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Casimir pressure between metallic plates out of thermal equilibrium:
Proposed test for the relaxation properties of free electrons
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We propose a test on the role of relaxation properties of conduction electrons in the Casimir pressure between
two parallel metal-coated plates kept at different temperatures. It is shown that for sufficiently thick metallic
coatings the Casimir pressure and pressure gradient are determined by the mean of the equilibrium contributions
calculated at temperatures of the two plates and by the term independent on separation. Numerical computations
of the nonequilibrium pressures are performed for two parallel Au plates of finite thickness as a function
of separation and temperature of one of the plates using the plasma and Drude models for extrapolation of
the optical data of Au to low frequencies. The obtained results essentially depend on the extrapolation used.
Modifications of the CANNEX setup, originally developed to measure the Casimir pressure and pressure gradient
in thermal equilibrium, are suggested, which allow different temperatures of one of the plates. Computations
of the nonequilibrium pressure and pressure gradient are performed for a realistic experimental configuration.
According to our results, even with only a 10 K difference in temperature between the plates, the experiment
could discriminate between different theoretical predictions for the total pressure and its gradient, as well as for
the contributions to them due to nonequilibrium, at high confidence.

DOI: 10.1103/PhysRevA.100.022511

I. INTRODUCTION

Physical phenomena caused by quantum fluctuations of
the electromagnetic field attract much attention in both fun-
damental physics and its applications [1,2]. One of the most
striking macroscopic effects of this kind is the Casimir force
[3] resulting from the zero-point and thermal fluctuations.
This force manifests itself in many branches of physics rang-
ing from atomic physics and condensed-matter physics to
elementary particle physics, gravitation, and cosmology [4],
and is actively considered to be used in the next generation of
microdevices with reduced dimensions [5–11].

The theory of the Casimir force was developed by Lifshitz
[12] for the case of two thick parallel plates (semispaces)
of equal temperature in thermal equilibrium with an envi-
ronment. In the framework of this theory the Casimir free
energy of a fluctuating field and the force per unit area of
the plates (i.e., the Casimir pressure) are expressed via the
frequency-dependent dielectric permittivities of plate materi-
als [4,12]. Over a long period of time, the comparison between
experiment and theory remained solely qualitative. Only dur-
ing the past 15 years sufficiently precise measurements have
been performed which allow reliable quantitative comparison
between the measurement data and theoretical predictions
[4,13]. The results of this comparison are commonly consid-
ered as puzzling. It turned out that the Lifshitz theory is in
agreement with the experimental data for metallic test bodies
only under the condition that the relaxation properties of free
electrons are ignored in calculations. This was confirmed by

several experiments performed in two experimental groups
using quite different laboratory setups (see Refs. [4,13] for
a review and Refs. [13–18] for more recent results). As a
practical matter, this means that the low-frequency response
of a metal to the fluctuating electromagnetic field should be
described by the lossless dielectric permittivity of the plasma
model rather than by the permittivity of the lossy Drude
model, which correctly describes the reaction of metals to
conventional (real) fields. Moreover, for metallic plates with
perfect crystal lattices the Lifshitz theory was found to be in
agreement with thermodynamics only when using the plasma
model, and to violate the third law of the thermodynamics
(the Nernst heat theorem) when the Drude model is used
[4,13,19–21].

Another phenomenon caused by quantum fluctuations is
the radiative heat transfer between two metallic bodies at
different temperatures [22–26]. The first attack to the prob-
lem of generalized Casimir force acting between two media
varying in temperature and separated by a gap was under-
taken in Ref. [27]. The Casimir-Polder atom-plate force and
the Casimir force between metallic plates out of thermal
equilibrium were studied in Refs. [28,29]. The complete
theory of the Casimir interaction out of thermal equilibrium,
covering the plate-plate, plate-rarefied body, and atom-plate
configurations, was developed in Ref. [30]. At a later time
this theory was generalized to the systems of two or more
bodies of arbitrary shape kept at different temperatures which
may be also different from the temperature of the environ-
ment [31–40]. The radiative heat transfer at nonequilibrium
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was also investigated in connection with the van der Waals
friction force between moving bodies [41]. Apart from the
semiclassical Lifshitz theory, where the electromagnetic field
is quantized but the material of the test bodies is described
by a classical dielectric function, the Casimir effect out of
equilibrium was also examined using a stochastic equation for
the density of Brownian charges moving on the background of
a uniform electroneutralizing charge [42].

Most of the calculations considering radiative heat transfer
and nonequilibrium Casimir forces between metallic surfaces
performed up to date assume that the response of metal to
a low-frequency fluctuating field is described by the Drude
dielectric function taking into account the relaxation prop-
erties of conduction electrons. To our knowledge, there are
only two papers [43,44], directed to the resolution of a puzzle
in the comparison between theory and experiment mentioned
above, where the radiative heat transfer was calculated using
different types of response functions of a metal. It was found
[43,44] that the power of the heat transfer depends on the type
of response function, but available measurement data are not
sufficient for making convincing conclusions. According to
the general theory developed in Ref. [30], the nonequilibrium
Casimir force consists of three contributions: the first one is
expressed via the equilibrium Casimir forces at two differ-
ent temperatures, the second one is antisymmetric under the
interchange of temperatures (both of the two are separation
dependent), and the third one which does not depend on
separation between the plates. In Ref. [45] a difference-force
measurement was proposed which allows reliable discrimi-
nation between theoretical predictions for the antisymmetric
contribution to the nonequilibrium Casimir force given by the
Drude and plasma models. This test requires the measurement
of small forces of the order of 1 fN, just as in Refs. [18,46],
and it is not realized experimentally so far (note that differ-
ence force measurement of the equilibrium Casimir forces at
different temperatures was suggested in Ref. [47]).

