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We show that deep neural networks can be integrated into, or fully replace, the Kohn-Sham density functional
theory (DFT) scheme for multielectron systems in simple harmonic oscillator and random external potentials
with no feature engineering. We first show that self-consistent charge densities calculated with different
exchange-correlation functionals can be used as input to an extensive deep neural network to make predictions
for correlation, exchange, external, kinetic, and total energies simultaneously. Additionally, we show that one
can make all of the same predictions with the external potential rather than the self-consistent charge density,
which allows one to circumvent the Kohn-Sham DFT scheme altogether. We then show that a self-consistent
charge density found from a nonlocal exchange-correlation functional can be used to make energy predictions
for a semilocal exchange-correlation functional. Lastly, we use a deep convolutional inverse graphics network to
predict the charge density given an external potential for different exchange-correlation functionals and assess the
viability of the predicted charge densities. This work shows that extensive deep neural networks are generalizable
and transferable given the variability of the potentials (maximum total energy range ~100 Ha) because they
require no feature engineering and because they can scale to an arbitrary system size with an O(N) computational

cost.
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I. INTRODUCTION

Kohn-Sham (KS) density functional theory (DFT) [1] is the
standard theoretical tool to study nanoscale systems. Despite
its success, DFT calculations for atomistic systems containing
tens of thousands to millions of atoms are exceptionally
demanding from a computational perspective and are rare in
the literature. Machine-learning techniques can replace con-
ventional DFT calculations to overcome this computational
barrier. Machine-learning models are ideal because they rival
the accuracy of the method they are trained on, but can be
less demanding to evaluate from a computational standpoint.
There have been many reports where artificial neural networks
(ANNSs) have been used to represent potential-energy surfaces
to accelerate electronic structure calculations [2-9]. These
reports focus on feature engineering or defining some abstract
representation of atomistic systems allowing one to use an
ANN. Instead, we focus our review on reports that avoid fea-
ture engineering and utilize the electron density in conjunction
with machine learning. More specifically, machine learning
has become a popular choice to represent energy functionals
in DFT [10-14] or to completely circumvent the KS scheme
[15,16]. In deep learning, the machine-learning model learns
the hierarchical features during training rather than inputting
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abstract representations. Due to the large number of tunable
parameters in deep neural networks (DNN5s) that may include
a variety of layers (i.e., convolutional, fully connected, max
pooling, etc.), there must be thousands (if not hundreds of
thousands) of training examples to find a stable minima with
an acceptable accuracy. Generating these training examples
is a computationally expensive task, but a trained DNN can
evaluate a given quantity at a fraction of the cost compared to
the original method.

An alternative approach that has been taken recently by
Brockherde ef al. [15] is to focus more on uniformly sam-
pling the space that a machine-learning model will even-
tually predict and to use traditional machine learning with
far fewer tunable parameters. This approach was successful
in predicting KS-DFT total energies and charge densities in
one dimension (1D) for random Gaussian potentials and for
small molecules in three dimensions (3D). Due to the use of
kernel ridge regression (KRR), they were able to achieve an
acceptable accuracy with a relatively small number of training
examples. Unfortunately, KRR is known to have poor scaling
with respect to the number of training examples, making it
difficult to train with a large (and more diverse) set of training
examples.

In KS-DFT, one of the contributions to the total energy is
the noninteracting kinetic energy. Before the KS scheme was
realized, Hohenberg and Kohn [17] postulated the formalism
for an interacting kinetic-energy functional of the density. An
analytic expression for the exact interacting kinetic-energy
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functional with respect to the electron density is unknown.
This is one of the major downfalls of orbital-free (OF)
DFT, where all energy contributions are explicitly written
in terms of the electron density. This shortcoming provides
motivation to construct an approximate functional of the
density with a machine-learning model. In a report done by
Yao et al. [18], a convolutional neural network (CNN) was
used to represent the kinetic-energy functional in the OF-
DFT total-energy expression for various hydrocarbons. Their
data-generation process consisted of performing KS-DFT and
collecting the charge density along with the KS noninteracting
kinetic energy. The charge density was then used as input to
the CNN with the KS noninteracting kinetic energy as the
label. With this representation, they were able to successfully
reproduce potential-energy surfaces when compared to the
true KS potential-energy surfaces. In another report by Snyder
et al. [13], they were able to use a machine-learning model
to make kinetic-energy predictions given a charge density for
a diatomic molecule. Using their framework, they were able
to accurately dissociate the diatomic molecule and compute
forces suggesting that ab initio molecular dynamics could
eventually be done via machine-learning methods.

When representing the kinetic energy with a machine-
learning model in the OF scheme, one then becomes con-
cerned with calculating the functional derivative of the
machine-learning model with respect to the density. In a report
from Li et al. [12], they showed that there is a trade-off
between accuracy and numerical noise when taking the func-
tional derivative of a machine-learning model. Brockherde
et al. [15] avoided this issue by training a machine-learning
model to learn the mapping between the potential and the
electron density, avoiding the functional derivative.

