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Sensitivity and accuracy of Casimir force measurements in air
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Quantum electrodynamic fluctuations cause an attractive force between metallic surfaces. At separations
where the finite speed of light affects the interaction, it is called the Casimir force. Thermal motion determines
the fundamental sensitivity limits of its measurement at room temperature, but several other systematic errors
contribute uncertainty as well and become more significant in air relative to vacuum. Here, we discuss the
viability of the force modulation measurement technique in air (compared to frequency modulation, which is
typically used in vacuum, and quasistatic deflection, which is usually used in fluid), characterize its sensitivity
and accuracy by identifying several dominant sources of uncertainty, and compare the results to the fundamental
sensitivity limits dictated by thermal motion and to the uncertainty inherent to calculations of the Casimir force.
Finally, we explore prospects for mitigating the sources of uncertainty to enhance the range and accuracy of
Casimir force measurements.
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I. INTRODUCTION

H. B. G. Casimir predicted a force between surfaces that
originates from quantum electromagnetic fluctuations [1].
This force is of theoretical and practical interest because it is
an application of quantum electrodynamics to bulk materials.
Lifshitz extended the analysis to arbitrary materials [2,3], in-
cluding the prediction of a repulsive Casimir force, which has
since been experimentally confirmed [4]. The force has been
measured numerous times [5–13], between many materials
[14–21], in several geometries [22–25], and with increasing
precision [26–29].

Because measurements in gas provide a middle ground
between the high sensitivities of measurements in vacuum and
the exotic Casimir force behavior in liquid environments, they
have frequently contributed to critical experimental tests of
the Casimir force [30–34]. For example, de Man et al. [16]
verified that a significant difference in the visible dielectric
function can halve the magnitude of the Casimir force, and
Van Zwol et al. tested how roughness affects the Casimir force
[35]. Moreover, exploring the contributions to uncertainty
in one environment can clarify how they appear in another
[32]. Understanding the uncertainty in air would assist the
interpretation of Casimir force measurements in a variable
pressure chamber, which are being undertaken to separate
hypothetical local-density-coupled chameleon forces from the
Casimir force [36,37]. Some sources of uncertainty, such as
patch potentials, are predicted to have reduced magnitude in
air relative to vacuum [38].

Efforts to harness the Casimir force for new microelec-
tromechanical systems (MEMS) devices [39] have resulted
in nonlinear MEMS oscillators [40,41] and on-chip Casimir
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force measurement devices [24,42]. Several measurements of
the Casimir force have been made in ambient conditions, a
necessary test for realistic MEMS. Drag in air can be utilized
to develop MEMS techniques that are difficult in vacuum. For
example, it has recently been shown that an oscillating spher-
ical Casimir probe in air can scan the topography of a surface,
which can be useful for aligning novel geometries [25]. The
drag helps to avoid collisions because it slows the probe as
it approaches the surface. Likewise, the measurements of de
Man et al. present a framework for using the Casimir force to
actuate dynamical MEMS [33,43].

Here, we test the sensitivity and accuracy of the force
modulation (FoM) measurement technique in air using an
atomic force microscope (AFM), depicted in Fig. 1; identify
several sources of uncertainty; estimate the uncertainty from
each source; and discuss strategies to reduce uncertainty in
future measurements. Our intention is to identify sources of
uncertainty, their relative contributions to the total error, and
tactics to mitigate them, in order to facilitate the development
of new experiments. In addition, tabulating the uncertainty in
a measurement helps to clarify when it can be used to distin-
guish between different hypotheses regarding the computation
of the Casimir force.

As stated in Ref. [33], a measurement technique must
satisfy three requirements in addition to detecting the Casimir
force: (i) It must mitigate the contributions of other forces
(hydrodynamic, electrostatic, etc.), (ii) it must determine the
absolute separation, d0, between the sphere and plate, and (iii)
it must calibrate the force signal. We characterize how well
(i)–(iii) are achieved and quantify the amount of uncertainty
each imparts to a measurement. Furthermore, several instru-
mental sources of error, such as optical interference, may
manifest themselves differently in different experiments but
are common to many force measurement techniques. A few
sources of error that impart uncertainty to the total calculated
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FIG. 1. An atomic force microscope is used to measure the
Casimir force. An optical lever detects deflections of the cantilever
to which the sphere is attached. Direct digital synthesizer (DDS) A
drives the piezoelectric transducer to shake the gold-coated plate.
A lock-in amplifier (LIA) detects the cantilever’s response and
separates it into in-phase and quadrature components. Each LIA in
the AFM detects up to two signals. DDS B applies an AC voltage to
the cantilever at frequency ωA. The oscillations of the cantilever are
then detected at frequencies ωA and 2ωA with LIA B and 4ωA with
LIA C. A feedback loop adjusts VAC so that the oscillation at 2ωA

is constant during the measurement of the Casimir force. The signal
at ωA is used to estimate and mitigate the minimizing voltage V0 by
applying a DC voltage to the sphere.

force rather than the force measurement, such as roughness,
patch potentials, and limited dielectric information, have been
discussed extensively in the literature [38,44–53]. We com-
bine the different sources of uncertainty in order to provide a
total estimate of the uncertainty in the comparison between
calculations and experiment. For our measurements, uncer-
tainty in separation is found to dominate the error at distances
<120 nm, while the hydrodynamic force dominates the error
at separations >120 nm.