In this paper, we propose another experimental possibility
to discriminate between two different theoretical approaches
in the nonequilibrium Casimir force using a modified setup
of the CANNEX test of the quantum vacuum (Casimir And
Non-Newtonian force EXperiment) [48–50]. We calculate the
nonequilibrium Casimir pressure in the configuration of two
parallel plates, each of which consists of a sufficiently thick
Au layer deposited on a dielectric substrate. The thicknesses
of the Au layers are chosen to be larger than the characteristic
wavelengths contributing to the thermal effect in the Casimir
force. It is assumed also that the upper plate is kept at the
laboratory temperature, whereas the temperature of the lower
plate is varied through some range. In this case, the contri-
bution to the Casimir pressure, which is antisymmetric under
the interchange of the plate temperatures, is equal to zero to a
high accuracy. As a result, only two other contributions, which
have been screened out in the setup of Ref. [45], determine
the total result. Thus our proposal is alternative to that one
of Ref. [45]. What is more, it relates to separations from 4
to 10 μm, whereas the differential measurements of Ref. [45]
should be performed at separations below 1 μm.

Computations of the Casimir pressure at nonequilibrium
conditions are made using the optical data for Au extrapolated
down to zero frequency either by the Drude or by the plasma

model for the plates of finite thickness. The pressure is found
as a function of separation between the plates and of the tem-
perature of the lower plate. It is shown that the computational
results obtained using the Drude and plasma extrapolations
can easily be discriminated over wide ranges of separations
and temperatures.

Additional computations of both the Casimir pressure and
its gradient are performed in the modified configuration of
the CANNEX test of the quantum vacuum where, without
sacrifice of precision, the temperature of the lower plate can be
increased by up to 10 K with respect to the temperature of the
upper plate. It is shown that even at such a small temperature
difference the theoretical predictions using the Drude and
plasma model extrapolations can be reliably discriminated
over the separation range from 4 to 10 μm. In so doing,
measurements of the pressure gradient provide a test for the
first contribution to the nonequilibrium Casimir interaction
expressed via the equilibrium terms at two different temper-
atures, whereas measurements of the pressure suggest a test
for the additional terms independent of separation.

The paper is organized as follows. In Sec. II we summarize
main results for the out-of-equilibrium Casimir pressure in
the form convenient for computations. Section III contains
computational results for the nonequilibrium Casimir pressure
in the system of two Au plates obtained using the Drude and
plasma model extrapolations of the optical data. In Sec. IV
we briefly describe the modified CANNEX setup and perform
computations of the nonequilibrium Casimir pressure and
pressure gradient in the experimental configuration. Section V
contains our conclusions and discussion.

II. CASIMIR PRESSURE BETWEEN TWO PARALLEL
PLATES KEPT AT DIFFERENT TEMPERATURES

Keeping in mind further applications of the CANNEX
setup, we consider the upper plate (1) as consisting of a thick
dielectric substrate having the dielectric permittivity ε1(ω)
and a metallic layer of thickness d1 having the dielectric
permittivity εm(ω) deposited on the lower surface. The tem-
perature of the upper plate is T1. In a similar way, the lower
plate (2) consists of a thick dielectric substrate having the
dielectric permittivity ε2(ω) coated by a metallic layer of
thickness d2 with dielectric permittivity εm(ω) deposited on
the top of it. The lower plate is kept at the temperature T2. It
is separated by a distance a from the upper one.

For this case the Casimir pressure acting on the inside faces
of the plates can be found in Refs. [30,34] (here we use the
negative sign for attractive pressures)

P(a, T1, T2) = 1

2
[Peq(a, T1) + Peq(a, T2)]

+�Pneq(a, T1, T2) + 2σ

3c

(
T 4

1 + T 4
2

)
, (1)

where Peq is the standard equilibrium Casimir pressure at
the respective temperature, �Pneq is the term antisymmetric
under the interchange of temperatures, and σ is the Stefan-
Boltzmann constant.
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An explicit expression for Peq, convenient for numerical
computations, is given by [4]

Peq(a, Tj ) = − kBTj

8πa3

∞∑
l=0

′ ∫ ∞

ζ
( j)
l

y2dy

×
∑

α

[
ey

R(1)
α

(
iζ ( j)

l , y
)
R(2)

α

(
iζ ( j)

l , y
) − 1

]−1

.(2)

Here, kB is the Boltzmann constant, j = 1, 2, and the prime
on the summation sign divides the term with l = 0 by 2.
ζ