In another recent report by Kolb er al. [14], a software
package was developed to combine artificial neural networks
with electronic structure calculations and molecular dynamics
engines. Using their software, they were able to show that
artificial neural networks can be used to make predictions with
the electronic charge density as input and various energies
as output. Specifically, they were able to predict energies
and band gaps calculated at a higher level of theory from
charge densities calculated at a lower level of theory. This ap-
proach is very advantageous as high-level theory calculations
(i-e., GoWj [19]) become quite computationally expensive for
larger systems.

Although significant progress has been made incorporating
machine learning and deep learning to a variety of electronic
structure problems, most do not have the ability to properly
handle extensive properties. In some of our past work, we
introduced extensive DNNs (EDNNs) [20] to intrinsically
learn extensive properties. This means that when the DNN
learns the fundamental screening length scale, it can then
easily scale up to massive systems in a trivially parallel
manner. EDNNs work by first dividing up an image into
fragments, which are called focus regions. These fragments
are then padded with context regions. The context regions
may also respect periodic boundary conditions. Each of these
fragments can then be simultaneously passed into machine-
learning models that share weights. It should be noted here
that any machine-learning method that uses back propagation
to minimize the loss function can be used. Finally, the outputs

of the machine-learning models are then summed, yielding the
final prediction from the EDNN.

In this report, we show that EDNNs have the capability to
learn energy and charge density mappings that could replace
some, if not all, calculations in the KS-DFT scheme. We push
the frontier of what EDNNs can learn from charge densi-
ties and external potentials by calculating the self-consistent
charge densities in external potentials with extreme variabil-
ities. In previous reports that focused on small molecules
[5,14,15,18], the self-consistent charge densities generated
from molecular dynamics are similar and have small energy
ranges (i.e., ~31.8 mHa [15]). We avoid small molecules
(where the charge density would be localized in space) and
truly challenge the ability of EDNNs to make accurate pre-
dictions across a variety of electronic environments. Quanti-
tatively speaking, the energy range of our 10 electron calcu-
lations with our random (RND) external potentials is 100
Ha. This report is outlined as follows: In Sec. II, we describe
our data-generation process, as well as the DNN topologies
and hyperparameter selections. In Sec. III A, we show that
DNN s have the capability to act as density functionals and can
accurately predict the exchange, correlation, external, kinetic,
and total energies simultaneously (Sec. III A 1). We also show
that EDNNSs can circumvent the KS scheme (Sec. III A 2) by
mapping the external potential to all of the aforementioned
energies simultaneously. Additionally, we show that EDNNs
can be used in a somewhat “perturbative” manner, where
we predict energies computed with semilocal or nonlocal
exchange-correlation functionals from nonlocal electron den-
sities. In Sec. III B, we show that deep convolutional inverse
graphics networks (DCIGNs) can also map the external po-
tential to the electron density, and assess the viability of the
predicted electron density. Lastly, in Sec. IV, we summarize
our results and consider future work that could be done with
our framework. The outline of this manuscript can be seen
graphically in Fig. 1.

II. METHODS

We investigate two-dimensional (2D) electron gases within
the KS-DFT framework [1] for two external potentials: simple
harmonic oscillator (SHO) and RND. These external poten-
tials have been used in a previous study [22] for direct-
diagonalization, one-electron calculations. In the KS-DFT
framework, one minimizes the total-energy functional,

E[,O] = T[IO] + Eext[,o] + EHartree[p] +EXC[IO] (1)

In Eq. (1), T is the noninteracting kinetic energy, Ecx is the
energy due to the interaction of the electrons with the ex-
ternal potential, Ey,ree 1S the electrostatic energy describing
the electron-electron interactions, and Exc is the exchange-
correlation energy.

Using EDNNSs, we investigate the feasibility of learning the
total energy as well as the individual contributions to the total
energy. We therefore have trained models to predict the total,
noninteracting Kkinetic, external, exchange, and correlation
energies. The external potentials chosen for this report, as
mentioned previously, are SHO and RND potentials in 2D.
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FIG. 1. A graphical representation that outlines the objectives of this report. We show that both (a) charge densities and (b) external
potentials can be used as input to extensive deep neural networks (EDNNs [20]) to predict the total, kinetic, external, exchange, and correlation
energies. The images shown are some of the random (RND) potentials along with the self-consistent charge density for that potential. (c) We
show that deep convolutional inverse graphics networks (DCIGNs [21]) can be used to map external potentials to their respective self-consistent

charge densities.
The SHO potentials take the form

1 D
Vet = 5 3 kit — %0, )

where D is the dimension, k; = mw? is the spring constant,
and xo, is the shift of the potential in a given coordinate. For
the RND potentials, we follow the work of Mills et al. [22]
when generating the potentials on a grid. We refer the reader
to the original manuscript [22] for more information on the
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RND potential generation. Examples of the RND external
potentials along with the respective charge densities can be
seen in Fig. 2. To briefly summarize the process, the first step
consists of generating a random binary image of 0’s and 1’s
and then applying a Gaussian filter. The second step consists
of generating a mask that is constructed with a random convex
hull and an additional Gaussian blur. The mask is then applied
onto the image, yielding the final result. The larger energy
scale of the RND external potentials can be attributed to the
length scales of the RND external potentials. The average
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FIG. 2. Computed charge densities (3D surfaces) and random external potential-energy surfaces (2D surfaces) for typical configurations

of systems with 1, 2, 3, and 10 electrons.
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Gaussian kernel sizes in the external potential generation
is ~3 Bohr, whereas the average length scale of the SHO
external potentials is ~12 Bohr. Assuming that the energy
scales as E ~ 1/r?, the energy scale of the RND external
potentials is 16 times larger than the SHO external potential-
energy scale on average. To create datasets large enough to
use DNNs, we chose to randomly sample k; and xo, such
that 0.01 < k; < 0.16 Ha/a} (Hartree per Bohr?) and —8.0 <
xo, < 8.0 ap. With a given selection of these variables, the
external potential was then evaluated on a 40 x 40 ay space
with a 256 x 256 grid point mesh.

