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Li Guang Jiao ,* Li Rong Zan, and Lin Zhu
College of Physics, Jilin University, Changchun 130012, People’s Republic of China

Yong Zhi Zhang
College of Physical Science and Technology, Heilongjiang University, Harbin 150080, People’s Republic of China

Yew Kam Ho
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

(Received 29 May 2019; published 14 August 2019)

The expectation values of radial geometric quantities 〈r<〉, 〈r>〉, 〈r〉, and 〈r12〉 and angular ones 〈θ12〉
and 〈cos θ12〉 are investigated in detail for two-electron systems. Although these quantities can be calculated
straightforwardly in the framework of Hartree-Fock or configuration-interaction methods, their computations
based on explicitly correlated type wave functions are nontrivial tasks. In this work we employ the Hylleraas
configuration-interaction basis functions to produce accurate system energies and wave functions for the He atom
and He-like ions. Computational methods are developed to accurately and efficiently calculate the geometric
quantities, especially for inner and outer electron radii, i.e., 〈r<〉 and 〈r>〉, and the average interelectronic
angle 〈θ12〉. Compared to previous Hartree-Fock and multiconfiguration Hartree-Fock predictions and the
configuration-interaction calculations based on Slater-type orbitals, our present work improve significantly
the accuracy of all geometric quantities for He atom in the ground and singly excited states. The application
of the present method to He-like ions with different nuclear charge reveals asymptotic power laws for both radial
and angular quantities as they approach to the high-Z limit. Further extensions of the present work to other
systems are discussed.
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I. INTRODUCTION

The investigation of radial and angular geometric quanti-
ties of multielectron atomic systems has attracted consider-
able interest in recent years due to their important roles in
our understanding of the quantum correlation effect through
different kinds of measurement and characterization of quan-
tum many-body systems from a classical viewpoint [1–6]. The
radial quantities 〈rn〉 and 〈rn

12〉 with both positive and negative
integer power n have been extensively investigated in various
studies of atomic properties, e.g., the calculation of relativistic
and higher-order quantum electrodynamic energy corrections
in few-electron atomic systems [7–10], the approximation
of multipole polarizabilities for atomic systems [11–13], the
asymptotic expansion of binding energy for Rydberg atoms
consisting of high-excitation electrons moving in the field
of a polarizable core [14,15], and the information-theoretic
measure of Fisher information for atomic systems in conju-
gate coordinate and momentum spaces [16,17]. The angular
one 〈cos θ12〉, which is also referred to as 〈r̂1 · r̂2〉, together
with 〈�r1 · �r2〉 (=〈r1r2 cos θ12〉), also has its own application
in the contribution of high-order relativistic effects [7–10],
categorizing and classifying the doubly excited resonances
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into different series [18,19], and extracting orientational in-
formation about the electrons in position space [20].

In a series work Koga and co-workers [21–40] further in-
vestigated the average inner and outer electron radii, i.e., 〈r<〉
and 〈r>〉 where r< = min(r1, r2) and r> = max(r1, r2), the
average interelectronic angle 〈θ12〉, and their corresponding
density distributions in atomic systems. Based on the Hartree-
Fock (HF) and multiconfiguration Hartree-Fock (MCHF)
methods, a variety of radial and angular properties for var-
ious elements in the Periodic Table have been worked out
systematically. Investigations of the radial properties have
concentrated on the average electron radius, inner and outer
electron radii, and their corresponding radial densities in
many-electron atoms [21–26], the electron-pair radial sum
and difference moments in atoms [27,28], and the properties
of electron conditional radial densities [29,30]. Those for
the angular properties are related to the uncorrelated and
correlated interelectronic angle, its cosine value, and their
density distributions for multielectron atoms in both position
and momentum spaces [31–35], the angular quantities of
equivalent and subshell-pair electrons in HF theory with LS
couplings [36–38], and the lower and upper bounds to the
average interelectronic angle and its cosine for various atoms
[39,40].

Besides the plentiful work of Koga and co-workers, the
usefulness of the geometric quantities r<, r>, cos θ12, and
θ12 has been realized by many authors concerning different
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aspects of application in atomic systems. The pioneering
work of Schwartz [41] was the first to suggest that the in-
clusion of coordinates r< and r> in the basis set has built
in the ability to easily deal with the interelectronic Coulomb
potential at the singularity r< = r>. The subsequent devel-
opment of so-called modified configuration-interaction and
radially uncoupled configuration-interaction (CI) methods by
Goldman [42–45] showed the superiority of such types of
basis functions in improving the convergence with respect
to both radial and angular expansions, compared to conven-
tional CI methods based on Slater or natural orbitals. The
usefulness of geometric quantities in investigating the doubly
excited resonance states of two-electron systems has also been
largely revealed. Bylicki and Nicolaides [46,47] calculated
the expectation value of 〈r>〉 to estimate the general size
of a resonance and also to distinguish the different series
of resonance states. Bürgers and Rost [48] used the quan-
tities of 〈r<〉, 〈r>〉, and 〈θ12〉 (they use, however, the ap-
proximation of 〈θ12〉 ≈ arccos〈cos θ12〉) to construct the Lewis
structures for resonance states and then describe the inter-
ference phenomena between different resonance series. The
angular quantity 〈cos θ12〉 has been used for a long time to
categorize the resonance series and furthermore determine
their approximate good quantum numbers through the for-
mula 〈cos θ12〉 n→∞−→ −K

N [18,19]. The expectation values of
〈θ12〉 and arccos〈cos θ12〉 were calculated by Themelis [49] for
Wannier-ridge resonance states and by Ordóñez-Lasso et al.
[50] and Jiao and Ho [51] in studies of the geometric structure
of resonances in a plasma screening environment.

We restrict the present work to the bound states of a two-
electron He atom and He-like ions for which extremely accu-
rate system energies, wave functions, and abundant physical
quantities are available in the literature [7]. The geometric
quantities including 〈rn〉, 〈rn

12〉, 〈cos θ12〉, and 〈�r1 · �r2〉 have
also been reported within high accuracy by many authors.
However, for those 〈r<〉, 〈r>〉, 〈θ12〉, and their correspond-
ing density distributions, the calculations are quite limited.
Besides the series work of Koga employing HF and MCHF
methods, our recent CI calculations [52] based on Slater-type
orbitals (STOs) have largely improved the accuracy of these
quantities, especially for the ground and low-lying excited
states. However, the CI results are far less satisfying due to
the fact that the coupled system wave functions do not fulfill
the two-electron coalescence Kato cusp condition [53] and
moreover the convergence of energy and almost all quantities
is inevitably slow with respect to both radial and angular
expansions [43]. It is well known that the explicitly correlated
type wave functions, such as Hylleraas, Kinoshita, and Pekeris
wave functions [7,54–56], Hylleraas with logarithm functions
[57,58], exponential correlated wave functions [9,59,60], ex-
plicitly correlated Gaussians [61], and Hylleraas Gaussian
[62], Hylleraas B-spline [63], and Hylleraas configuration-
interaction (HyCI) wave functions [64–68], which are also
known as the superposition of correlated configurations (SCC)
method [69–78], are applicable to perform high-precision
calculations for few-electron atomic systems. However, as we
will show in the following, their application to those geomet-
ric quantities mentioned above are nevertheless nontrivial.