( j)
l with l = 0, 1, 2, . . . are the dimensionless Matsubara

frequencies connected with the dimensional ones by

ζ
( j)
l = ξ

( j)
l

ωc
≡ 2aξ

( j)
l

c
= 4πakBTjl

h̄c
(3)

and y = 2a(k2
⊥ + ξ

( j)
l

2
/c2)1/2, where k⊥ is the magnitude of

the wave-vector projection on the plane of plates.
The reflection coefficients on the upper (n = 1) and lower

(n = 2) plates for two independent polarizations of the elec-
tromagnetic field, transverse magnetic (α = TM) and trans-
verse electric (α = TE), defined at the purely imaginary Mat-
subara frequencies are given by

R(n)
α

(
iζ ( j)

l , y
) = rα

(
1, ε

( j)
m,l

) + rα

(
ε

( j)
m,l , εn,l

)
e−2dnk(ε( j)

m,l )

1 + rα

(
1, ε

( j)
m,l

)
rα

(
ε

( j)
m,l , εn,l

)
e−2dnk(ε( j)

m,l )
. (4)

Here, ε
( j)
m,l ≡ εm(iωcζ

( j)
l ), εn,l ≡ εn(iωcζ

( j)
l ), and

k(ε) = 1

2a

√
(ε − 1)ζ ( j)

l

2 + y2. (5)

The reflection coefficients on the boundary planes between
vacuum and Au and between Au and the dielectric substrates
of the upper and lower plates entering Eq. (4) are defined by

rTM(ε, ε̃) = ε̃k(ε) − εk(ε̃)

ε̃k(ε) + εk(ε̃)
,

rTE(ε, ε̃) = k(ε) − k(ε̃)

k(ε) + k(ε̃)
. (6)

In so doing the dielectric substrates are assumed to be
infinitely thick. Note that with respect to the reflectivity prop-
erties of dielectric substrates this assumption is valid if the
substrate thickness is larger than 2 μm [51]. In the proposed
experiment, the dielectric substrates are much thicker (see
Sec. IV A). Furthermore, as shown in Sec. IV B, with the
actual experimental thicknesses of Au layers d1 and d2 the
dielectric parts of the plates do not contribute to the results [in
situations when the finite thickness of the dielectric substrates
is essential for the calculation of reflection coefficients, one
should use the well-known generalization [52,53] of Eq. (6)
which has the same form as Eq. (4)].

The term �Pneq in Eq. (1) can be most conveniently
expressed in terms of the dimensionless integration variables
u = ω/ωc and t = k⊥c/ω. Introducing these variables in the
respective expressions of Refs. [30,34], one obtains

�Pneq(a, T1, T2) = h̄c

64π2a4

∫ ∞

0
u3du[n(u, T1) − n(u, T2)]

∑
α

[∫ 1

0
t
√

1 − t2dt

∣∣R(2)
α (u, t )

∣∣2 − ∣∣R(1)
α (u, t )

∣∣2

|Dα (u, t )|2

− 2
∫ ∞

1
t
√

t2 − 1e−u
√

t2−1dt
ImR(1)

α (u, t )ReR(2)
α (u, t ) − ReR(1)

α (u, t )ImR(2)
α (u, t )

|Dα (u, t )|2
]
. (7)

Here, we have introduced the following notations:

n(u, Tj ) =
[

exp

(
h̄ωcu

kBTj

)
− 1

]−1

,

(8)
Dα (u, t ) = 1 − R(1)

α (u, t )R(2)
α (u, t ) exp(iu

√
1 − t2).

Note that the first term in the square brackets in Eq. (7)
results from the propagating waves and contains the contri-
bution independent on a. The second term results from the
evanescent waves. Note also that although Eq. (7) assumes
temperature-independent dielectric permittivity of a metal εm,
it can be applied to metals described by the Drude model (see
Sec. III), where the temperature dependence of the relaxation
parameter makes only a minor impact on the computational
results [45].

The reflection coefficients on the upper and lower plates at
real frequencies in terms of the new variables u and t take the
form

R( j)
α (u, t ) = rα (1, εm) + rα (εm, ε j )e2id j k(εm )

1 + rα (1, εm)rα (εm, ε j )e2id j k(εm )
, (9)

where εm ≡ εm(ω) = εm(ωcu), ε j ≡ ε j (ω) = ε j (ωcu), and

k(ε) = u

2a

√
ε − t2. (10)

The reflection coefficients rα (1, εm) and rα (εm, ε j ) entering
Eq. (9) are again expressed via Eq. (6) where the quantity k(ε)
is now defined by Eq. (10) and all dielectric permittivities are
taken along the real frequency axis as functions of u.

Laboratory test bodies are usually placed in an environ-
ment with some temperature T3. This results in additional
external pressures on their outside surfaces depending on the
reflectivity properties of these surfaces and the temperature
of the environment. Assuming that the external surfaces of
dielectric substrates are blackened, the total pressure on plate
i is given by [34]

P(i)
tot (a, T1, T2, T3) = P(a, T1, T2) − 2σ

3c

(
T 4

i + T 4
3

)
, (11)

where P(a, T1, T2) is given by Eq. (1).
If the temperature of the environment is the same as the

one of the upper plate, i.e., T3 = T1, one obtains different total
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pressures acting on the upper

P(1)
tot (a, T1, T2) = P(a, T1, T2) − 4σ

3c
T 4

1

= 1

2
[Peq(a, T1) + Peq(a, T2)]

+�Pneq(a, T1, T2) + 2σ

3c

(
T 4

2 − T 4
1

)
(12)

and lower plates

P(2)
tot (a, T1, T2) = P(a, T1, T2) − 2σ

3c

(
T 4

2 + T 4
1

)
= 1

2
[Peq(a, T1)+Peq(a, T2)]+�Pneq(a, T1, T2).