We then chose to place either N = 1, 2, 3, or 10 electrons
in the 2D space. For each choice of the number of electrons,
we generated an external potential, and then performed three
DFT calculations, each with different exchange-correlation
functionals. We used the local density approximation (LDA)
Slater exchange functional in 2D [23,24], the Perdew-Burke-
Ernzerhof (PBE) generalized-gradient approximation (GGA)
exchange functional in 2D [25,26] and the metageneralized-
gradient approximation (MGGA) exchange functional from
Pittalis et al. [27], in each case paired with the correlation
functional of Attaccalite ef al. [28], all provided by the LIBXC
library [29,30]. Here, we do not take the orbitals or charge
densities from the LDA calculations to calculate energies
at the PBE or MGGA level. All of the energies for each
functional are calculated independently.

All of the calculations were carried out in real space with
the OCTOPUS code [31,32]. For testing, we set aside 10% of
each dataset. This made for 90 000 training configurations and
10 000 testing configurations for each case of potential, num-
ber of electrons, and exchange-correlation functional. Note
that the number of electrons and the type of external potential
uniquely defines a dataset. Therefore, the 10% set aside for
testing includes 10 000 external potentials and 30 000 charge
densities (10 000 for each exchange-correlation functional
choice). In addition, the labels were normalized independently
such that each of the components had a range from zero to one.
The calculations are summarized in Table I of Appendix A.
All data used in this report are available online [37] along with
the code [33] to allow for future development of featureless
deep-learning-based functionals.

When constructing the EDNNs, we used a mixture of
TENSORFLOW [34] and TFLEARN [35] in PYTHON. For the
networks topologies, we build on our previous reports [16,20]
and use EDNNs where each tile of the EDNN has the same
in-tile CNN used previously for predicting KS-DFT total
energies of 2D hexagonal sheets [16]. For clarity, the in-tile
CNN consisted of two reducing convolutional layers with
kernel sizes of 3, six nonreducing convolutional layers with
kernel sizes of 4, one reducing convolutional layer with a
kernel size of 3, four nonreducing convolutional layers with
kernel sizes of 3, a fully connected layer with 1024 neurons,
and a final fully connected layer with one neuron. All of the
activations used were rectified linear units. We emphasize
that in our approach, we do not do any sort of feature en-
gineering, such as past reports that use ANNs [2-7,14]. The
convolutional layers in the EDNNs identify relevant features
during the training process. When utilizing an EDNN, one
must declare the focus and context regions which are used
to “tile” up the image into fragments. To find the ideal focus

and context regions, we started by training the EDNNs on the
2D charge density to total-energy mapping as well as the 2D
external potential to total-energy mapping for the 1-, 2-, 3-,
and 10-electron systems for calculations done with the LDA
exchange-correlation functional and the SHO external poten-
tial. We chose a variety of focus and context sizes, and found
that the optimal focus and context sizes are 128 pixels for the
focus size and 32 pixels for the context size. Our decision
was based on a balance between accuracy and computation
time. A larger focus size lowers the computation time, and
a larger context size yields larger images, resulting in more
neurons in the EDNNs thereby improving the accuracy of the
model. For a focus of 128 pixels, we found that the accuracies
were very similar for various context sizes and the choice of
32 pixels was almost arbitrary. This hyperparameter search
was the most computationally demanding task for this work
due to the number of models that had to be trained. While
training, we used a learning rate of 10~* for 500 epochs when
using the charge densities as input and a learning rate of 107>
for 500 epochs when using the external potentials as input. In
both cases, we further reduced the learning rates by a factor
of 10 and trained for an additional 100 epochs. For clarity, an
epoch is defined to be when the weights of the network have
been updated for the entire training dataset once.

