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Exploring nonequilibrium phases of the generalized Dicke model
with a trapped Rydberg-ion quantum simulator
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Trapped ions are a versatile platform for the investigation of quantum many-body phenomena, in particular
for the study of scenarios where long-range interactions are mediated by phonons. Recent experiments have
shown that the trapped ion platform can be augmented by exciting high-lying Rydberg states. This introduces
controllable state-dependent interactions that are independent of the phonon structure. However, the many-body
physics in this newly accessible regime is largely unexplored. We show that this system grants access to
generalized Dicke model physics, where dipolar interactions between ions in Rydberg states drastically alter the
collective nonequilibrium behavior. We analyze and classify the emerging dynamical phases and identify a host
of nonequilibrium signatures such as multiphase coexistence regions and phonon-lasing regimes. We moreover
show how they can be detected and characterized through the fluorescence signal of scattered photons. Our
study thus highlights interesting capabilities of trapped Rydberg-ion systems for creating and detecting quantum
nonequilibrium phases.
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I. INTRODUCTION

In the past decade, trapped ions have been established
as a promising experimental platform for investigating the
behavior of quantum many-body systems, both in and out
of equilibrium [1–3]. Long coherence times and controllable
phonon-mediated interactions make this system highly ver-
satile and flexible [4–6]. As a consequence, trapped ions
have found important application in the fields of quantum
information [1–3,7,8], metrology [9–11], and quantum ther-
modynamics [12–14]. Moreover, they have been successfully
employed to simulate a rich variety of spin many-body quan-
tum models [4,5,15–20] and provided access to new nonequi-
librium collective phenomena, such as nonequilibrium phase
transitions [21,22], phonon lasing [23–29], and quantum
synchronization [30].

Trapped ion quantum simulators can be further enhanced
by exciting ions to high-lying Rydberg states. Such Rydberg
ions, which were initially proposed by Müller et al. [31,32]
and recently experimentally realized [33–38], have the po-
tential to overcome current scalability limitation of trapped
ion setups in quantum information applications [7,39,40].
Furthermore, the exaggerated properties of Rydberg states
[41–44] permit the realization of fast quantum gates and, more
generally, the implementation and simulation of many-body
spin models [45–47]. In particular, intricate scenarios emerge
when interactions mediated by phonons compete with state-
dependent dipolar forces among Rydberg states [31,32]. This,
together with the strong coupling of Rydberg states to vibra-
tional modes [48], sets the stage for complex nonequilibrium
behavior.

In this work, we explore nonequilibrium phases that be-
come accessible in trapped ion quantum simulators when this
platform is augmented by Rydberg states. We demonstrate

that a linear ion chain (see Fig. 1), in which dissipative
processes compete with strong coherent interactions, imple-
ments an instance of the generalized Dicke model (GDM)
[28,49–59]. The peculiar properties of Rydberg ions, such
as a strong state-dependent coupling between electronic and
vibrational degrees of freedom as well as dipolar interactions,
give rise to a host of dynamical regimes, including super-
radiant phases, multiphase coexistence, and phonon-lasing
(PL) behavior. We show how fingerprints of the different
nonequilibrium regimes can be detected in single quantum
trajectories [60], which, in turn, allow for their experimental
observation through time-resolved fluorescence spectroscopy
of emitted photons [28,61].

II. THE MODEL

The minimal model to describe a trapped Rydberg-ion
quantum simulator consists of N two-level effective spin
systems, with |↓〉 and |↑〉 representing the ground and the
excited Rydberg states, respectively (see Fig. 1). The two
states are coupled by a laser field with Rabi frequency �

and detuning �. The electronic internal states are coupled
to the vibrational modes of the ion chain through a far-
detuned standing-wave laser, which leads to a state-dependent
spin-phonon coupling [6,28,62]. For the sake of simplicity,
in the following we will consider the presence of the axial
center-of-mass (c.m.) phonon mode only, whose frequency
is denoted by ω. The time evolution of the system den-
sity matrix is governed by the quantum master equation
(QME) [63]