(13)

In the next section, as a model example, we calculate the out-
of-thermal equilibrium Casimir pressure between two gold
plates of equal thicknesses d1 = d2 kept at temperatures T1

and T2 separated by a gap of width a. This simple config-
uration can be described as a particular case of the above
formulas with ε1 = ε2 = 1. As a consequence, from Eq. (9)
one obtains

R(1)
α (u, t ) = R(2)

α (u, t ) (14)

and from Eq. (7) arrives at �Pneq(a, T1, T2) = 0. Then
Eqs. (12) and (13) result in

P(1)
tot (a, T1, T2) = 1

2
[Peq(a, T1) + Peq(a, T2)] + 2σ

3c

(
T 4

2 − T 4
1

)
,

(15)

P(2)
tot (a, T1, T2) = 1

2
[Peq(a, T1) + Peq(a, T2)], (16)

i.e., the pressure of the lower plate is expressed exclusively in
terms of the equilibrium pressures at two different tempera-
tures. Note that Eqs. (15) and (16) are proven under the con-
dition that the upper plate is in thermal equilibrium with the
environment at temperature T1, whereas the lower plate is not.

III. COMPUTATIONAL RESULTS FOR GOLD PLATES

Here, we perform numerical computations of the pressures
P(1,2)

tot (a, T1, T2) acting on two Au plates kept at temperatures
T1 and T2 using Eqs. (15) and (16). For simplicity we take
d1 = d2 = 1 μm, i.e., much larger than the penetration depths
of electromagnetic fluctuations in Au. Then the computational
results do not depend on the thickness of plates. Extrap-
olations of the optical data of Au to zero frequency are
made by means of the Drude and the plasma models. Both
extrapolations were used extensively in calculations of the
Casimir force (see Sec. I).

The most standard source of optical data is Ref. [54]. An
extrapolation of these data taking into account the relaxation
of conduction electrons under the influence of an external
electromagnetic field is made by means of the lossy Drude
model

εD(ω) = 1 − ω2
p

ω[ω + iγ (T )]
, (17)
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FIG. 1. Magnitude of the total (Casimir) pressure on the lower
Au plate kept at T2 = 500 K is shown as a function of separation. The
upper plate is kept at the temperature of the environment T1 = 300 K.
The top and bottom solid lines are computed using extrapolations
of the optical data to low frequencies by means of the plasma and
Drude models, respectively. The top and bottom dashed lines present
the same quantity in the same way, but in thermal equilibrium T1 =
T2 = 300 K. The region near an intersection of the solid and dashed
bottom lines is shown in more detail in an inset.

where h̄ωp = 9.0 eV is the plasma frequency and h̄γ (T ) =
0.035 eV is the relaxation parameter of Au at T = T1 =
300 K.

By putting γ (T ) = 0 in Eq. (17) one obtains the lossless
plasma model

εp(ω) = 1 − ω2
p

ω2
, (18)

which is commonly used in the frequency region of infrared
optics where ω � γ (T ) and the relaxation properties do not
play any role. As to the Casimir forces in thermal equilibrium,
caused by the fluctuating fields, it was found, however (see
Sec. I), that for agreement with experimental data and with
the principles of thermodynamics one should use the extrapo-
lation of the optical data down to zero frequency by means of
Eq. (18) rather than Eq. (17). Detailed information concerning
both extrapolations can be found in Refs. [4,13].

Now we use the resulting dielectric permittivities of Au
along the imaginary frequency axis to calculate the Casimir
pressure out of thermal equilibrium. We first consider the
pressure P(2)

tot acting on the lower Au plate kept at temperature
T2, which does not contain the separation-independent term.
In order to clearly demonstrate the effect of thermal nonequi-
librium, we choose T1 = 300 K (as in the environment) and
a rather large T2 = 500 K. In Fig. 1 we plot the resulting
magnitude of the (negative) nonequilibrium Casimir pres-
sure as a function of separation, computed with the plasma
(top solid line) and Drude (bottom solid line) models for
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FIG. 2. Total (Casimir) pressure on the lower Au plate, where the
upper plate is kept at the temperature of the environment T1 = 300 K,
normalized by the Casimir pressure at thermal equilibrium, is shown
by the pairs of lines labeled (a) 1, 2, and 3 and (b) 1 and 2 as a
function of temperature T2 of the lower plate. The pairs of lines are
computed at separations between the plates (a) a = 1, 2, and 2.5 μm
for the pairs labeled 1, 2, and 3 and (b) a = 3 and 5 μm for the pairs
labeled 1 and 2, respectively. In each pair the top and bottom lines are
computed using extrapolations of the optical data to low frequencies
by means of the plasma and Drude models, respectively.

extrapolation of the optical data of Au. As a comparison, we
also plot the corresponding results for the equilibrium case
(T1 = T2 = 300 K) as the dashed lines, again using the plasma
(top line) and Drude (bottom line) extrapolations, respectively.