II1. RESULTS

A. Energy predictions
1. EDNNs as a functional

First, we show that EDNNs can be used as an energy
functional for correlation, exchange, external, kinetic, and
total energies. For the LDA, PBE, and MGGA functionals
discussed in Sec. II, we used the computed self-consistent
charge densities as input to an EDNN and were able to
successfully predict the correlation, exchange, external, and
total energies simultaneously for both SHO and RND external
potentials. Starting with the models where the SHO external
potentials were used in the DFT calculations, we found that
the mean absolute errors for each particular case are less than
1.5 mHa. These can be seen in Table II of Appendix B. In
Fig. 3, we show predicted minus true versus true for the 1- and
10-electron models with the different exchange-correlation
functionals when the RND external potentials were used in the
DFT calculations. In this figure, it is clear that the error of the
models increases with the number of electrons. This increase
in error is expected due to the increase in the range of energies
and can be physically attributed to the increase of interactions
in the system. Looking to Table III of Appendix C, we also
observe that the mean absolute errors become larger as the
complexity of the exchange-correlation functional increases.
In addition to these trends, we also notice that the energy
with the largest mean absolute error comes from the external-
energy functional. This again can be attributed to the ranges
of the various energies. The external energy has the largest
range of all the energies being predicted. We also address
the generalizability of the models by testing the model that
was trained on 10-electron charge densities calculated with
the RND external potentials and the LDA functional with
10-electron charge densities calculated with the SHO external
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FIG. 3. True minus predicted (in mHa/a? /electron) vs true (Ha) for various models with the RND potentials. Models trained (a)-(d) with
the LDA exchange-correlation functional, (e),(f) with the PBE exchange-correlation functional, and (i)—(1) with the MGGA exchange-
correlation functional. (a),(e),(i) The first column is for 1-electron models where the charge densities were used as input. (b),(f),(j) The second
column is for 10-electron models where the charge densities were used as input. (c),(g),(k) The third column is for 1-electron models where
the external potentials were used as input. (d),(h),(1) The fourth column is for 10-electron models where the external potentials were used as
input. (m)—(p) The bottom row is for models where LDA charge densities were used as input, and the labels were either (m),(n) PBE energies
or (0),(p) MGGA energies. (m),(0) The 1-electron systems; (n),(p) the 10-electron systems. It should be noted that one model is predicting
the correlation, exchange, external, kinetic, and total energies. We have combined the exchange-correlation error and omitted the total-energy

error for clarity.

potentials and the LDA functional (and vice versa). We found
in both cases that the errors increased by several orders of
magnitude. This is not surprising given the different energy
ranges of the datasets. On the contrary, when examining the
true versus predicted plot for the model trained on the RND
dataset but tested using the SHO dataset, we found that a
constant shift could simply be added to substantially decrease
the error. We expect that this constant shift could be easily
rectified if SHO training examples are included in the training
process.

DFT is a more popular choice for larger systems rela-
tive to wave-function-based methods because the exchange-
correlation functionals used are computationally inexpensive
relative to methods that employ exact exchange, for example.
In light of this, we have trained EDNNS to predict energies at
the PBE and MGGA level given a self-consistent charge den-
sity computed with the LDA exchange-correlation functional.
In Fig. 3, we consider 1- and 10-electron models trained
on the mapping between LDA charge densities and either
PBE or MGGA energies. Similar to the results mentioned
above, the mean absolute errors increase both with the number
of electrons and the complexity of the exchange-correlation

functional. In Table IIT of Appendix C, we also notice that
the highest mean absolute error is for the external and to-
tal energies. This result further suggests that there is not a
fundamental problem with learning the external energy, but
the larger range of energies makes it more difficult for a
EDNN to handle with extreme precision. In addition, since the
correlation functional is the same across all of the calculations
and the same testing data were used for each case of number
of electrons, we can determine if the networks are learning
the correlation energy in a similar manner. In Table III, we
can see that the correlation energies have similar magnitudes
of error, indicating that similar correlation functional map-
pings are being learned as one should expect. The success of
learning the energies of a more accurate exchange-correlation
functional given a less accurate charge density shows promise
for other applications. A future application could include
learning GoW, quasiparticle energies from a DFT-computed
self-consistent charge density, similar to the work that was
completed by Kolb et al. [14].

A note should be made about Table III with respect to the
magnitude of some of the mean absolute errors reported. In
comparison to the report by Mills ef al. [22], some of the
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mean absolute errors are larger, in some cases, by a factor
of 10. In addition, the focus and context hyperparameters
were optimized for the SHO external potentials. In the work
of Brockherde et al. [15], they managed to reach chemical
accuracy using three-dimensional charge densities, but the
energy range of their training set was ~40 kcal/mol (for a
benzene molecule). For their best reported model with a mean
absolute error of 0.28 kcal/mol, the relative mean absolute
error, which we define as the mean absolute error divided by
the range of the dataset, is 0.007. In our 10-electron model
with the RND external potential, our energy range was ~100
Ha (62750.9 kcal/mol) and the mean absolute error of the
total energy predictions was 78.514 mHa, yielding a relative
mean absolute error of 7.85 x 107,