In this work we adopt the HyCI (or SCC) type wave
functions [64–78] to produce explicitly correlated type system

wave functions and calculate the radial and angular geometric
quantities. Such a type of basis sets can be easily constructed
from the conventional CI ones [51,52] and at the same time
show special advantages compared to the original Hylleraas
one, e.g., requires less computational effort, is probably more
appropriate for describing multiply excited and autoionizing
resonance states, and is more easily extended to three- and
four-electron systems.

The paper is organized as follows. Section II describes
the details of the theoretical method including the construc-
tion of HyCI basis functions, the optimization of basis sets
by orthogonalization, and the computational methodology in
calculating radial and angular quantities. Section III presents
our calculated results and discusses the ground and singly
excited states of the He atom and the ground state of He-like
ions. Benchmark expectation values of geometric quantities
for various states are shown in detail. Section IV summarizes
the present work and discusses further the application of our
method to other systems and topics of interest. Atomic units
are used throughout this paper unless otherwise stated.

II. THEORETICAL METHOD

A. HyCI basis functions

The Hamiltonian of the two-electron system with infinite
nuclear mass in the nonrelativistic framework is given by

H = −1

2
∇2

1 − 1

2
∇2

2 − Z

r1
− Z

r2
+ 1

r12
, (1)

where Z is the positive nuclear charge. The HyCI basis
functions employed in this work to expand the system wave
functions are constructed from the usual CI basis sets. They
are expressed in terms of the product of STOs with the r12

coordinate included explicitly

�(�r1, �r2) = (1 − P̂12)
kmax∑
k=0

lmax∑
la,b=0

∑
i, j

Cai,b j r
k
12φai (r1)φb j (r2)

×Y LM
la,lb (r̂1, r̂2)SS,MS (σ1, σ2), (2)

where φ(r) is the radial part of the one-electron STO

φai (r) = rnai −1e−ξai r, (3)

in which ξ is the nonlinear variational parameter to be opti-
mized for a specific state. Here Y LM

la,lb
(r̂1, r̂2) and SS,MS (σ1, σ2)

are the two-electron coupled angular momentum and total
spin wave functions, respectively, and i and j represent dif-
ferent STOs with the same angular momentum l . The non-
negative integer k refers to the power of the interelectronic
distance. The restriction of kmax = 0 reduces the HyCI basis
functions to the conventional STO CI ones used in our previ-
ous work [51,52].

In the HyCI calculations, the maximum value of k is
generally set to 1 (or 2 if the electron correlation contribution
is large, e.g., in the ground state of atomic systems), which
doubles (or triples) the total number of basis functions in
the STO CI basis set. For one-electron STOs, both quan-
tum numbers n and l are truncated to finite values as large
as possible, accessing an approximately full CI calculation
even without the rk

12 terms. Then the additional r12 terms
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take into account the Kato cusp condition at two-electron
coalescence and furthermore cover partially the higher-lying
angular momentum couplings. Note that the HyCI basis set
constructed in this manner differs from the original Hylleraas
ones, which only explicitly include the lowest-order angular
momentum couplings (e.g., s-p coupling for P-type states and
s-d and p-p couplings for D-type states), and all higher-order
angular momentum couplings are taken into account through
the expansion of rk

12 terms, where k takes in principle all
even and odd integers [79]. An advantage of the restriction
of kmax = 1 (or 2) is attributed to the fact that in calculating
the radial integrals of the overlap and Hamiltonian matrix
elements computational effort can be reduced.

In constructing the two-electron HyCI (and STO CI) basis
set, we use two groups of STOs for the one-electron orbital,
with each group sharing the same parameter ξ , i.e., only
two parameters need to be optimized in the Rayleigh-Ritz
variational procedure. This would again significantly reduce
the computational effort in calculating the radial integrals
I∗∗∗varLambda(a, b, c, α, β ) for various matrix elements (for
details, see Ref. [7]). The HyCI basis set constructed in
this way is labeled (n1, n2)kmax, where n1 is the maximum
principal quantum number of STOs in the first group with
all possible values of angular momenta l < n1 and so forth
for n2. However, it is known that the Hylleraas-like basis
functions are designed specifically for the description of
ground or lower-lying excited states and their extension to
higher-lying Rydberg states is not easy. Two techniques have
been introduced by Drake and co-workers to successfully
deal with such a problem [80,81]. The first one uses directly
the multiple distance scales required for an accurate repre-
sentation of the wave functions in the entire radial space
by writing the Hylleraas basis functions in doubled or even
tripled basis sets. These sets with different parameters pro-
duce a flexible description of the system wave function in
close-, middle-, and far-range coordinate sectors. The second
technique includes the product of screened hydrogenic wave
functions as a single basis due to the fact that it is already
a good approximation of the high-lying Rydberg states. The
combination of these two techniques implemented by Drake
and co-workers has produced very accurate system ener-
gies and wave functions for two-electron systems in both
low- and high-lying states with a variety of total angular
momenta.

To maintain the simplicity and efficiency of our HyCI basis
and recalling that basis functions with relatively large values
of n1 and n2 can cover a wide range of coordinate sectors,
here we adopt only the second one to improve our basis set,
i.e., incorporating a product of screened hydrogenic wave
functions for the He-like ion with nuclear charge Z ,

�0(�r1, �r2) = (1 − P̂12)C0φ
Z
n1,l1 (r1)φZ−1

n2,l2
(r2)

×Y LM
l1,l2 (r̂1, r̂2)S(σ1, σ2), (4)

into the HyCI basis set in Eq. (2), with

φZ
n,l (r) = Nα

n,l (2αr)l e−αrL2l+1
n−l−1(2αr), (5)

where Nn,l is the normalization coefficient, Lm
n (r) is the asso-

ciated Laguerre polynomial, and α = Z/n. The dimension of
the new basis set is simply increased by 1.

B. Canonical orthogonalization

With continuously increasing the number of basis functions
and also including the hydrogenic wave functions, the linearly
dependent problem inherent in the explicitly correlated HyCI
basis functions becomes more and more serious and it would
inevitably lead to the solution of the generalized eigenvalue
problem being very unstable. Application of higher-precision
arithmetics (e.g., the arbitrary precision package developed by
Bailey [82]) in numerical computations would solve such a
problem; however, the user must put forth considerably more
computational effort.