As is seen in Fig. 1, the magnitudes of the Casimir pressure
out of thermal equilibrium are larger than in equilibrium if the
plasma model extrapolation is used. If, however, the Drude
model extrapolation is used in computations, the bottom
solid and dashed lines intersect, i.e., at short separations the
magnitude of the nonequilibrium Casimir pressure is smaller
than that of the equilibrium one. To demonstrate this effect
more clearly, we show the relevant separation range 1.5–3 μm
in the inset. It is seen that if the Drude model is used an
intersection between the solid and dashed lines takes place at
a ≈ 2.3 μm. As can be seen in Fig. 1, thermal nonequilibrium
has a strong impact on the magnitude of the Casimir pressure.

Now we calculate the nonequilibrium Casimir pressure
P(2)

tot as a function of the temperature T2 of the lower plate with
fixed T1 = 300 K. The computational results are normalized
by the Casimir pressure at equilibrium, Peq, computed at T1 =
T2 = 300 K and are shown in Fig. 2. The three pairs of lines
labeled 1, 2, and 3 in Fig. 2(a) are plotted at separations a = 1,
2, and 2.5 μm, respectively. In so doing, the top line in each

2 4 6 8 10

0.1
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1000

a (µm)

P
(1

)
to

t
(µ

P
a)

2

1

FIG. 3. Magnitude of the total pressure on the upper plate in the
configuration of two Au plates kept at T1 = 300 K and T2 = 500 K
is shown as a function of separation by the two solid lines 1 and 2
computed using extrapolations of the optical data to low frequencies
by means of the plasma and Drude models, respectively. The dashed
lines 1 and 2 show the magnitude of the Casimir pressure on the
lower Au plate computed using the plasma and Drude models.

pair is computed using the plasma model extrapolation and the
bottom one using the Drude model extrapolation. In a similar
way, in Fig. 2(b) the two pairs of lines labeled 1 and 2 are
plotted at a = 3 and 5 μm, and the top and bottom lines in
each pair are computed using the plasma and Drude models,
respectively.

As is seen in Fig. 2, the ratio P(2)
tot /Peq monotonously

increases with T2 if the plasma model is used in computations.
If, however, the Drude model is used, the quantity P(2)

tot /Peq

is nonmonotonous with increase of T2 [see the bottom lines
in Fig. 2(a)]. At all separations and temperatures there are
significant differences between the computational results ob-
tained using the plasma and Drude extrapolations of the opti-
cal data [note that, although at a = 5 μm the two solid lines
labeled 2 in Fig. 2(b) deviate by only 1–2%, the theoretical
predictions of the Lifshitz theory combined with either the
Drude or the plasma models for both P(2)

tot and Peq differ by
almost a factor of two].

Next, we consider the pressure on the upper plate which
is in equilibrium with the environment at temperature T1. It is
given by Eq. (15). We put T1 = 300 K equal to the tempera-
ture of the environment and T2 = 500 K. The computational
results as a function of separation are shown in Fig. 3 by the
solid lines labeled 1 and 2, which are computed using extrap-
olations of the optical data by means of the plasma and Drude
models, respectively. For comparison purposes, the dashed
lines 1 and 2 show the magnitudes of the total pressure on the
lower plate computed by Eq. (16) using the same respective
extrapolations of the optical data (these dashed lines were
already presented as the respective solid lines in Fig. 1). Note
that for the upper plate the nonequilibrium pressure changes
its sign from attractive to repulsive. This happens due to the
presence of the last term on the right-hand side of Eq. (15).
Thus, for each of the solid lines 1 and 2 in Fig. 3, the range of
separations to the left of the respective minimum corresponds
to the attraction (the force is negative), and to the right of
the respective minimum corresponds to repulsion (the force
is positive). The values of separation distances separating the
ranges of attraction and repulsion are a ≈ 4.3 and 3.5 μm
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FIG. 4. Simplified schematic of the modified experimental setup
of the CANNEX test that allows for different temperatures on the
sensor (upper) and lower plates by means of accurate feedback-
controlled heating and cooling (see the text for further discussion).
Shown not to scale.

when the plasma and the Drude model extrapolations are used
in computations, respectively.

IV. EXPERIMENTAL TEST CAPABLE OF
DISCRIMINATING BETWEEN DIFFERENT

THEORETICAL APPROACHES

In this section we suggest minor modifications in the exper-
imental setup of the CANNEX test of the quantum vacuum,
which was originally suggested for observation of thermal
effects in the equilibrium Casimir force at large separations
and constraining Yukawa-type corrections to Newton’s gravi-
tational law and parameters of hypothetical particles [48–50].
We demonstrate that with these modifications CANNEX is
most useful for a measurement of the nonequilibrium pressure
considered in Secs. II and III and for a conclusive discrimina-
tion between different theoretical approaches to the account
of free charge carriers.