2. Circumventing Kohn-Sham DFT

In addition to using EDNNs as a functional, it is arguably
more convenient to train a EDNN to learn the mapping
between the external potential and the contributing energies of
that system. It is more convenient because it avoids calculating
a self-consistent charge density with the KS scheme. We have
trained EDNNSs to predict the exchange, correlation, external,
kinetic, and total energy simultaneously using the external
potential as input rather than the charge density. Again, in
Fig. 3, we show true minus predicted versus true for the
correlation, exchange, external, kinetic, and total energies
for the RND external potentials. Here, it is evident that the
charge density is more optimal as an input to an EDNN for
the 1-electron systems. There is much more spread in the
distribution when using external potentials as input compared
to charge densities. For 10 electrons, this is not the case.
Looking to Table IIT of Appendix C, we can see that for
1, 2, and 3 electrons, no matter what choice of exchange-
correlation functional, it is less difficult to learn the mapping
between p — E than V — E. The mean absolute errors are
lower for all energies. In the case of 10 electrons, the mean
absolute errors in the external and total energies are lower
for the models that have potentials as input. Although the
errors are lower for the external and total energies, the mean
absolute errors for correlation, exchange, and kinetic energies
are larger. When training a model on a set of energies, there
is a balance between the errors of the energies since the
loss function depends on the sum over the mean-squared
errors between the true and predicted energies. In the case of
using charge densities as input to the EDNN, we found the
exchange, correlation, and kinetic energies can be predicted
with much better accuracy than the external or total energies.
In the case of using potentials as input to the EDNN, we
found that there is more of a balance of accuracy between the
different energies being predicted.

B. Image predictions with deep convolutional inverse
graphics networks

In both KS-DFT and OF-DFT, the self-consistent charge
density is the central quantity that one is interested in calcu-
lating. Once one has the charge density, most other quantities
can be calculated in a straightforward manner. In this section,
we address the viability of using DCIGNs to map the external
potential to the self-consistent charge density in 2D for the
RND potentials with the LDA, PBE, and MGGA exchange-
correlation functionals. DCIGNs were recently introduced in
the literature [21] and have a similar topology to autoencoders
[36]. The DCIGN that we have used has four reducing convo-
lutional layers, three nonreducing convolutional layers, and
four deconvolutional layers such that the output image has
the same dimensionality as the input image. This topology
differs slightly from the original work on DCIGNSs [21], where
a fully connected layer would replace our three nonreducing
convolutional layers. Additionally, our DCIGN is determin-
istic. In the original work [21], random noise is introduced
in the decoder to create a nondeterministic generative model.
All of our convolutional layers use a kernel size of 3 with
rectified linear unit activations. We used a learning rate of
10~ while training for 500 epochs and dropped the learning
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rate by a factor of 10 before training for an additional 100
epochs. For this discussion, we focus solely on the 10-electron
calculations with the RND external potentials. We argue that
these are the most challenging calculations to train with a
DCIGN, and can therefore safely assume that the less complex
calculations would be successful given the success of the most
complex cases. In Fig. 4, we show some of the predictions
that the DCIGN made for 10-electron calculations with the
LDA exchange-correlation functional. There is a remarkable
resemblance between the true (oye) and predicted (Opredicted)
charge densities. The DCIGN is capable of handling the
extreme variability of the complex shapes and is capable of
handling the cases where the charge density is not isolated
to one region of space. From a qualitative perspective, the
DCIGN makes accurate predictions of the charge densities
given RND external potentials.

Normally, when addressing the viability of a machine-
learning model from a quantitative perspective, one considers
the mean absolute error on the test set. We argue that a more
rigorous test for ppregicied Would be the mean absolute error
of the energies associated with ppredicied- We therefore take
Ppredicted and renormalize them such that f dr p(r)predicted =
10. Afterwards, we use the renormalized Opredicted @S input
to a subset of the models described in Sec. III A 1. We then
compare the energies predicted from Opredictea With the true
energies. In Table III of Appendix C, we show the mean
absolute errors between the true and predicted energies for the
different exchange-correlation functionals. When comparing
the mean absolute errors of the predicted energies for ppredicted
with the energy predictions made from the pyye, the mini-
mal difference was seen for the correlation energies with a
value of ~6 mHa. This was true for all exchange-correlation
functionals considered in this work. The maximal difference
between the mean absolute errors when comparing the energy
predictions of ppredicted and pgue Was the total energy, which
was ~20 mHa. Again, this is true for all exchange-correlation
functionals considered. In addition to this metric, we also
report the mean absolute error for a model mapping Ppredicted
to the true energies. We find an increase in the errors in
comparison to the models that map the true charge densities
to the true energies, but the errors are comparable to the
errors when we evaluate ppredicted With the model trained on
the true charge densities. Training with the charge densities

J

and energies as labels yields similar results. We also report
the mean absolute density driven error (DDE) using a similar
definition as Brockherde et al. [15] in Table III. We find
similar trends in the DDEs when comparing them to the
mean absolute errors of Opredicted- FOr more information on our
definition of the mean absolute DDEs, see Appendix D. In
addition, to compare with Brockherde et al. [15], our relative
mean absolute error is a factor of ~7 times smaller.