A. The atomic force microscope

All AFMs contain a microcantilever, a system to control
the sample position (typically a piezoelectric transducer), a
system to excite the cantilever (piezoelectrically, electrostati-
cally, photothermally, etc.), and a method to detect the motion
of the cantilever (optical lever, interferometer, piezoelectric
current, etc.). In this article, we discuss AFMs up to the
level of detail necessary to describe the artifacts present
in Casimir force measurements and to discuss strategies to
mitigate those artifacts. Although the sources and amount of
force uncertainty vary from system to system, some sources of
uncertainty follow characteristic trends. For example, almost
all sphere-plate Casimir force measurements rely on the elec-
trostatic force for the estimation of the absolute separation or
the calibration of force sensitivity, but its accuracy has only
been tested a few times [54,55].

Because the AFM used here (Cypher, Asylum Research) is
very similar to the AFMs used in prior Casimir force measure-
ments, an analysis of the uncertainty the microscope imparts
to the measurement helps to predict the uncertainty present
in other systems. For example, the signals output from each
lock-in amplifier (LIA) contain a small offset voltage
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FIG. 2. (a) An AC voltage (VAC) is applied to the sphere to
generate three signals (SωA , S2ωA , S4ωA ) that are used to minimize
the potential difference, estimate the sphere-plate separation, and
calibrate the sensitivity. Oscillating the plate drives oscillations of
the cantilever that are proportional to the Casimir force (in phase,
SI

ωpz
) or hydrodynamic force (quadrature, SQ

ωpz
). (b) The transfer

function describes how forces at different frequencies excite can-
tilever oscillation. All the frequencies are plotted normalized by the
first resonance frequency of the cantilever, ω1. Downward arrows
represent perturbations applied to the cantilever, upward arrows
indicate signals generated by the response of the cantilever, and the
tilted-upward arrow represents an out-of-phase response.

(≈ − 180 μV) that varies over time. To track the signal’s vari-
ation, a null signal is collected at each point and is averaged
over time to reduce noise. In addition, the driving signal from
each direct digital synthesizer (DDS) couples directly into the
output of the corresponding LIA.

In the AFM, the piezoelectric transducers actuate the sam-
ple and cantilever, as is common to many force measurement
procedures [16,28]. The motion of the cantilever is detected
by an optical lever, a beam of light reflected off of the
cantilever and onto a quad-photodiode [8,30,31]. LIAs then
monitor the motion of the cantilever at a several frequencies.
A DDS controls the voltage difference between the probe
and sample. A temperature of 303.15 ± 0.05 K is maintained
inside the AFM.

B. Overview of the force measurement method

The force measurement method that we use here follows
the phase-separated force modulation method developed by
de Man et al. [16,33]. Figure 2 shows the general scheme
for applying and detecting signals. To detect the force, the
plate’s position is oscillated. The in-phase and 90-deg delayed
(quadrature) response of the cantilever are tracked and related
to the Casimir and hydrodynamic forces, respectively.

The electrostatic force between the two surfaces is used
both to determine their absolute separation, so that the force
versus separation profile can be obtained, and to calibrate the
detected Casimir force signal. The plate is slowly brought
toward the sphere in discrete steps. The sphere approaches
and retracts from the plate about 30 times in about 13 h.
The details of this technique and two other methods for
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FIG. 3. (a) The sphere-plate force is probed by shaking the plate
and observing the response of the probe. (b) Because conservative
forces (Casimir, electrostatic) depend on position but not velocity,
they bend the probe proportionally to the plate’s displacement (in
phase). (c) On the other hand, because the hydrodynamic force is
proportional to velocity, the cantilever bending it causes is 90 deg
out of phase with the plate’s displacement.

measuring the Casimir force are described in the following
sections.

The interacting surfaces are coated with gold because it is
a chemically inert conductor. The plate is a silicon substrate
coated with 100 nm of gold (e-beam) using 5 nm of Cr for
adhesion. The sphere is made of hollow glass (Trelleborg
SI-100) coated with TiO2 (10 nm)/Ti (3 nm)/Au (100 nm).
Both the sample and probe are cleaned with acetone/isopropyl
alcohol/deionized (DI) water and dried with an antistatic
air flow prior to the gold deposition. Two different types of
cantilever are used in the measurement: HQ:CSC37/Cr-Au
(Mikromasch) cantilevers are used for the analysis leading to
Figs. 10 and 11, while a MLCT-OW-B (Bruker) cantilever is
used elsewhere.