A. Modified CANNEX setup

CANNEX is an experimental setup for simultaneous mea-
surements of the Casimir pressure and its gradient on the
upper one of two parallel plates at separations from 3 or 4
to 15 μm. The schematic of the setup is presented in Fig. 4.
The upper (sensor) plate is a disk of R = 5.742 mm radius
consisting of a Si substrate of 100 μm thickness and an Au
film of thickness d = 200 nm deposited on its bottom surface.
The system of a sensor plate attached to three springs (only
two of them are shown symbolically) is characterized by
the elastic constant k and effective mass meff , and has the
resonance frequency ω0 = (k/meff )1/2 [48]. The lower plate is
formed by a vertical SiO2 cylinder of 6 mm height coated with
1 μm of Au. The entire setup is placed in a vacuum chamber
(see Refs. [49,50] for more details).

The pressure applied to the upper plate, as well as its
gradient, are detected interferometrically in the experiment.
Pressures are sensed by monitoring changes in the extension
of the sensor’s springs, �a = πR2P/k. Pressure gradients are

measured using a phase-locked loop that detects the shift �ω

of the resonance frequency under the influence of the total
(Casimir) force [4,13,14,49]. For this purpose, the lower three
interferometers (again, only two of them are shown in the
simplified scheme of Fig. 4) are used. The latter also monitor
the separation distance a at different positions around the rim
of the lower plate, thereby allowing for an accurate determina-
tion and control of parallelism. As a result of several improve-
ments in the setup suggested in Ref. [50], sensitivities of the
setup relative to the pressure and pressure gradient measure-
ments will be improved to 1 nPa and 1 mPa/m, respectively.

In addition to the recent proposal [50], we now present
another modification of the CANNEX setup, allowing one
to increase the temperature of the lower plate by 10 K with
no loss in the sensitivity. In fact, the improved sensitivities
mentioned above require a temperature stability of the sensor
better than 1 mK. For this reason, only the temperature of the
lower plate may be varied, while the sensor plate has to be kept
stable in temperature. This can practically be achieved by the
thermal measurement and control scheme sketched in Fig. 4.
The upper half of the sensor plate is connected radiatively
to a thermal shroud mounted on a Peltier element. In order
to monitor the sensor’s temperature, a contactless thermopile
sensor is placed above the upper plate. On the lower side,
the temperature of the fixed SiO2 plate is measured near its
surface via an embedded platinum resistor, and controlled by
Peltier elements at its base.

At a controlled temperature of T1 = 300 K of the sensor
plate and entire setup (which is the temperature of an envi-
ronment), and a temperature T2 = 310 K of the lower plate,
the net radiative input to the sensor plate is just 129 μW,
thanks to the low thermal emission and absorption coefficient
of gold (∼ 0.02). The resulting temperature gradient over the
thickness of the sensor is negligible. Moreover, as Si is almost
transparent at wavelengths larger than the band gap (1.1 μm)
but has an emissivity of around 0.7 [55], the thermal shroud
can be in perfect thermal contact with the sensor. Keeping
the sensor at T = T1 thus requires the shroud temperature
to be roughly 301 mK below T1. Excess heat can always
be eliminated via heat pipes and radiators that interact with
the inner wall of the vacuum chamber (not shown), which is
temperature controlled with a precision of 1 mK as well.

B. Computational results in the experimental configuration

Now we compute the nonequilibrium total pressure and
pressure gradient on the upper plate for the experimental
parameters listed above including the values of temperature
T1 = 300 K and T2 = 310 K, i.e., a rather moderate change,
as compared to the equilibrium situation. It turns out, however,
that this change is quite sufficient in order to observe the role
of nonequilibrium in the measured quantities as well as to
discriminate between different theoretical approaches to the
description of relaxation using the CANNEX setup.

We start with the computation of the pressure gradient
which is not sensitive to the presence of the third (separation-
independent) term on the right-hand side of Eq. (12)

P(1)
tot

′
(a, T1, T2) = 1

2
[P ′

eq(a, T1) + P ′
eq(a, T2)]

+�P ′
neq(a, T1, T2). (19)
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FIG. 5. Gradient of the total pressure for the experimental pa-
rameters of CANNEX applied to the upper plate kept at T1 = 300 K,
while the lower plate is heated to T2 = 310 K, is shown as a function
of separation by the top and bottom lines computed using the
extrapolations of the optical data to low frequencies by means of the
plasma and Drude models, respectively.

Direct computations using Eqs. (7)–(10) show that, although
the parallel plates of CANNEX are dissimilar, with the
experimental parameters d1 = 200 nm and d2 = 1 μm the
contribution of the term �P ′

neq on the right-hand side of
Eq. (19) is by more than four orders of magnitude less than
the contribution of the first term. This is explained by the
fact that the thicknesses d1 and d2 are larger than the thermal
wavelength contributing to �P ′

neq. Thus, in the experimental
configuration, the gradient of the total pressure on the upper
plate can be computed by the equation

P(1)
tot

′
(a, T1, T2) = 1

2 [P ′
eq(a, T1) + P ′

eq(a, T2)], (20)

where from Eq. (2) one obtains

P ′
eq(a, Tj ) = kBTj

8πa4

∞∑
l=0

′ ∫ ∞

ζ
( j)
l

y3dy

×
∑

α

[
ey

R(1)
α

(
iζ ( j)

l , y
)
R(2)