IV. CONCLUSION

In conclusion, we have shown that extensive deep neural
networks (EDNNs) and deep convolutional inverse graphics
networks (DCIGNS5) can be used alongside or replace conven-
tional Kohn-Sham density-functional-theory (KS-DFT) cal-
culations. For both the random (RND) and simple harmonic
oscillator (SHO) external potentials, EDNNs have the capa-
bility to make highly accurate energy predictions using both
the charge densities and the external potentials as input for
correlation, exchange, external, kinetic, and total energy si-
multaneously (dataset is available online [37]). In addition, we
have shown that DCIGNSs have the capability to predict charge
densities given an external potential. Qualitatively speaking,
the predicted charge densities are remarkably similar to the
true charge densities. Quantitatively speaking, the relative
mean absolute errors were found to be smaller than previous,
state-of-the-art work [15]. The results of this report show
promise for future application in two regards. First, this frame-
work has the capability to make predictions of higher-level
theory calculations given a lower-level theory charge density
similar to a previous report [14]. Second, both EDNNs and
DCIGNSs can be used to calculate energies covering a large
range of electronic environments to a high level of accuracy.
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APPENDIX A: MORE DETAILS ON THE GENERATED DATA

TABLE I. Summary of the calculations that were used for training and testing the deep-learning models. N is the number of electrons,
Viex: 18 the external potential chosen (see text), and Vx + V¢ are the exchange-correlation potentials chosen. Note that the combination of the
number of electrons and external potential produces a unique dataset. For example, the 3-electron systems in the RND potentials have 100 000
external potentials but contributes 300 000 calculations due to the use of different exchange-correlation functionals.

N Viext Vx + Ve No. calculations
1 SHO LDA + LDA 100 000
1 SHO PBE + LDA 100 000
1 SHO MGGA + LDA 100 000
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TABLE 1. (Continued.)

N Viext Vx + Ve No. calculations
1 RND LDA + LDA 100 000
1 RND PBE + LDA 100 000
1 RND MGGA + LDA 100 000
2 SHO LDA + LDA 100 000
2 SHO PBE + LDA 100 000
2 SHO MGGA + LDA 100 000
2 RND LDA + LDA 100 000
2 RND PBE + LDA 100 000
2 RND MGGA + LDA 100 000
3 SHO LDA + LDA 100 000
3 SHO PBE + LDA 100 000
3 SHO MGGA + LDA 100 000
3 RND LDA + LDA 100 000
3 RND PBE + LDA 100 000
3 RND MGGA + LDA 100 000
10 SHO LDA + LDA 100 000
10 SHO PBE + LDA 100 000
10 SHO MGGA + LDA 100 000
10 RND LDA + LDA 100 000
10 RND PBE + LDA 100 000
10 RND MGGA + LDA 100 000
Total 2 400 000

APPENDIX B: MEAN ABSOLUTE ERRORS WITH THE SIMPLE HARMONIC OSCILLATOR EXTERNAL POTENTIALS

TABLE II. Mean absolute errors (in mHa per electron) and root-mean-squared errors (in parentheses) for models trained in this report for
the SHO potentials. The abbreviations p and V., are charge density and potential, respectively. The arrows (i.e., LDA — PBE) indicate that
the charge density used as input to the DNN was calculated using the LDA exchange-correlation functional, but the labels (energies) were
calculated using another exchange-correlation functional.

N, electrons Input Functional Ecorrelation Eexchange Eexternal Ekinetic Etolal

1 0 LDA 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.2 (0.2)
2 0 LDA 0.1(0.1) 0.1(0.2) 0.1(0.2) 0.1 (0.1) 0.3 (0.4)
3 P LDA 0.1 (0.1) 0.1 (0.2) 0.2 (0.3) 0.1 (0.2) 0.5 (0.6)
10 0 LDA 0.1 (0.1) 0.2(0.2) 0.3 (0.6) 0.2 (0.3) 0.9 (1.4)
1 0 PBE 0.1 (0.1) 0.2 (0.2) 0.1(0.2) 0.1(0.1) 0.2 (0.3)
2 P PBE 0.1 (0.1) 0.2 (0.2) 0.1(0.2) 0.1 (0.1) 0.3(0.4)
3 0 PBE 0.1 (0.2) 0.2(0.3) 0.3(0.4) 0.2(0.2) 0.8 (0.9)
10 0 PBE 0.1(0.1) 0.2 (0.2) 0.4 (0.6) 0.2 (0.2) 0.9 (1.5)
1 P MGGA 0.1 (0.1) 0.2 (0.3) 0.1 (0.2) 0.1 (0.1) 0.3(0.3)
2 ) MGGA 0.2(0.2) 0.3(0.4) 0.2 (0.2) 0.1 (0.2) 0.4 (0.5)
3 0 MGGA 0.1(0.1) 0.2 (0.3) 0.2 (0.2) 0.1(0.2) 0.4 (0.5)
10 P MGGA 0.2 (0.3) 0.4 (0.5) 0.5 (0.8) 0.3(0.4) 1.3(1.9)
1 Viext LDA 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.2 (0.2)
2 Vit LDA 0.1 (0.1) 0.1(0.2) 0.1(0.1) 0.1 (0.1) 0.2 (0.3)
3 Veext LDA 0.1 (0.1) 0.1 (0.2) 0.1(0.2) 0.1 (0.1) 0.3(0.4)
10 Vext LDA 0.1 (0.2) 0.2(0.3) 0.3 (0.8) 0.2(0.3) 0.8 (1.1)
1 Vit PBE 0.1 (0.1) 0.1(0.1) 0.1 (0.1) 0.1 (0.1) 0.1(0.2)
2 Vext PBE 0.1 (0.1) 0.1 (0.2) 0.1 (0.1) 0.0 (0.1) 0.2 (0.3)
3 Vext PBE 0.1 (0.1) 0.1 (0.2) 0.1 (0.2) 0.1 (0.1) 0.3(0.4)
10 Vext PBE 0.1 (0.2) 0.2 (0.4) 0.4 (0.8) 0.2 (0.3) 0.8 (1.1)
1 Vext MGGA 0.1 (0.1) 0.1 (0.2) 0.1 (0.1) 0.1 (0.1) 0.2 (0.2)
2 Vext MGGA 0.1 (0.1) 0.2(0.2) 0.1 (0.1) 0.0 (0.1) 0.2 (0.3)
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TABLE II. (Continued.)