In our previous work [83] we successfully applied
Löwdin’s canonical orthogonalization method [84] to the
variational calculations of atomic systems based on STO CI
wave functions. It was shown that such a method is powerful
in reconstructing the nonorthogonal basis functions as orthog-
onal ones while removing the redundant parts of the basis
set in the most optimal way. This method can be employed
here to refine the HyCI basis sets used in this work (for
details, readers are referred to Refs. [83,84]). The minimum
value of the eigenvalues for the overlap matrix measures
the linear independence inherent in the original basis set
and in this manner we can truncate the eigenvalues used in
the construction of the transformation matrix. By setting a
small quantity, all eigenvalues smaller than it are discarded.
The transformed standard eigenvalue problem is then solved
accurately. In our following calculations, quadruple-precision
arithmetic is used and the small quantity is set to ∼10−30. It is
generally found that the reduction would never exceed 15% in
our most extensive calculations with the basis sets kmax = 2.

C. Radial quantities

Once the eigenvalue for a specific state is obtained from
the multiparameter variational procedure, we can calculate
various radial quantities. The calculations of expectation val-
ues of the electron-nucleus distance 〈rn〉 and electron-electron
one 〈rn

12〉 are quite straightforward. However, the calculations
of expectation values of smaller and larger components of
the electron-nucleus distance, i.e., 〈rn

<〉 and 〈rn
>〉, for arbitrary

angular momentum states are much more involved. We start
from the Hylleraas-type integrals developed by Drake [7]
employing a transformation of the full six-dimensional vol-
ume element into the product of a three-dimensional angular
integral and a three-dimensional radial integral over r1, r2, and
r12. This yields the basic integral

〈
Y LM∗

l1,l2 Y LM
l ′1,l

′
2

f (a, b, c; α, β )
〉
�r1,�r2

=
∑

q

CqIq(a, b, c; α, β ), (6)

where

Cq = (2q + 1)

2
(−1)L+q[(2l1 + 1)(2l ′

1 + 1)(2l2 + 1)(2l ′
2 + 1)]1/2

(
l ′
1 l1 q
0 0 0

)(
l ′
2 l2 q
0 0 0

){
L l1 l2
q l ′

2 l ′
1

}
(7)
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and

Iq(a, b, c; α, β ) =
∫ ∞

0
r1dr1

∫ ∞

0
r2dr2

∫ r1+r2

|r1−r2|
r12dr12

× f (a, b, c; α, β )Pq(cos θ12), (8)

with

f (a, b, c; α, β ) = ra
1rb

2rc
12e−αr1 e−βr2 . (9)

The calculations of 〈rn〉 and 〈rn
12〉 can be performed directly

by using the efficient recursion relations developed by Drake
[7]. For 〈rn

<〉 and 〈rn
>〉, the above procedure does not work and

we must seek an alternative way to calculate the radial integral
Iq.

The work of Perkins [85] expanded the arbitrary powers of
the interelectronic coordinate rν

12 into powers of r< and r>,

rν
12 =

L1∑
q=0

Pq(cos θ12)
L2∑

k=0

Cν,q,krq+2k
< rν−q−2k

> , (10)

where L1 = 1
2ν and L2 = 1

2ν − q for even values of ν, and
L1 = ∞ and L2 = 1

2 (ν + 1) for odd values of ν. The coeffi-
cient Cν,q,k is given by

Cν,q,k = (2q + 1)

(ν + 2)

(ν + 2)!

(2k + 1)!(ν − 2k + 1)!

min{(q−1),[(ν+1)/2]}∏
t=0

× (2k + 2t − ν)

(2k + 2q − 2t + 1)
. (11)

Utilization of Eq. (10) in the calculations of the basic six-
dimensional integral gives a compact form that does not need
the transformation of the volume element. This was performed
in the work of Yan and Drake [86]. Equation (6) now becomes〈

Y LM∗
l1,l2 Y LM

l ′1,l
′
2

f (a, b, c; α, β )
〉
�r1,�r2

=
∑
q,k

Cc,q,kGqIR(a, b, c; α, β; q, k), (12)

where

Gq = 2

2q + 1
Cq (13)

and the radial integral reads

IR(a, b, c; α, β; q, k)

=
∫ ∞

0
dr1

∫ ∞

0
dr2ra+2

1 rb+2
2 rq+2k

< rc−q−2k
> e−αr1 e−βr2 . (14)

Separating the integral domain of r2 into (0, r1) and (r1,∞)
and using the expression of the hypergeometric function 2F1,
one finally gets

IR(a, b, c; α, β; q, k)

= s!

(α + β )s+1

[
1

A′ + 1
2F1

(
1, s + 1, A′ + 2;

α

α + β

)

+ 1

B + 1
2F1

(
1, s + 1, B + 2;

β

α + β

)]
, (15)

where

A′ = a + 2 + q + 2k, B = b + 2 + q + 2k, (16)
and

s = a + b + c + 5. (17)

When calculating 〈rn
<〉, one just needs to make the substi-

tutions A′ + n → A′, B + n → B, and s + n → s in Eq. (15),
while in calculating 〈rn

>〉, one only needs s + n → s. It is
worth mentioning here that at n = 1 the relation [21]

2〈r〉 = 〈r<〉 + 〈r>〉 (18)

exists, which is useful to verify the calculations based on the
above two methods.

D. Angular quantities

The angular quantities investigated here are the expecta-
tion values of the interelectronic angle 〈θ12〉 and its cosine
〈cos θ12〉. Before calculating them, it is useful to present a
general expression for the expectation value of an arbitrary
angular function f (θ12). The work of Koga et al. [31–35]
employed the interelectronic angle density introduced by Ban-
yard and Ellis [87,88] together with the multipole expansion
technique based on Legendre polynomials to calculate the
angular quantities. For the study of expectation values in
this work, it appears simplest to directly apply the multipole
expansion to the angular function, i.e.,

f (θ12) =
∞∑

k=0

ckPk (cos θ12) (19)

[the k used here should not be confused with that in Eq. (2)
for the power of r12], where the expansion coefficients can
be obtained by virtue of the orthonormality of the Legendre
polynomials

ck = 2k + 1

2

∫ π

0
dθ12 sin θ12Pk (cos θ12) f (θ12). (20)

Once the values of ck can be calculated exactly, the expecta-
tion value of the angular function 〈 f (θ12)〉 is

〈 f (θ12)〉 =
∞∑

k=0

ckqk, (21)

where

qk = 〈Pk (cos θ12)〉. (22)

The expression for the expectation values of the nth power
of the interelectronic angle 〈θn

12〉 is given by

〈θn
12〉 = 1

2

∞∑
k=0

(2k + 1)In,kqk, (23)

where

In,k =
∫ π

0
dθ12 sin θ12Pk (cos θ12)θn

12

=
∫ 1

−1
dx Pk (x) arccosn(x), (24)
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in which x = cos θ12. For the angular quantity 〈θ12〉 investigated here, the integral I1,k can be performed analytically [89]:

I1,k =
{

πδm,0, k = 2m

π
∑m

i=0(−1)m−i (2m+2i+1)!!
(2i+2)!(2m−2i)!!