∂tρ(t ) = −i[H, ρ] + D[ρ], (1)
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FIG. 1. Chain of trapped Rydberg ions. Each ion is modeled as
an effective two-level system whose ground state, |↓〉, is coupled to
a Rydberg excited state, |↑〉, by a laser with Rabi frequency � and
detuning �. The state |↑〉 spontaneously decays to |↓〉 with rate γ .
Ions at sites k and p interact through the interaction potential Vkp

and are subject to a state-dependent trapping potential (with trapping
frequency ω for |↓〉 and ω + ωa for |↑〉). The internal states of the
ions are also coupled to the phononic degrees of freedom of the chain
via a far-detuned standing-wave laser. Aspects of the dynamical
behavior of the chain can be probed through the fluorescence signal
of emitted photons as a function of time.

with Hamiltonian (h̄ = 1)

H = �

N∑
k=1

σ x
k + �

N∑
k=1

σ z
k +

∑
k,p�=k

Vkpσ
z
k σ z

p

+ g
N∑

k=1

σ z
k (a† + a) +

(
ω + ωa

N∑
k=1

nk

)
a†a. (2)

Here, σk = (σ x
k , σ

y
k , σ z

k ) are the Pauli matrices acting on
the kth ion, nk = (Ik + σ z

k )/2 is the Rydberg state occu-
pation number operator, and a (a†) is the bosonic annihi-
lation (creation) operator of the c.m. mode. The coupling
between internal and vibrational degrees of freedom of the
chain is parametrized by g, while ωa measures the differ-
ence of the trapping potential between the Rydberg and
ground states, respectively [31,32]. Here, Vkp = C3|rk − rp|−3

describes a dipole-dipole interaction between an ion at po-
sition rk and one at rp [31,32,43]. Finally, radiative de-
cay |↑〉 → |↓〉 is described through the dissipator D[ρ] =
γ

∑N
k=1 [σ−

k ρσ+
k − {σ+

k σ−
k , ρ}/2], with σ±

k = (σ x
k ± iσ y

k )/2.
To characterize the dynamical behavior of this system we

focus, at first, on the mean-field (MF) dynamics of the average
displacement, X = (A + A∗)/2, and momentum, P = (A −
A∗)/2i, of the c.m. mode (with A = 〈a〉) and of the average
magnetization of the ions, J = N−1 ∑

k 〈σk〉. In terms of these
semiclassical variables, the MF equations of motion (EoM)
associated with the QME (1) are

Ẋ = ωP + 1
2ωaN (1 + Jz )P, (3a)

Ṗ = gNJz − ωX − 1
2ωaN (1 + Jz )X, (3b)

J̇x = −F (J, X, P)Jy − 2VJzJy − γ

2
Jx, (3c)

J̇y = F (J, X, P)Jx − 2�Jz + 2VJzJx − γ

2
Jy, (3d)

J̇z = 2�Jy − γ (1 + Jz ). (3e)

Here, we have introduced the function F (J, X, P) =
2[� + 2gX + ωa(X 2 + P2)/2] and the MF interaction po-
tential V = 2N−1 ∑

k �=p Vkp. In order to derive Eq. (3), we
have made the following replacements in the evaluation
of expectation values of products of observables: 〈σμ

k a〉 →
JμA, 〈σμ

k σ ν
k 〉 → JμJν (with μ �= ν) and 〈a†a〉 → |A|2 =

X 2 + P2. Stationary solutions are then obtained by setting
the left-hand side of Eq. (3) to 0. In order to make our
analysis independent of the number of ions in the chain, we set
ω = �N .

For context, we briefly recall here the physics of the
conventional (i.e., closed) version of the Dicke model, which
has been introduced as a paradigmatic model to investigate
the collective behavior of systems of spins coupled to bosonic
degrees of freedom [64–67]. It features a critical value of the
spin-boson coupling associated with a quantum phase transi-
tion between a normal and a superradiant phase. In the latter,
the bosonic harmonic oscillators show a finite displacement
X from their equilibrium position. In the absence of inte-
rion interactions (i.e., V = 0) and state-dependent trapping
potential (i.e., ωa = 0), the generalization of the Dicke model
to a dissipative environment, described by Eq. (1), is again
characterized by the competition between two main phases.
The bright phase is governed by the interplay between driving
and decay and features a vanishing value of X , while in the
dark one the spin-phonon coupling suppresses both driving
and dissipation and leads to a finite displacement of the c.m.
mode, i.e., X > 0. In contrast to the closed case, these phases
coexist in a finite region of parameter space, resulting in
intermittency in the fluorescence signal of the ions [28].