α

(
iζ ( j)

l , y
) − 1

]−2

× ey

R(1)
α

(
iζ ( j)

l , y
)
R(2)

α

(
iζ ( j)

l , y
) . (21)

Here, the reflection coefficients are defined in Eqs. (4)–(6).
In Fig. 5, we present computational results for the gradi-

ent of the total pressure applied to the upper plate for the
experimental configuration. The top and bottom lines are
obtained when the extrapolation of optical data of Au to
low frequencies is performed by means of the plasma and
Drude models, respectively. Note that, with the experimental
thicknesses d1 and d2 of the Au layers indicated above, the
dielectric parts of the plates do not contribute to the result.
As is seen in Fig. 5, within the separation region from 4
to 9 μm the differences in the two theoretical predictions
exceed the experimental sensitivity in measurements of the
pressure gradient by a factor of 2 × 103 to 102. This means
that the alternative theoretical approaches to the calculation
of the pressure gradient can be easily discriminated in the
experiment under consideration.
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FIG. 6. Differential gradient of the total pressure for the exper-
imental parameters of CANNEX applied to the upper plate kept at
T1 = 300 K, while the lower plate is heated to T2 = 310 K, is shown
as a function of separation by the top and bottom lines computed
using the extrapolations of the optical data to low frequencies by
means of the plasma and Drude models, respectively.

Now we discuss whether it is possible to discriminate the
contribution due to different temperatures of the plates in
the measurement results for the total nonequilibrium pressure
gradient P(1)

tot
′
(a, T1, T2) given by Eq. (20). For this purpose

we consider the differential pressure gradient

P(1)
diff

′
(a, T1, T2) = P(1)

tot
′
(a, T1, T2) − P ′

eq(a, T1), (22)

where T1 = 300 K and T2 = 310 K.
The computational results for the quantity P(1)

diff
′
are shown

in Fig. 6 as functions of separation. The top and bottom
lines are computed using the plasma and Drude extrapolations
of the optical data of Au to low frequencies, respectively.
According to Sec. IV A, the experimental sensitivity with
respect to the difference of two pressure gradients is 2 mPa/m.
As is seen in Fig. 6, the differential pressure gradients shown
by the bottom line computed using the Drude extrapolation
exceed the experimental sensitivity by up to a factor 4. How-
ever, the differential pressure gradients computed using the
plasma extrapolation (the top line) exceed the experimental
sensitivity by up to a factor 18. Thus, even for only 10 K
temperature difference between the plates, both the effect of
nonequilibrium and the type of theoretical approach used for
its description can be reliably determined.

Now we return to the nonequilibrium total pressure given
by Eq. (12) and consider potentialities of CANNEX as a
test for the presence of separation-independent contributions.
First, we calculate the pressure applied to the upper plate
kept at T1 = 300 K, while the lower plate is kept at T2 =
310 K. The computational results as functions of separation
are shown in Fig. 7, where the top and bottom solid lines
are computed using the Drude and plasma extrapolations of
the optical data to low frequencies, respectively. Taking into
account that the sensitivity of the CANNEX setup to pressure
measurements is equal to 1 nPa, the alternative theoretical
predictions can be easily discriminated experimentally over
the entire separation range from 4 to 10 μm shown in Fig. 7.
The dashed lines in Fig. 7 show the respective computa-
tional results with an omitted separation-independent term in
Eq. (12). The difference between the solid and neighboring
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FIG. 7. Total pressure for the experimental parameters of CAN-
NEX applied to the upper plate kept at T1 = 300 K, while the
lower plate is heated to T2 = 310 K, is shown as a function of
separation by the top and bottom solid lines computed using the
extrapolations of the optical data to low frequencies by means of
the Drude and plasma models, respectively. Similar results computed
with an omitted separation-independent term are shown by the top
and bottom dashed lines.

dashed lines is equal to 0.14 μPa and, thus, can be observed
in the CANNEX experiment.

As is seen in Fig. 7, the presence of a separation-
independent term in Eq. (15) does not lead to some qualitative
changes in the total pressure. To demonstrate the role of this
term in more detail, we consider the differential pressure
applied to an upper plate

P(1)
diff (a, T1, T2) = P(1)

tot (a, T1, T2) − Peq(a, T1). (23)

The computational results for the quantity P(1)
diff are shown

as functions of separation by the top and bottom solid lines
in Fig. 8 obtained using the Drude and plasma models, re-
spectively. The top and bottom dashed lines show the negative
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FIG. 8. Differential pressure for the experimental parameters of
CANNEX applied to the upper plate kept at T1 = 300 K, while
the lower plate is heated to T2 = 310 K, is shown as a function of
separation by the top and bottom solid lines computed using the
extrapolations of the optical data to low frequencies by means of
the Drude and plasma models, respectively. Similar results computed
with the same parameters but an omitted separation-independent
term are shown by the top and bottom dashed lines for which Pdiff <

0. The separation-independent contribution to the nonequilibrium
pressure is indicated by the short-dashed line.

values of Pdiff , which would be obtained from P(1)
diff using the

Drude and plasma models, but with omitted constant term on
the right-hand side of Eq. (15). The value of this term is indi-
cated by the short-dashed line at the top of Fig. 8. The sensitiv-
ity of the CANNEX test to pressure differences Pdiff is twice
the one to pressure, i.e., 2 nPa. This means that differences
between the top and bottom solid (dashed) lines in Fig. 8,
as well as differences between the solid and dashed lines,
can be easily discriminated by comparing the measurement
results with theory. Because of this, the CANNEX test should
be capable not only of discriminating between two different
approaches to describe the relaxation properties of conduction
electrons in nonequilibrium situations, but of validating or
disproving the presence of separation-independent terms in
the nonequlibrium Casimir pressure as well.