[ (2i+1)!!
(2i+2)!! − 1

]
, k = 2m + 1.

(25)

The calculations of qk = 〈Pk (cos θ12)〉 in the framework of
Hartree-Fock or configuration-interaction methods based on
products of one-electron orbitals (e.g., STOs) are available
everywhere. However, their computation for explicitly corre-
lated type system wave functions, e.g., the usual Hylleraas or
present HyCI types, are much more involved.

With the help of the addition theorem

Pk (cos θ12) = 4π

2k + 1

k∑
q=−k

Y ∗
kq(r̂1)Ykq(r̂2) (26)

and recalling the definition of vector coupled product of tensor
operators

T q
k1,k2,k

(r̂1, r̂2) =
∑
q1,q2

〈k1k2q1q2|kq〉T q1

k1
(r̂1)T q2

k2
(r̂2), (27)

it can be easily verified that

Pk (cos θ12) = (−1)k 4π√
2k + 1

T 0
k,k,0. (28)

The complete integral of a general vector coupled product
of tensor operators based on Hylleraas-like basis functions
has been explicitly given by Drake [90] and it can be used
here, however, with some changes.1 Here we present the
final expressions to calculate qk in the Hylleraas-like basis
functions

qk = 〈Pk (cos θ12)〉 =
∑

q

CqIq[a, b, c; α, β; Pk (cos θ12)],

(29)
where

Iq[a, b, c; α, β; Pk (cos θ12)]

=
∑

K

(2K + 1)

(
q k K
0 0 0

)2

IK (a, b, c; α, β ) (30)

and Cq and IK (a, b, c; α, β ) are given by Eqs. (7) and (8),
respectively.

For the product type of basis functions, it has been shown
that the infinite summation in Eq. (23) becomes a finite one
due to the limiting number of angular momentum quantum
numbers l coupled in the system wave functions [31,52].
However, for the explicitly correlated type basis functions
where rν

12 terms are included in the system wave functions,
the number of angular momentum couplings is infinite with
infinitely high values of la and lb, as one can see from
Eq. (10), although the basic angular momentum couplings in
the present HyCI and original Hylleraas wave functions are
finite. Consequently, the summation in Eq. (23) is intrinsically

1Equation (19) in Ref. [90] may contain errors and one should mul-
tiply the right-hand side of the equation by an additional coefficient
(−1)k (2k + 1)1/2.

infinite. To make the computation feasible, we truncate the
summation over q to a maximum number qmax where the
magnitude of qkIn,k is small enough, and the contributions of
higher terms from qmax to ∞ are estimated by using a fitted
formula.

The calculation of 〈cos θ12〉 is quite straightforward,

〈cos θ12〉 = 〈P1(cos θ12)〉 = q1, (31)

and it is useful in estimating the value of 〈θ12〉 in its first-order
approximation. As was shown by Koga [35], by retaining the
first two terms of the multipole expansion one gets

〈θ12〉 ≈ π

2
− 3π

8
〈cos θ12〉. (32)

III. RESULTS AND DISCUSSION

A. He ground state

In this work the HyCI basis sets (n1, n2)kmax described in
Sec. II A are used to calculate the ground state of the He atom.
The nonrelativistic system energy and both radial and angular
quantities with increasingly large basis sets are displayed in
Table I. The product of hydrogenic orbitals shown in Eq. (4)
are included in the basis sets and correspondingly the total
number of basis functions is simply labeled as Ntotal = N + 1.
Also shown in Table I are the HF and MCHF predictions by
Koga et al. [21,31,33,35], B-spline CI results by Lin and Ho
[91], and our previous CI calculations based on STOs [51,52].
Those calculations with explicitly correlated basis functions,
e.g., the exponential-correlated basis set by Thakkar and
Smith [59] and Frolov [92] and the Hylleraas basis sets
by Drake [7] and Montgomery [93], are also included for
comparison when they are available. However, calculations on
quantities 〈r<〉, 〈r>〉, and 〈θ12〉 have not been performed with
any type of explicitly correlated basis functions.

The two MCHF calculations performed by Koga et al.
[21,33,35] show quite similar results for all quantities listed
in the table and they are undoubtedly much better than the HF
ones [21,31]. Our previous CI results [52] improve all pre-
dictions to higher accuracy; however, compared to the present
HyCI calculations, it is clearly seen that the inclusion of r12

terms would significantly improve the binding energy as well
as all radial and angular quantities investigated here. Those
work based on explicitly correlated type basis functions, such
as the Hylleraas basis by Drake [7] and Montgomery [93],
exponential-correlated basis by Thakkar and Smith [59] and
Frolov [92], and the complicated Hylleraas-like basis includ-
ing logarithm functions by Nakashima and Nakatsuji [94],
have obtained highly accurate results on the system energy,
〈r〉, 〈r12〉, and 〈cos θ12〉, and our HyCI results are comparable
to their predictions. Only Nakashima and Nakatsuji [94] have
calculated the expectation value of 〈r>〉 (however, they la-
beled it as 〈r1〉, which in our opinion should be 〈r>〉) and only
the last digit is somewhat different from ours. It is expected,
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TABLE II. Contribution of different k terms to the interelectronic angle 〈θ12〉 based on the (7,7)2 HyCI basis set.