In a trapped Rydberg-ion simulator, new dynamical
regimes emerge in the phase diagram as a consequence of
the Rydberg ion-ion interaction and of the state-dependent
trapping potential. Starting from the semiclassical EoMs of
Eq. (3), we will show that it exhibits interaction-induced
coexistence region, PL behavior, and multiphase coexistence
regimes. To benchmark our MF results we will numerically
investigate the behavior of single quantum-jump Monte Carlo
(QJMC) trajectories [60]. These simulations provide access to
the real-time dynamics of the photons emitted by the ions (see
Fig. 1), which can be detected in state-of-the-art experimental
setups and therefore allow us to infer the various dynamical
phases of the system. In the following, we will address sys-
tems with N ranging from 3 to 6, a cutoff on the phonon
Fock state up to Nph phonons. For the sake of numerical
efficiency and to facilitate the comparison with MF results,
in our simulations we consider an all-to-all coupling Vkp ≈
V0 ∀k, p between the ions. We have verified the robustness of
the observed behaviors in the presence of both a next-neighbor
coupling and a realistic potential Vkp ∝ |rk − rp|−3. Within the
system sizes considered, we have not observed any qualitative
discrepancy. This suggests that the emergence of the various
dynamical regimes does not significantly depend on the range
of interion interaction.

III. INTERACTION-INDUCED COEXISTENCE REGION

To understand the effects of the interaction between ions,
we begin by analyzing the simplest case with � = 0 and
ωa = 0. From Eq. (3) we obtain that, in the stationary state,
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FIG. 2. Interaction-induced (II) coexistence region. (a) Phase di-
agram in the g-γ plane for V = 5�, � = 0, and ωa = 0. Gray areas
denote the coexistence regions [three real solutions to Eq. (3)], while
the hatched area signals a PL regime. The II region originates as a
consequence of interion interactions and is present for V > Vthr , only.
[(b), (d)] Examples of the two possible MF dynamics of Jz(t ) starting
from different initial conditions for V = 5�, � = 0, ωa = 0, N =
10, and (b) (g, γ ) = (2.3, 0.1) and (d) (g, γ ) = (1, 0.1). Here, a PL
solution (red curve), with small amplitude oscillations of Jz(t ) around
a stationary value, emerges. Phase coexistence is present at small
and intermediate times (see blue line and arrow). Inset of panel (d):
Long-time limit-cycle dynamics of the c.m. mode position X (t ) and
momentum P(t ), shown over a time window �T = 50�−1 for the
lasing solution. [(c), (e)] Fluorescence photon count as a function of
time in QJMC trajectories for N = 3 ions and Nph = 400 with (e) and
without (c) PL. Features of the MF solutions are clearly visible.

Jz satisfies the following polynomial equation

A2J3
z + A2J2

z + (2� + B)Jz + B = 0, (4)

with

A = 2√
�

(
V − 2g2N

ω

)
and B = γ 2

4�
. (5)

Being a cubic equation in Jz, Eq. (4) admits either one or three
real solutions, depending on system parameters. In the latter
case, whenever three real solutions coincide, i.e., when Eq. (4)
takes the form (Jz − Jc

z )3 = 0, a critical point emerges. In the
g-γ plane, this occurs at

(g±
c , γ ±

c ) =
⎛
⎝√

ω�

2N

√
V
�

±
√

27

4
,�

⎞
⎠, (6)

with the critical point (g−
c , γ −

c ) present if and only if the MF
interaction V is larger than a threshold value Vthr = √

27�/4.
Figure 2(a) shows the phase diagram of the interacting

model in the g-γ plane for V = 5�. Given V > Vthr, two
coexistence regions (gray areas), associated with the criti-
cal points (g±

c , γ ±
c ), emerge. From Eq. (6), we notice that,

when both critical points are present, one always has g−
c <

g+
c . Moreover, it is also possible to show that, within the

MF treatment, the two coexistence regions never overlap.
In particular, the region associated with (g+

c , γ +
c ) is directly

connected with the one found in the GDM discussed in
Ref. [28] and, therefore, we will refer to it as GDM region.