V. CONCLUSIONS AND DISCUSSION

In the foregoing we have proposed a test on the role of re-
laxation properties of free electrons in the out-of-equilibrium
Casimir pressure between two parallel metal-coated plates
kept at different temperatures—one of which is equal to the
ambient temperature. It is shown that if the metallic coatings
are sufficiently thick, the nonequilibrium pressures are deter-
mined by the mean of the equilibrium contributions calculated
at two different temperatures and the term independent on sep-
aration between the plates. In this situation the temperature-
antisymmetric contribution to the pressure is equal to zero
with a high degree of accuracy. Thus the proposed test rep-
resents an alternative to the previous suggestion [45], which
is directed to testing the role of relaxation properties in the
latter, antisymmetric, contribution. In doing so, the other two
contributions to the nonequilibrium pressure considered by us
are screened out in Ref. [45].

To demonstrate the role of the relaxation properties of
conduction electrons in a nonequilibrium situation, computa-
tions of the Casimir pressure as a function of separation were
performed for two parallel Au plates of finite thickness, where
the upper plate is kept at ambient temperature T1 = 300 K
and the temperature of the lower plate is T2 = 500 K. The
ratio of the Casimir pressures for thermal nonequilibrium and
equilibrium was also investigated as a function of temperature
of the lower plate varying from 300 to 500 K. In all cases
computations have been made by using the extrapolations of
the optical data of Au to low frequencies by means of both
the plasma and Drude models. It was shown that the use of
different extrapolations leads to markedly different theoretical
predictions.

Furthermore, the experimental configuration of the
CANNEX test, originally intended to measure the Casimir
pressure and pressure gradient in the plane-parallel geometry
in thermal equilibrium, was modified to allow for different
temperatures on the two plates while preserving high
experimental sensitivities. The nonequilibrium pressure,
pressure gradient, and contributions to these quantities due to
different temperatures of the lower plate were computed in the
experimental configuration using both the plasma and Drude
models for extrapolations of the optical data to low frequen-
cies. It was shown that, even with a rather small difference of
10 K between the temperatures of the upper and lower plates,
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theoretical predictions for the total nonequilibrium pressure
and pressure gradient, as well as for the terms independent
on separation and contributions due to different temperatures,
computed using the plasma and Drude models, can be
reliably discriminated taking into account the experimental
sensitivities.

Thus the modified CANNEX test could be helpful in
the resolution of the Casimir puzzle actively discussed in
the literature for the past two decades. The situation in this
problem is really challenging. The expression for the Casimir
free energy was carefully derived from first principles in the
case of dissipation using different theoretical approaches in-
cluding the fluctuation-dissipation theorem [12,56–61]. This
means that it should be valid also in the case of the Drude
model. In spite of this, in many direct measurements of the
Casimir force and its gradient performed starting in 2003
(see Refs. [4,13] for a review and more modern experiments
[14–17]) the predictions of the Lifshitz theory taking into
account dissipation of free electrons were excluded at up to a
99% confidence level. The predictions of the same theory with
omitted dissipation of free electrons were confirmed. In these
experiments, the measurement errors were equal to a fraction
of a percent to compare with the difference between two theo-
retical predictions up to 5%. Based on this, the possible role of
some unaccounted systematic effects was underlined by many
authors. The situation has been changed after the proposed
differential measurement scheme [62] where the predictions
of the Lifshitz theory combined with the Drude and plasma
models differ by up to a factor of 1000. After performing
the respective experiment [18], the Lifshitz formula combined
with the Drude model was excluded with absolute certainty in
spite of the fact that it seems to be well justified theoretically.

The predictions of the Lifshitz theory combined with the
plasma model were again found to be in good agreement with
the measurement data.

A commonly accepted understanding of the roots of the
problem is still missing. It is the authors’ opinion that they
might go back to the foundations of quantum statistical
physics. According to one of the postulates, the responses of
a physical system to a real electromagnetic field possessing
a nonzero strength and to a fluctuating field characterized
by a zero strength but nonzero dispersion are similar. The
dielectric response to a real field can be directly measured
and is described by the Drude model as it is confirmed by
abundant evidence. The dielectric response to a fluctuating
field, however, can be observed only indirectly in phenomena
such as the Casimir effect. Thus the above-mentioned pos-
tulate may be treated as a far reaching extrapolation which
requires a reconsideration based on the experimental results
on measuring the Casimir interaction.

To conclude, the CANNEX test, originally proposed to
measure the pressure and pressure gradient between paral-
lel flat plates in equilibrium, may provide important addi-
tional information regarding the role of relaxation properties
of conduction electrons in the out-of-equilibrium Casimir
effect.
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