k qk I1,k (2k + 1)qkI1,k 〈θ12〉
1 −6.42026 × 10−2 −2.50000 × 10−1 4.81520 × 10−2 94.333676460
3 −2.05126 × 10−3 −1.56250 × 10−2 2.24356 × 10−4 94.353868542
5 −3.45255 × 10−4 −3.90625 × 10−3 1.48352 × 10−5 94.355203706
7 −1.00999 × 10−4 −1.52588 × 10−3 2.31169 × 10−6 94.355411759
9 −3.94528 × 10−5 −7.47681 × 10−4 5.60464 × 10−7 94.355462201
11 −1.84297 × 10−5 −4.20570 × 10−4 1.78273 × 10−7 94.355478245
13 −9.72239 × 10−6 −2.59638 × 10−4 6.81561 × 10−8 94.355484379
15 −5.60135 × 10−6 −1.71402 × 10−4 2.97625 × 10−8 94.355487058
17 −3.44995 × 10−6 −1.19029 × 10−4 1.43725 × 10−8 94.355488351
19 −2.23909 × 10−6 −8.59983 × 10−5 7.50978 × 10−9 94.355489027
21 −1.51578 × 10−6 −6.41434 × 10−5 4.18078 × 10−9 94.355489403
23 −1.06232 × 10−6 −4.91098 × 10−5 2.45200 × 10−9 94.355489624
25 −7.66428 × 10−7 −3.84306 × 10−5 1.50217 × 10−9 94.355489759
27 −5.66741 × 10−7 −3.06366 × 10−5 9.54966 × 10−10 94.355489845
29 −4.28049 × 10−7 −2.48157 × 10−5 6.26717 × 10−10 94.355489902
∞ 0 0 0 94.355490042

but still startling, that the quantities 〈r<〉 and 〈r>〉 calculated
by the smallest HyCI basis set (4,4)1 with the number of basis
functions 140 + 1 show much better accuracy than the most
extensive STO CI predictions [52] with basis set (13,13)0,
where a total number of 1729 basis functions are used. The
accuracy of 〈r<〉 and 〈r>〉 can be estimated indirectly through
the equality of Eq. (18), where the benchmark value of 〈r〉
has been produced by several authors. It is therefore expected
that the results with (7,7)2 basis set are the most accurate ones
in the present calculations. With continuously increasing the
number of HyCI basis functions, it can be generally concluded
that all radial geometric quantities can be calculated within the
same order of accuracy as the energy by employing explicitly
correlated type basis functions.

The calculation of expectation values of angular quantities
is more difficult than radial ones, as mentioned earlier. The
HF theory gives explicitly zero values of 〈Pk (cos θ12)〉 for
arbitrary positive values of k and consequently a value of 90◦
for 〈θ12〉, as we can see from Eq. (23) [21,31]. All electron
correlation effects contribute to the deviation of 〈θ12〉 from
90◦ through both radial and higher-order angular couplings.
The best MCHF prediction of Koga et al. [35] gives an
angle of 94.3598◦ for 〈θ12〉, while our previous STO CI
calculation with the largest basis set [52] gives a smaller
result of 94.356147◦. For the present calculations based on
HyCI functions, the expectation value of this angle decreases
continuously to a lower value, although its convergence is
somewhat slower than the radial quantities as well as 〈cos θ12〉.
In Table II we show the contributions of different k terms
calculated based on the (7,7)2 HyCI basis set. The value
of q1 simply reproduces 〈cos θ12〉. The summation over k is
truncated to the integer where qkI1,k is less than 10−11 (such
a criterion is used in all the following calculations). All even
terms vanish, so they are not included in the table. In Fig. 1 we
show the fitting formula in a power form of y = axb for values
of (2k + 1)qkI1,k with respect to the variable k. It is observed
that numerical values are in better agreement with the power
law at larger values of k, and hence only the last several points
are used to produce the fitting formula. The best result of 〈θ12〉

in the present HyCI calculations is around 94.355490042◦ (the
last digit may contain a rounding error). Such a value extends
greatly the accuracy of predictions by the MCHF and STO CI
methods. The approximation of 〈θ12〉 ≈ arccos〈cos θ12〉 gives
an angle of 93.681070668◦ and the first-order approximation
in Eq. (32) gets 94.333676459◦; both are smaller than the
exact value. Recalling the fact that the HF limit of 〈θ12〉 for
two-electron atoms equals exactly 90◦, it can be generally
concluded in the nonrelativistic framework that all radial
and angular correlation effects in the He atom result in the
remaining 4.355490042◦.

B. He excited states

The radial and angular quantities for 1snl (n � 6) singly
excited states of the He atom within S, P, and D symmetries
are shown in Tables III and IV for singlet and triplet states,
respectively. The HyCI basis sets (7,7)1 are used in S- and

FIG. 1. Contribution of different k terms to the interelectronic
angle 〈θ12〉 based on the HyCI basis set (7,7)2. Scatters are calculated
values and the line is the fitted curve with the power-law formula
y = axb.
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TABLE III. Comparison of various radial and angular quantities for the singlet singly excited state of the He atom obtained in this work
with other theoretical calculations. The reference “MCHF” represents the predictions of Koga et al. [35], “STO CI” our previous work in [52],
“EC” the exponential correlated basis calculations of Thakkar and Smith [98] for the 1s2s 1S state only, “Hylleraas” the Hylleraas basis results
of Cann et al. [96,97] for 〈cos θ12〉 only, and “HyCI” the present work based on HyCI-type basis sets.

nl Ref. 〈r<〉 〈r>〉 〈r〉 〈r12〉 〈cos θ12〉 〈θ12〉
2s MCHF 0.749162 5.19730 2.97323 5.27004 90.9925
2s STO CI 0.7491610 5.1969758 2.973068 5.2697038 −0.0146588 90.992173
2s EC 2.9730385 5.2696574 −0.014658852
2s HyCI 0.7491627115 5.1969595573 2.9730611344 5.2696962023 −0.01465704336 90.992052292

3s MCHF 0.749948 12.2741 6.51202 12.3052 90.2922
3s STO CI 0.7499482 12.273526 6.511737 12.304644 −0.0043174 90.292109
3s Hylleraas −0.0043170
3s HyCI 0.7499487440 12.273406163 6.5116774533 12.304523683 −0.00431703674 90.292081211

4s MCHF 0.750001 22.3544 11.5522 22.3715 90.1214
4s STO CI 0.7500011 22.353503 11.551752 22.370564 −0.0017956 90.121474
4s Hylleraas −0.0017954
4s HyCI 0.7500012748 22.353375180 11.551688227 22.370435325 −0.00179547145 90.121464529

5s MCHF 0.750005 35.4352 18.0926 35.4460 90.0615
5s STO CI 0.7500054 35.434154 18.092080 35.444892 −0.0009087 90.061471
5s Hylleraas −0.00090869
5s HyCI 0.7500055129 35.433951622 18.091978567 35.444689504 −0.00090864255 90.061467405

6s MCHF 0.750005 51.5165 26.1332 51.5239 90.0352
6s STO CI 0.7500045 51.515038 26.132521 51.522410 −0.0005212 90.035256
6s Hylleraas −0.00052103
6s HyCI 0.7500046156 51.514700802 26.132352709 51.522072394 −0.00052113859 90.035252943

2p MCHF 0.747950 5.07394 2.91095 5.13886 90.3294
2p STO CI 0.7479510 5.0735106 2.910731 5.138424 −0.0047758 90.327452
2p HyCI 0.7479521972 5.0734164877 2.9106843424 5.1383283721 −0.00477313392 90.327266051