Here, Eq. (4) has two stable solutions (corresponding to a
bright phase and a dark phase, respectively) and an unstable
one. This can be seen in Fig. 2(b), where we show the ion
magnetization Jz(t ) for two different initial conditions. After
a short transient, the system relaxes to two different stationary
solutions, depending on the choice of the initial state. This
behavior is also reflected in the fluorescence signal of photons
emitted by the ions. Indeed, as can be seen from Fig. 2(c), a
typical time record of the fluorescence photon emission shows
intermittency, i.e., alternating bright and dark periods. On
the other hand, the region associated with (g−

c , γ −
c ) emerges

entirely as consequence of interion interactions and it will thus
be called the interaction-induced coexistence region. As can
be seen from Fig. 2(a), where it is denoted by II, its nature is
profoundly different from that of the GDM region. Finite ion-
ion interactions result in the emergence of a Hopf bifurcation:
The stationary solutions to Eq. (3) become unstable and a
limit-cycle behavior arises [68]. This phenomenon, which
manifests as self-sustained periodic oscillations in time, is the
hallmark of a PL regime [24,28]. This kind of behavior is seen
in Fig. 2(d): The stationary value of Jz(t ) displays fast small-
amplitude oscillations around Jz ≈ −0.95 and the motion of
X (t ) and P(t ) is clearly periodic (see inset). Interestingly, the
presence of more than one real solution in the interaction-
induced region [see the gray area II in Fig. 2(a)] results in
metastable behavior: Two different initial conditions reach
the same oscillating steady state, but the timescale might be
extremely long, so that effectively two phases coexist in the
transient. For small systems, as considered here, this results
in intermittent photon emission records [see Fig. 2(e)].

IV. FINITE DETUNING

For a nonzero detuning �, Eq. (4) becomes

A2J3
z + (A2 + 2�̄A)J2

z + (�̄2 + 2�̄A + 2� + B)Jz

+ (B + �̄2) = 0, (7)

with A and B given in Eq. (5), and �̄ = 2�/
√

�. Equation (7)
is, again, a cubic equation in Jz. Critical points (gc, γc) arise
when three coinciding real solutions are present. This occurs
when the following equations are satisfied:{(

A − �̄
)3 − 27

4 �A = 0,

B − 1
3 (A + �̄)2 + 2� = 0.

(8)

The number of critical points can be obtained by inspecting
the determinant of Eq. (7). As discussed in Ref. [28], in
contrast to the closed version of the Dicke model [69], a
small but finite detuning � does not alter significantly the
phase diagram shown in Fig. 2; i.e., it does not destroy the
dynamical phase transition discussed previously. However,
for larger values of �, we find that the behavior of the
phase diagram strongly depends on its sign. In particular,
when � < 0, the interaction-induced region is drastically
suppressed while the GDM one is enhanced. Moreover, the
region at small g subject to Hopf instability extends to a
larger portion of the phase diagram [see the hatched area
in Fig. 3(a)] [28]. The behavior of the system for � > 0 is
even more interesting. Here, besides an overall suppression
of the GDM coexistence region and an enhancement of the
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FIG. 3. Effects of a finite detuning. Same as Fig. 2 for (a) � =
−0.1� and (b) � = 0.1�. In the interaction-induced (II) region, a
PL and a stable solution (SS) coexist. (c) Same as Fig. 2(b) for � =
0.1�. (d) Fluorescence photon count as a function of time in a QJMC
trajectory for N = 3 ions in the II coexistence region with Nph = 400.

interaction-induced one, the detuning significantly affects the
stability of steady-state solutions. As can be seen in Figs. 3(b)
and 3(c), for small g and γ , a region with a stable, nonoscil-
lating solution emerges within the PL regime [compare with
Figs. 2(a) and 2(d)].

So far we have analyzed, within a MF approach, the differ-
ent nonequilibrium regimes induced by ion-ion interactions.
The latter is responsible for the emergence of a lasing regime
and a coexistence region for small spin-phonon coupling
g. A finite detuning �, suppressing the interaction-induced
coexistence region (� < 0) or the GDM one (� > 0), allows
us to modify the phase diagram of the system and to control its
stability property. In all these cases, phase coexistence results
in intermittency in the fluorescence signal of photons emitted
by the ions [see Figs. 2(c), 2(e) and 3(d)].