II. FORCE MODULATION MEASUREMENT TECHNIQUE

The force modulation (FoM) technique of de Man et al.
drives sinusoidal cantilever oscillation with the Casimir force
directly by shaking the plate vertically at frequency ωpz [33].
Because the position of the plate varies sinusoidally, so does
its velocity, v = ∂d/∂t .

The response of the cantilever to the moving plate has both
in-phase and quadrature components (Fig. 3):

SI
ωpz

= γ

k

(
∂Fes

∂d
+ ∂FC

∂d

)
�d, (1a)

SQ
ωpz

= γ

k
FH(v), (1b)

where γ is the optical lever sensitivity (V/m), �d is the
shake amplitude of the plate, k is the spring constant, FC is
the Casimir force, Fes is the electrostatic force, and FH is the
hydrodynamic force. Derjaguin’s proximity force approxima-
tion (PFA) is used to compare the measured signal between a
sphere and a plate to the Casimir force between parallel plates
per unit area, Fpp:

1

R

∂FC

∂d
≈ 2πFpp. (2)

1. Generating the force signal

During the measurement, the sphere begins about 5 μm
from the plate and approaches it at discrete separations until

it reaches a preset minimum. Then, the direction of motion is
reversed so that it is similarly retracted from the surface.

At each separation, the measurement is performed in three
steps. During the first step, an AC voltage, VAC, is applied to
the sphere at frequency ωA in order to drive the cantilever at
frequencies ωA and 2ωA, while the plate is grounded. The
cantilever’s response to the applied voltage is detected with
LIA A. A feedback loop uses the signal at 2ωA to control VAC

in order to maintain a constant amplitude set point, Aset. A
second feedback loop applies a slowly varying voltage, VDC, to
the sphere in order to minimize the signal at ωA, which in turn
minimizes the potential difference between the sphere and the
plate. The electrostatic force generated by VAC has a large
signal-to-noise ratio, so it is used to account for the change
in d0, also called drift, over the course of the measurement.

The force measurement is performed in the second step
at each separation. First, the oscillating voltage VAC is turned
off. Second, VDC is set to −V0, its average value over the first
step, to mitigate the electrostatic force. Third, while a piezo
oscillates the plate, the response of the cantilever is detected
by the optical lever and recorded by LIA B.

During the third step, the piezo continues to oscillate
the plate while VDC is discretely varied across its force-
minimizing value in order to determine the electrostatic force
gradient. The V 2 dependence of the electrostatic force causes
the signal versus voltage curve to take the shape of a parabola.
The range of the voltage sweep is chosen so that the total
signal variation of the parabola (and thus the sensitivity) re-
mains approximately constant at every separation. The second
d derivative of the capacitance (C′′) is calculated from the
curvature of each voltage parabola. In turn, C′′, discussed in
more detail below, is used to determine the tip-sample sepa-
ration. The electrostatic force gradient allows us to determine
the separation more accurately because the gradient changes
more quickly with separation than the force itself, is measured
through the same channel as the Casimir force gradient, and
is less susceptible to second-order oscillation. Below 110 nm,
the third step is stopped to prevent the electrostatic force from
causing the tip to jump to contact. The measurements here use
ωpz/2π = 211 Hz and ωA/2π = 77 Hz.

2. Ratcheting

Because the Casimir force signal is proportional to �d
[Eq. (1a)], increasing the shake amplitude improves the
signal-to-noise ratio and enables observations of the Casimir
force at larger separations. However, using a larger amplitude
both limits the minimum achievable separation and can lead to
a systematic, but well understood, overestimate of the Casimir
force ∝�d3 [56].

To maximize the signal while mitigating the errors asso-
ciated with large shake amplitudes, a ratcheting technique
is introduced. Far from the surface, the plate oscillates with
�d ≈ 48 nm. To minimize the systematic error from the
shake amplitude, �d/d ≡ χ < 0.15 is maintained throughout
the experiment. The systematic error from the �d as a fraction
of the force gradient is then 2.5χ2, calculated from Eq.
(6) of Ref. [56] by assuming the typical d−4 dependence
of the sphere-plate Casimir force gradient. Thus, here the
error is kept below 6% of the force gradient. For example,
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FIG. 4. (a) The shake amplitude varies with separation to in-
crease the sensitivity of the force modulation measurement tech-
nique, while also avoiding errors associated with the strong
nonlinearity of the force. (b) The data collected at each shake am-
plitude are combined for the final estimate of the force gradient. The
data are shown binned into groups of ≈50 individual measurements.
The red line shows the calculated Casimir force gradient.

once the plate reaches 320 nm from the surface, the shake
amplitude decreases to 40 nm. Likewise, when the sphere
reaches 267 nm separation, the amplitude drops to 32 nm.
The process repeats so long as the tip is approaching the
surface. When the plate is retracting, the process is reversed.
We call the technique “ratcheting” because, on approach, the
shake amplitude only decreases and, during retraction, it only
increases (Fig. 4).