3p MCHF 0.749325 12.6119 6.68061 12.6402 90.0846
3p STO CI 0.7493300 12.609907 6.679618 12.638161 −0.0011778 90.080947
3p Hylleraas −0.0011768
3p HyCI 0.7493304184 12.609764246 6.6795473322 12.638017448 −0.00117686994 90.080885490

4p MCHF 0.749708 23.1497 11.9497 23.1655 90.0317
4p STO CI 0.7497103 23.146010 11.947860 23.161811 −0.0004688 90.032248
4p Hylleraas −0.00046828
4p HyCI 0.7497103902 23.145857727 11.947784058 23.161657905 −0.00046839447 90.032221286

5p MCHF 0.749848 36.6899 18.7199 36.7000 90.0152
5p STO CI 0.7498501 36.682284 18.716067 36.692368 −0.0002339 90.016099
5p Hylleraas −0.00023372
5p HyCI 0.7498501559 36.682081238 18.715965697 36.692165708 −0.00023376128 90.016087480

6p MCHF 0.749911 53.2313 26.9906 53.2383 90.0085
6p STO CI 0.7499127 53.218669 26.984291 53.225661 −0.0001334 90.009182
6p Hylleraas −0.00013345
6p HyCI 0.7499128003 53.218364797 26.984138799 53.225356606 −0.00013347733 90.009188061

3d MCHF 0.750063 10.4817 5.61588 10.5136 90.2488
3d STO CI 0.7500639 10.481398 5.615731 10.513322 −0.0036799 90.248711
3d Hylleraas −0.0035986
3d HyCI 0.7500639491 10.481391795 5.6157278720 10.513314851 −0.00367988372 90.248708767

4d MCHF 0.750026 20.9754 10.8627 20.9928 90.1056
4d STO CI 0.7500273 20.974926 10.862477 20.992299 −0.0015549 90.105107
4d Hylleraas −0.0015162
4d HyCI 0.7500273759 20.974921227 10.862474301 20.992294348 −0.00155491917 90.105106879

5d MCHF 0.750013 34.4693 17.6097 34.4802 90.0541
5d STO CI 0.7500141 34.468553 17.609284 34.479448 −0.0007966 90.053853
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TABLE III. (Continued.)

nl Ref. 〈r<〉 〈r>〉 〈r〉 〈r12〉 〈cos θ12〉 〈θ12〉
5d Hylleraas −0.00077521
5d HyCI 0.7500141078 34.468551042 17.609282575 34.479445855 −0.00079665692 90.053854951

6d MCHF 0.750008 50.9631 25.8566 50.9705 90.0313
6d STO CI 0.7500082 50.962222 25.856115 50.969684 −0.0004611 90.031172
6d Hylleraas −0.00044856
6d HyCI 0.7500081926 50.962215577 25.856111885 50.969677761 −0.00046117976 90.031177509

TABLE IV. Comparison of various radial and angular quantities for the triplet singly excited state of the He atom obtained in this work
with other theoretical calculations. The reference “MCHF” represents the predictions of Koga et al. [35], “STO CI” is our previous work in
[52], “EC” and “EC2” are the exponential correlated basis calculations of Thakkar and Smith [98] and Frolov [92], respectively, for the 1s2s 3S
state only, “Hylleraas” is the Hylleraas basis result of Cann et al. [96,97] for 〈cos θ12〉 only, and “HyCI” is the present work based on HyCI-type
basis sets.

nl Ref. 〈r<〉 〈r>〉 〈r〉 〈r12〉 〈cos θ12〉 〈θ12〉
2s MCHF 0.729461 4.37148 2.55047 4.44755 91.0714
2s STO CI 0.7294609 4.3714647 2.550463 4.447536 −0.0158392 91.071488
2s EC 2.5504623 4.4475345 −0.015839224
2s EC2 2.55046267687 4.44753521696 −0.015839217088
2s HyCI 0.7294609429 4.3714644108 2.5504626769 4.4475352170 −0.01583921709 91.071485484

3s MCHF 0.745171 10.9668 5.85599 10.9988 90.2870
3s STO CI 0.7451705 10.966770 5.855970 10.998777 −0.0042451 90.286997
3s Hylleraas −0.0042451

3s HyCI 0.7451704868 10.966769109 5.8559697979 10.998775343 −0.00424508599 90.286996041

4s MCHF 0.748150 20.5743 10.6612 20.5917 90.1137
4s STO CI 0.7481501 20.574261 10.661206 20.591666 −0.0016869 90.114032
4s Hylleraas −0.0016870
4s HyCI 0.7481500950 20.574260557 10.661205326 20.591665042 −0.00168693400 90.114031179

5s MCHF 0.749102 33.1837 16.9664 33.1946 90.0560
5s STO CI 0.7491024 33.183594 16.966348 33.194499 −0.0008314 90.056195
5s Hylleraas −0.00083132
5s HyCI 0.7491023679 33.183592975 16.966347672 33.194498447 −0.00083136526 90.056194377

6s MCHF 0.749498 48.7935 24.7715 48.8010 90.0316
6s STO CI 0.7494981 48.793417 24.771458 48.800883 −0.0004686 90.031675
6s Hylleraas −0.00046860
6s HyCI 0.7494980626 48.793419058 24.771458560 48.800884586 −0.00046862501 90.031674844

2p MCHF 0.752957 4.59531 2.67413 4.70028 92.4780
2p STO CI 0.7529521 4.5949727 2.673962 4.699957 −0.0367194 92.479403
2p HyCI 0.7529521689 4.5949711414 2.6739616552 4.6999550075 −0.03671932603 92.479401620

3p MCHF 0.750680 11.8929 6.32179 11.9326 90.7037
3p STO CI 0.7506798 11.891578 6.321129 11.931205 −0.0104204 90.703469
3p Hylleraas −0.010420
3p HyCI 0.7506797880 11.891576301 6.3211280446 11.931203148 −0.01042038644 90.703468559

4p MCHF 0.750259 22.1892 11.4697 22.2097 90.2902
4p STO CI 0.7502588 22.187141 11.468700 22.207621 −0.0042930 90.289802
4p Hylleraas −0.0042928
4p HyCI 0.7502588517 22.187142035 11.468700443 22.207622662 −0.00429301633 90.289801424

5p MCHF 0.750126 35.4872 18.1187 35.4996 90.1466
5p STO CI 0.7501259 35.482420 18.116273 35.494866 −0.0021678 90.146335
5p Hylleraas −0.0021677
5p HyCI 0.7501259181 35.482422989 18.116274453 35.494869447 −0.00216781908 90.146336252
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TABLE IV. (Continued.)