Nelectrons IHPUt Functional Ecorrelation Eexchange Eexternal Ekinetic Etotal

3 Vext MGGA 0.1 (0.1) 0.2 (0.3) 0.1 (0.2) 0.1 (0.1) 0.3(0.4)
10 Vi MGGA 0.1(0.2) 0.3 (0.5) 0.3 (0.7) 0.2 (0.3) 0.7 (1.0)
1 P LDA — PBE 0.1 (0.1) 0.1(0.2) 0.1 (0.1) 0.1 (0.1) 0.2 (0.3)
2 0 LDA — PBE 0.1 (0.1) 0.2 (0.2) 0.1(0.2) 0.1 (0.1) 0.3 (0.4)
3 0 LDA — PBE 0.1(0.1) 0.1(0.2) 0.2 (0.2) 0.1(0.2) 0.4 (0.5)
10 P LDA — PBE 0.1(0.2) 0.2 (0.2) 0.3 (0.6) 0.2 (0.3) 0.8 (1.4)
1 0 LDA — MGGA 0.1 (0.1) 0.2 (0.3) 0.1(0.2) 0.1(0.2) 0.3(0.3)
2 P LDA — MGGA 0.1 (0.2) 0.3(0.3) 0.1 (0.2) 0.1 (0.2) 0.3(0.5)
3 P LDA — MGGA 0.1(0.2) 0.3(0.4) 0.2 (0.3) 0.2 (0.2) 0.5 (0.7)
10 0 LDA — MGGA 0.1(0.2) 0.2 (0.3) 0.4 (0.7) 0.2 (0.3) 0.9 (1.5

APPENDIX C: MEAN ABSOLUTE ERRORS WITH THE RND EXTERNAL POTENTIALS

TABLE III. Mean absolute errors (in mHa per electron) and root-mean-squared errors (in parentheses) for models trained in this report
for the RND potentials. The abbreviations p, V., and predicted p are charge density, potential, and predicted charge density respectively.
The arrows (i.e., LDA — PBE) indicate that the charge density used as input to the DNN was calculated using the LDA exchange-correlation
functional, but the labels (energies) were calculated using another exchange-correlation functional. The acronym DDE stands for density-driven
error, as defined by Brockherde et al. [15]. The models labeled by V., — p directly map the external potentials to charge densities. The models
labeled by Predicted p map predicted charge densities to true energies.