V. STATE-DEPENDENT TRAPPING POTENTIAL

We now turn to the case with both ion-ion interactions and
a (strong) state-dependent trapping potential ωa, which is of
great relevance for trapped Rydberg-ion quantum simulators.
A similar term also arises in implementations of the Dicke
model through ultracold atomic systems in optical cavities
[51,70–72], where, however, no interparticle interaction is
present. In contrast to these latter works, within the physically
relevant parameter region of our system, we observed that a
state-dependent trapping potential on its own does not lead to
any new dynamical regime. On the contrary, its interplay with
ion-ion interactions, which will be the focus of this section,
results in the emergence of phases in which different limit
cycles and stable solutions coexist.

In the presence of a state-dependent trapping potential,
fixed points of Eq. (3) satisfy a seventh-order polynomial
equation,

∑7
j=0 c jJ

j
z = 0, where coefficients c j , which de-

pend on system parameters, are too cumbersome to be re-
ported here. Being the analytical investigation of critical
points particularly involved, we resort to a numerical analysis

FIG. 4. Emergence of a multicoexistence regime for ωa �= 0.
(a) Same as Fig. 2 for V = 10� and ωa = 2�. The dark gray area
GDM + II denotes a multicoexistence region with five real solutions
to Eq. (3), while in the interaction-induced (II) region PL and stable
solutions coexist. Inset: Distributions of the rate K of emitted photons
over a time window of �t = 103�−1 for the photon count records of
panels (e) (top, yellow) and (c) (bottom, blue). The two histograms
show qualitative differences, hinting at a different character of the
stationary state (see text). [(b), (d)] Same as Fig. 2(b) for V =
10�, ωa = 2�, and (b) (g, γ ) = (2.5, 0.1) and (d) (g, γ ) = (2, 0.1).
In both panels, two lasing solutions (red and blue lines) coexist, while
in the GDM+ II phase, an additional stable solution (green line) is
present [panel (b)]. Insets: Long-time limit-cycle dynamics of the
phononic position X (t ) and momentum P(t ) over a time window
�T = 50�−1 for the two lasing solutions of the main panels. [(c),
(e)] Fluorescence photon count as a function of time in QJMC
trajectories inside the (e) II and (c) GDM + II regions for Nions = 6
and Nph = 100.

only. The latter reveals that, at least for weak spin-phonon
coupling g and atomic decay γ , only two third-order critical
points emerge. Interestingly, as can be seen in Fig. 4(a),
the presence of a state-dependent trapping potential ωa is
responsible for the occurrence of a multicoexistence regime
between g∗

− and g∗
+, in which the GDM and the interaction-

induced coexistence regions merge [dark gray area GDM + II
in Fig. 4(a)]. Here, Eq. (7) possesses five real solutions. As
shown in Figs. 4(a) and 4(b), one solution is stable while the
remaining ones give rise to two different limit-cycle solutions.
On the other hand, it also emerges that in the interaction-
induced region, i.e., for g < g∗

−, no stable solution is present
and two lasing solutions coexist.

Fingerprints of these different regimes can be found by
analyzing the distributions of the rate K of photon emitted
by the ions over a fixed time window [61,73]. Although
both emission records shown in Figs. 4(c) and 4(e) display
intermittent behavior, the distribution of photons emitted is
different in both cases. The corresponding histograms are
shown in the inset of Fig. 4(a): The distribution of K inside
the multicoexistence regime shows an enhanced value near
K = 0 and a higher peak at larger values of K with respect to
the interaction-induced region. This indicates, indeed, a qual-
itative change of the stationary state as anticipated from the
MF analysis; i.e., it hints toward the existence of a multistable
regime.
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VI. CONCLUSIONS

In this work, we have investigated a plethora of dynamical
regimes realized in a trapped Rydberg-ion quantum simulator.
We have shown how the interplay between electron-phonon
coupling and dipolar ion-ion interactions results in a rich
dynamical behavior. Here, an interaction-induced phase co-
existence region emerges and multiphase coexistence can be
achieved. Moreover, the presence of finite dipolar interac-
tions gives rise to a region with stable limit-cycle solutions,
associated with phonon lasing. Signatures of the different
dynamical regimes can be detected through the time-resolved
spectroscopy of emitted photons.
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