nl Ref. 〈r<〉 〈r>〉 〈r〉 〈r12〉 〈cos θ12〉 〈θ12〉
6p MCHF 0.750071 51.7830 26.2665 51.7913 90.0842
6p STO CI 0.7500708 51.777619 26.263845 51.785965 −0.0012434 90.083931
6p Hylleraas −0.0012434
6p HyCI 0.7500707571 51.777613653 26.263842205 51.785959760 −0.00124339176 90.083932914

3d MCHF 0.750084 10.4760 5.61304 10.5079 90.2432
3d STO CI 0.7500851 10.475743 5.612914 10.507632 −0.0036067 90.243604
3d Hylleraas −0.0035498
3d HyCI 0.7500850641 10.475742254 5.6129136593 10.507631324 −0.00360673888 90.243604213

4d MCHF 0.750038 20.9666 10.8583 20.9840 90.1020
4d STO CI 0.7500392 20.966144 10.858092 20.983497 −0.0015122 90.102125
4d Hylleraas −0.0014867
4d HyCI 0.7500392040 20.966145781 10.858092493 20.983498596 −0.00151217291 90.102125592

5d MCHF 0.750020 34.4578 17.6039 34.4687 90.0524
5d STO CI 0.7500208 34.457159 17.603590 34.468042 −0.0007718 90.052125
5d Hylleraas −0.00075876
5d HyCI 0.7500208306 34.457163048 17.603591939 34.468045948 −0.00077185417 90.052125641

6d MCHF 0.750012 50.9491 25.8496 50.9566 90.0303
6d STO CI 0.7500123 50.948365 25.849189 50.955820 −0.0004459 90.030109
6d Hylleraas −0.00043866
6d HyCI 0.7500122882 50.948370592 25.849191440 50.955825385 −0.00044589124 90.030111745

P-state calculations, which produce a total of 616 + 1, 896 +
1, 504 + 1, and 896 + 1 basis functions for 1S, 1P, 3S, and
3P states, respectively. Basis sets (7,6)1 are used for 1,3D
states, where the total numbers of terms in the expansion
of system wave functions are 852 + 1 and 780 + 1. The
notation +1 simply refers to the additional single product of
hydrogenic orbitals as in the ground state calculations. The
system energies calculated for all states investigated here are
compared to the benchmark values obtained by Drake [7]
and Nakashima et al. [95]. The relative errors are generally
lying between 10−13 and 10−10, with higher-lying states less
accurate than the lower-lying ones. The accuracy of the
system wave functions for these excited states can then be
estimated accordingly. It is expected that all radial and angular
quantities displayed in Tables III and IV are accurate to the
listed significant digits, except that the last one may contain a
rounding error.

The MCHF calculations of Koga et al. [35] and our
previous STO CI results [52] are included in the tables for
comparison, together with the values of 〈cos θ12〉 calculated
by Cann et al. [96,97] using the Hylleraas basis functions
for 1snl (n � 3) states. The exponential correlated basis cal-
culations performed by Thakkar and Smith [98] and Frolov
[92] about 〈r〉, 〈r12〉, and 〈cos θ12〉 are also available, however
for He 1s2s 1,3S states only. Compared to the MCHF, STO
CI, and previous Hylleraas results, the present work based
on HyCI basis functions improves significantly all the quan-
tities investigated here. The differences between the HyCI
and our previous STO CI results diminishes as the atom is
increasingly excited. Indeed, for high-lying singly excited
states with n > 6 the STO CI results are good enough to give a
quantitative estimate of the variation trend for both radial and
angular quantities. In our previous work [52] we left the unre-
solved problem that the predictions of 〈cos θ12〉 for 1,3D states
by Cann et al. [96,97] using Hylleraas basis functions are

systematically smaller than our STO CI results. The present
HyCI calculations fully support the STO CI ones, keeping in
mind that the computational procedures between these two
types of basis functions are quite different.

With continuously increasing excitation of the He atom, the
geometric quantities approach their Rydberg limits monoton-
ically,

〈r<〉 → 3/4,

〈r>〉 → [3n2 − l (l + 1)]/2,

〈r〉 ≡ [〈r<〉 + 〈r>〉]/2,

〈r12〉 →
√

〈r<〉2 + 〈r>〉2,

〈cos θ12〉 → 0,

〈θ12〉 → π/2,

(33)

with the exception for 1sns 1S states, where 〈r<〉 first increases
and exceeds the asymptotic limit, reaches a maximum at 1s5s
state, and then decreases to the asymptotic value 3/4.

Another interesting phenomenon is the relationship be-
tween radial quantities 〈r>〉 and 〈r12〉, which has been shown
by Matsuyama and Koga [24] following a nearly linear law.
We plot in Fig. 2 the variations of 〈r12〉 along with 〈r>〉
for all excited states investigated here. The fitting formu-
las are 〈r12〉 ≈ 0.999〈r>〉 + 0.050 and 〈r12〉 ≈ 0.999〈r>〉 +
0.061 for singlet and triplet states, respectively, which show a
relationship of 〈r12〉 ≈ 〈r>〉 between singlet and triplet excited
states which is similar to the MCHF predictions by Mat-
suyama and Koga [24], which are 〈r12〉 ≈ 0.998450〈r>〉 +
0.057663 and 〈r12〉 ≈ 0.997940〈r>〉 + 0.071538 for singlet
and triplet states, respectively. Recalling that the sampling
data used in the fitting procedure are different from each other,
the good linearity between these two radial quantities can
be well established. The relationships between 〈r12〉 and the
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FIG. 2. Linear fitting of the radial quantities 〈r12〉 with respect to 〈r>〉 for 1snl singly excited states of the He atom with n � 6. Scatters
are calculated values and the line is the fitted curve with a linear formula y = ax + b. The reduced χ2 refers to the goodness of the overall fit.
(a) Singlet excited states and (b) triplet excited states.

maximum location of the outer radial density for the He atom
[25] and those between 〈r−1

> 〉 and the interelectronic repulsion
energy for complex atoms [22] have been discussed by the
corresponding authors and they will not be addressed here.

C. He-like ions

In this section the variation of radial and angular quantities
with respect to the nuclear charge Z is investigated. For H−,
where the convergence of the system energy is slowest in He-
like ions due to the largest contribution of electron correlation
effects, the HyCI basis sets (7,6)2, (7,7)2, and (8,7)2 are em-
ployed to gradually estimate the radial and angular quantities.
The (7,6)2 and (7,7)2 sets have been applied to the He atom,
as was shown in Sec. III A. For higher-charged ions, the basis
set (7,6)2 is responsible for producing reasonably accurate
system energies and wave functions. The relative errors of
the calculated ground-state energies for He-like ions with
Z � 10 are displayed in Fig. 3; the benchmark calculations
are available in the literature [58]. The corresponding radial
and angular quantities investigated in this work are compared

FIG. 3. Relative errors of the ground-state binding energies for
He-like ions with Z � 10. The HyCI basis sets (76)2, (7,7)2, and
(8,7)2 are used for H−, (7,6)2, and (7,7)2 for He and (7,6)2 for
higher-charged ions.

with other theoretical calculations based on different methods
or different types of basis function and the results are shown
in Table V.

