â6â5} for the αβ block [note
that â†

i â†
j (â6â1/â5â2/â3â4) are all equal to 0 for any i, j]. The

nonzero elements which require the flexibility of the sign
are â†

4â†
6â3â1, â†

2â†
6â5â1, and â†

4â†
5â3â2 and their Hermitian

conjugates (∗ terms). Additionally, we have set pγ = 1, but
still have equivalent degrees of freedom in the sign of the two
remaining terms. This treatment of the sign terms is included
in the next Appendix.

2Dα,β

α,β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − n5 − n6 ∗ ∗ ∗ ∗ ∗
0 n5 ∗ ∗ ∗ ∗
0 0 1 − n5 − n6 ∗ ∗ ∗
0 pβ

√
n5n6 0 n6 ∗ ∗

0 0 pα pβ

√
(1 − n5 − n6)(n5) 0 n5 ∗

−pα

√
(1 − n5 − n6)(n6) 0 0 0 0 n6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C4)

APPENDIX D: WAVE-FUNCTION PARITY MAPPING

In constructing the terms pi, the main requirement is that
they do not break the continuity of the potential surface, and
that all degrees of freedom are still reachable. Because of the
symmetry of the ni and their repeating structure with respect
to the input parameters θi, we are able to link pi with these

parameters. We also bound the input θi to the minimal region
required to create any point in the plane. We define a new
variable φ which maps (−∞,∞) to [−π/4, π/4]:

φ(θ ) = (−1)x(θ )
[(

θ + π

4

)
mod

π

2

]
, (D1)
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TABLE II. Calibration information for the 5-transmon qubit
device, denoted as IBMQX Tenerife, Raven, or ibmqx4. Included
are the readout errors for the qubits and the single and multiqubit
gate errors for each date. In general, the qubits were selected so as
to have minimal error on the device. Qubit connectivity is directional
with the first qubit indicating the control and second qubit indicating
the target.

Calibration date: 1 2 3 4 5 6

Readout error (10−3)

Q0: 64 74 66 56 66 87
Q1: 65 75 52 43 43 75
Q2: 16 19 18 18 25 19
Q3: 38 13 24 33 30 81
Q4: 45 37 208 219 323 309

Gate error (10−3)

Q0: 0.77 1.03 1.20 0.86 0.69 0.86
Q1: 1.80 2.32 1.63 1.72 1.29 1.20
Q2: 1.03 1.20 0.94 1.03 1.46 0.86
Q3: 1.46 1.63 1.29 1.63 1.80 1.72
Q4: 1.37 1.29 1.63 1.20 3.35 3.35
Q1-Q0: 29.2 37.5 32.9 24.6 27.9 32.5
Q2-Q0: 30.5 27.5 28.6 24.9 31.2 32.6
Q2-Q1: 29.9 42.7 34.5 32.7 41.4 34.5
Q3-Q2: 43.3 69.6 50.8 65.7 60.6 59.3
Q3-Q4: 36.9 45.1 40.8 36.6 69.9 79.5
Q4-Q2: 43.8 46.3 55.5 47.8 91.0 72.2

where

x(θ ) = θ − π
4 − (

θ + π
4

)
mod π

2
π
2

. (D2)

While based on Eq. (13) we will not have switching of ni

between q3,1 and q1,1 or q2,1 and q1,1, it is possible to switch
between ni on q2,1 and q3,1, corresponding with n5 and n6,
and our sign mapping should be invariant to this switch. If we
instead assume that pα is 1 instead of pγ , we can achieve this
invariance by requiring that if φ1 < 0:

if φ2 � −φ1 and φ2 � 0, then pγ = −1 else pβ = −1,

(D3)

and if φ2 < 0, then

if φ2 � −φ1 and φ1 � 0, then pβ = −1 else pγ = −1.

(D4)
Combined, these conditions produce a mapping of the set
of θ1, θ2 to a ± sign, which is symmetric across the line
θ1 = θ2. This gives the required mapping of signs. While the
surface is not smooth because of the boundary around nπ

4 , it is
continuous.

APPENDIX E: QUANTUM COMPUTER ERRORS

Calibration data used in obtaining the H3 calculations on
the IBM device are included in Table II [72].
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