N, electrons IHPUt Functional Ecorreli\tion Eexchi\nge Eexterna] Ekinetic Etotal

1 0 LDA 0.9 (1.5) 1.4(2.3) 14.5 31.7) 2.5(3.7) 14.5 31.1)
2 P LDA 1.1 (2.0) 1.8 (3.1) 9.6 (19.4) 2.23.4) 9.9 (25.4)
3 P LDA 2.0@3.5) 3.1(5.4) 35.1(57.0) 5.6 (8.6) 36.1 (58.4)
10 o LDA 2.0 (3.8) 3.0(5.9) 73.4 (117.1) 6.7 (10.2) 74.4 (119.4)
1 P PBE 1.9 (2.5) 3.1(4.0) 15.3(32.2) 3.8(4.9) 15.1 (31.2)
2 P PBE 1.3 (2.1) 1.9 @3.1) 9.5(19.3) 2.2(3.1) 10.1 (21.7)
3 0 PBE 2.0 (3.3) 2.9 (4.9) 34.4 (55.6) 52(7.7) 35.6 (56.8)
10 P PBE 1.9 (3.6) 2.8(5.5) 73.7 (115.0) 7.6 (11.4) 75.0 (117.1)
1 P MGGA 1.0 (1.7) 2.1(3.4) 13.7 (30.7) 2.5(3.8) 13.9 (31.0)
2 o MGGA 1.3(2.2) 2.6 (4.6) 10.0 (17.8) 2.4 (3.9) 10.2 (17.8)
3 P MGGA 1.8 (2.8) 3.6(5.7) 34.1(55.7) 4.7(7.1) 36.5 (62.2)
10 P MGGA 2.2(4.1) 4.4 (8.4) 77.2 (122.1) 7.3(11.3) 78.5 (126.1)
1 Vixt LDA 5.3(9.0) 8.6 (14.4) 17.8 (28.7) 11.5(19.2) 22.3 (36.8)
2 Viext LDA 5.3(8.7) 8.5(13.6) 18.5 (31.8) 8.8 (13.5) 21.2(334)
3 Vext LDA 10.6 (15.0) 16.8 (23.7) 46.2 (70.2) 15.8 (23.6) 43.2 (66.7)
10 Vixt LDA 6.6 (9.9) 10.3 (15.4) 50.3 (86.1) 10.5 (16.7) 40.9 (73.2)
1 Vet PBE 6.0 (9.9) 9.3(15.2) 17.2 (27.3) 12.1 (19.3) 22.5(35.6)
2 Vext PBE 6.0 (9.7) 9.0 (14.7) 19.5 (32.8) 10.0 (15.4) 21.3(34.0)
3 Vixt PBE 10.9 (15.3) 16.8 (23.8) 46.1 (69.5) 16.3 (24.2) 43.6 (65.4)
10 Viext PBE 7.1 (10.6) 10.8 (16.1) 49.3 (85.4) 10.4 (16.8) 39.4(71.5)
1 Vext MGGA 5.7 (9.8) 12.0 (20.4) 16.1 (25.3) 10.9 (17.9) 21.7 (34.8)
2 Vi MGGA 5.4 (8.6) 11.0(17.8) 14.8 (23.2) 8.1(12.4) 19.3 (30.0)
3 Vet MGGA 11.1 (15.5) 22.9(32.3) 44.5 (67.9) 16.7 (25.0) 43.0 (65.7)
10 Vext MGGA 7.3 (10.8) 15.0 (22.2) 50.8 (88.0) 10.8 (16.9) 41.4 (76.0)
1 0 LDA — PBE 1.2 (2.0) 1.7 (3.0) 14.5 31.1) 2.4 (3.6) 14.6 (30.5)
2 P LDA — PBE 1.2(4.3) 1.8 (6.4) 8.6 (19.3) 1.9 (4.6) 9.1 (23.9)
3 o LDA — PBE 1.9(3.4) 2.8(5.0) 34.8 (56.2) 5.1(7.7) 35.6 (56.9)
10 o LDA — PBE 2.2 (4.0) 3.2(6.1) 75.5 (118.4) 7.6 (11.7) 76.7 (120.9)
1 P LDA — MGGA 1.4 (2.8) 29(5.8) 14.2 (30.9) 2.6 (4.5) 14.7 (31.6)
2 0 LDA — MGGA 1.53.7) 3.0(7.5) 8.0 (15.2) 2.04.3) 8.7 (19.6)
3 o LDA — MGGA 2.9 (5.4) 6.0 (11.3) 36.3 (58.2) 5.8 (10.0) 37.7 (59.8)
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TABLE III. (Continued.)

Nelectrons IHPUt Functional Ecorrelation Eexchange Eexterna] Ekinetic Etota]

10 p LDA — MGGA 2.6 (4.9) 5.30.9) 73.6 (115.6) 7.5 (11.7) 74.4 (117.4)
10 Vit = p LDA 6.4 (11.0) 9.9 (17.1) 93.0 (151.4) 12.7 (21.5) 98.9 (167.5)
10 Vexk = p (DDE) LDA 6.4 (10.7) 10.0 (16.7) 99.4 (154.4) 13.4(22.2) 108.2 (175.5)
10 Predicted p LDA 5.8 (10.1) 9.0 (15.7) 91.4 (143.2) 11.2 (19.1) 98.5 (158.7)
10 Vi = p PBE 7.2 (11.7) 10.9 (17.7) 100.4 (164.8) 14.5 (24.6) 108.1 (185.8)
10 Vexe = p (DDE) PBE 7.2 (11.5) 10.9 (17.7) 107.0 (168.1) 15.1 (24.9) 117.6 (193.7)
10 Predicted p PBE 6.8 (11.1) 10.2 (16.8) 98.2 (151.5) 12.4 (21.4) 106.7 (170.3)
10 Vet = P MGGA 7.5(12.3) 15.4 (25.1) 94.6 (161.9) 13.0 (22.8) 103.3 (180.5)
10 Vexe = p (DDE) MGGA 7.4 (12.0) 15.2 (24.6) 101.1 (162.4) 13.7 (23.3) 111.8 (184.0)
10 Predicted p MGGA 7.1 (12.1) 14.7 (24.8) 94.9 (150.2) 12.7 (21.5) 102.5 (167.3)

APPENDIX D: A NOTE ON THE DENSITY-DRIVEN ERRORS

In Table III, we report the mean absolute density-driven error rather than the density-driven error that is reported in [15]. When
evaluating a machine-learning model, it is common to report absolute errors to avoid reporting an average error that would have
error cancellation. Consider the total-energy expression

Elp] =Flp] +/dl' V(r)p(r),

where F is the universal functional defined in [1] and V is the external potential. The value E is the true energy given a true
charge density p. The total error reported in [15] is defined to be

(DD

AE = E[p] — E[p] = AEr + AEp, (D2)
where
AEp = Flp] — Flp] (D3)
is the functional-driven error and
AEp = E[p] - Elp] (D4)

is the density-driven error. The variables p, E, and F represent a predicted charge density, an approximation to the total-energy
functional, and an approximation to the true universal functional, respectively. If we consider the absolute value of the total error,

|AE| = |AEF + AEp| # |AEF| 4+ |AEp], (D5)

then we can see that there must be error cancellation between the terms AEr + AEp in order for |AE| < |AEp]|. This is what

we find in Table III.
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