The MCHF calculations by Koga and Matsuyama
[21,28,33] are available for only 〈cos θ12〉 and 〈θ12〉. As a
self-consistent theory partially considering the electron cor-
relation effects, their results are good enough to predict the
behavior of angular quantities when changing Z . The earlier
exponential correlated basis results of Thakkar and Smith [59]
show more improvement than the MCHF results on 〈cos θ12〉,
while the recent calculations of Frolov [10,92,99,100] em-
ploying a similar type of basis functions have established
the most accurate predictions in the literature for 〈r〉, 〈r12〉,
and 〈cos θ12〉, and their results are considered as benchmark
values for comparison. The calculations of the Hylleraas basis
including logarithm functions performed by Nakashima and
Nakatsuji [94] obtained the most accurate system energies
so far and they are also the only calculations of 〈r>〉 based
on explicitly correlated type basis functions (although the
authors labeled them as 〈r1〉). From the comparison it is
seen that our HyCI results are in good agreement with other
state-of-the-art explicitly correlated basis calculations for 〈r〉,
〈r12〉, and 〈cos θ12〉, give the complementary radial quantities
〈r<〉 and 〈r>〉 simultaneously, and improve significantly the
interelectronic angle 〈θ12〉.

To investigate the variation trends of radial and angular
quantities by changing the nuclear charge, it is useful to
scale all radial variables with respect to Z [79]. The new
Hamiltonian now becomes

H ′ = −1

2
∇2

ρ1
− 1

2
∇2

ρ2
− 1

ρ1
− 1

ρ2
+ 1

Z

1

ρ12
, (34)

in which

ρi = Zri, i =<,>, 1, 2, 12. (35)

At the limit of Z → ∞, where all interelectronic correlation
disappears, the (Z-scaled) wave function of two-electron sys-
tems becomes the product of two hydrogenic orbitals. For the
ground state it reads

� ′
0(�ρ1, �ρ2) = C0φ1s(ρ1)φ1s(ρ2)Y00(ρ̂1)Y00(ρ̂2). (36)
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FIG. 4. Deviations of the Z-scaled radial and angular quantities investigated in this work with respect to their corresponding limits at
Z → ∞.

After a simple calculation, it can be obtained that, at Z → ∞,

〈ρ<〉 → 1.031 25,

〈ρ>〉 → 1.968 75,

〈ρ〉 → 1.5,

〈ρ12〉 → 2.1875,

〈cos θ12〉 → 0,

〈θ12〉 → π/2.

(37)

In Fig. 4 we show the deviations of various scaled radial
and angular quantities with respect to their asymptotic values
for He-like ions with Z = 1–10. The fitting processes are
performed only on the last several points in each group of
data. It is observed that all these quantities approach their
corresponding limits in power laws, except that for the H−
ion they deviate far from the fitted curves. We can also see that
the quantity 〈ρ〉 follows almost the same speed as 〈ρ12〉 when
they go to the limit, whereas 〈ρ<〉 and 〈ρ>〉 are faster and
slower, respectively. As for angular quantities, both 〈θ12〉 and
arccos〈cos θ12〉 share almost the same speed. We finally test
the fitting formulas by applying them to Ca18+. Both the HyCI
calculations based on the (7,6)2 basis set and those based on
the extrapolated values are presented at the bottom of Table V.
In most cases, almost four digits after the decimal points can
be reproduced, which demonstrates the applicability of fitting
formulas to highly charged ions.

IV. CONCLUSION

We have presented a comprehensive investigation of the
radial (〈r<〉, 〈r>〉, 〈r〉, and 〈r12〉) and angular (〈θ12〉 and
〈cos θ12〉) geometric quantities for the He atom in both ground
and singly excited states within S, P, and D symmetries. The
explicitly correlated HyCI basis functions combined with a
product of screened hydrogenic orbitals are used to expand
the system wave functions. When the dimension of the basis
set is increasingly large, Löwdin’s canonical orthogonaliza-
tion method is employed to overcome the possible linearly
dependent problems which are inevitable when adopting a
limited-precision arithmetic in numerical computations. With

the r12 coordinate included explicitly in the system wave func-
tion, we have successfully developed computational methods
to analytically calculate the arbitrary powers of the inner
and outer radii, i.e., 〈rn

<〉 and 〈rn
>〉, as well as the arbitrary

powers of the interelectronic angle 〈θn
12〉. It was found that the

summation in the multipole expansion of angular function is
infinite in the calculation of the angular quantities. This is not
surprising due to the fact that angular momentum couplings in
explicitly correlated type basis functions are infinitely high. A
truncation and power-law extrapolation technique was used in
this work to calculate this quantity to high accuracy.

Compared with the HF and MCHF results of Koga et al.
and our previous STO CI calculations, the present work based
on HyCI basis sets improved significantly the accuracy of
all geometric quantities for the He atom in both the ground
and excited states, where 〈r<〉, 〈r>〉, and 〈θ12〉 are the most
accurate predictions. For other quantities, such as 〈r〉, 〈r12〉,
and 〈cos θ12〉, our results are in good agreement with state-
of-the-art calculations based on different types of explicitly
correlated basis functions. We have also applied the present
methods to He-like ions, where the electron correlation effects
are decreasing with increasing nuclear charge. A Z-scaled
investigation of the two-electron systems shows that either the
scaled radial or the angular quantities approach corresponding
high-Z limits following power laws. This is useful in estimat-
ing the geometric structures of highly charged ions.

It is interesting to note that an extension of the present work
to exotic systems, such as three-body atomic or molecular
systems including muons, antiprotons, pions, or positrons,
is promising, where extensive studies on their binding and
structural properties are available in the literature [101–103].
Calculations of their geometric quantities are expected to
be very useful. The critical phenomena in atomic systems
have become increasingly interesting in recent years, e.g., the
changes from bound to free states in two-electron systems
with fractional charges [104] or in screened Yukawa atoms
[105,106] and the transformation from a metastable bound
state to a shape resonance [107] or from a Feshbach reso-
nance to shape resonances [108,109] in a critical screening
environment. Investigations of the variation of the geometric
structure for these states may also shed some light on those
vital problems.
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