III. FUNDAMENTAL LIMITS TO THE
MEASUREMENT RANGE

Understanding the fundamental limits to FoM Casimir
force measurements helps to frame the effects of other sources
of uncertainty. In this section, the perfect conductor approxi-
mation for the Casimir force is used, because it permits ana-
lytic results. For real materials, the force gradient approaches
a d−3 rather than a d−4 power law at short separations. The
separation at which this transition begins depends on the
particular material.

Jump-to-contact (JTC) limits how close to the surface
Casimir probes can approach, and for measurements in which
the shake amplitude is much less than the separation (e.g., for
deflection measurements, or the force modulation measure-
ments discussed here), the criterion for JTC is k < ∂F/∂d
[57,58]. The minimum possible separation is then limited
by the JTC, so that when the dominant force is the Casimir
force [1],

dmin ≈
(

h̄cπ3

120

R

k

)1/4

. (3)

TABLE I. Typical probe properties.

ω1
2π

(kHz) L (μm) W (μm) R (μm) k (N/m) 1/γ (nm/V) Q

10 250 33 40 0.1 700 100

A typical probe (Table I) should be able to measure as close
as 43 nm from the surface, which approximately agrees with
experiment. Because of the d−3 power law in the force, Eq. (3)
is fairly insensitive to k. For example, if k is increased by a
factor of 10 to 1 N/m, dmin only decreases to 24 nm, less than
a factor of 2.

Thermal noise limits the furthest separation at which the
force can be measured. The minimum detectable force for the
FoM method described below is Fmin = knd

√
B/γ , where nd

(V Hz−1/2) is the noise amplitude density at the detector and B
is the detection bandwidth. In the experiments discussed here,
the nd is dominated by the detector, but the fundamental limit
to sensitivity is the cantilever’s thermal motion. Because the
oscillation frequency is much less than the resonant frequency,
only the first eigenmode of the cantilever is considered. When
thermal noise is dominated by the cantilever’s motion [59],

nd = 2γ

√
kBT

kω1Q
. (4)

Then, the minimum detectable force is

Fmin = 2

√
kkBT

ω1Q

√
B, (5)

which, with the properties of a typical cantilever (Table I) and
B = 1 Hz, is about 20 fN. However, our technique measures
the force spatial derivative rather than the force. The minimum
detectable force gradient, when the cantilever is driven by
∂F/∂d�d , is

F ′
min = 2

√
kkBT

ω1Q

√
B

�d
, (6)

where �d is the oscillation amplitude of the plate. The max-
imum separation is found by finding the separation at which
the predicted force gradient equals the minimum detectable
force gradient

dmax =
(

h̄cπ3R

240

�d√
B

√
ω1Q

kkBT

)1/4

. (7)

The appearance of �d suggests that it is possible to increase
dmax arbitrarily, but �d must always be significantly less
than d so that the sphere does not hit the surface and to
avoid systematic errors associated with the nonlinearity of the
force [56]. The shake amplitude must be bounded to mitigate
systematic artifacts, �d < χd (Sec. II 2), so that

dmax <

(
h̄cπ3R

240

χ√
B

√
ω1Q

kkBT

)1/3

. (8)

For typical cantilevers with B = 1 Hz and χ = 0.15, the force
detection is limited to separations dmax < 1.4 μm (Table I).
Note that the effective power law of the sensitivity falls
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from d−4 to d−3 when �d is allowed to vary, showing how
ratcheting increases the range over which the force gradient
may be measured, relative to the case when �d is constant.

Measurements of the Casimir force by the FoM technique
of de Man et al. are thus fundamentally limited to separations
between ≈40 nm to 1.4 μm, or about one and a half orders of
magnitude, which is comparable to the largest ranges probed
by previous measurements [7,29]. Using several probes with
varying R and k may increase the range. The next two sections
discuss the sources of uncertainty that prevent measurements
from achieving the range set by fundamental limitations.

IV. CALIBRATION AND SEPARATION DETERMINATION

The calibration and separation determination in Casimir
force measurements are most often performed with the elec-
trostatic force, although the hydrodynamic force has been
used as well in liquids, where Debye screening affects the
electrostatic force [32,60]. In the low-Reynolds-number limit,
the hydrodynamic force is proportional to d−1, so it might
also be possible to use it to estimate the tip-sample separation
in air, as it has been used in liquids [61]. The difficulties
with using the hydrodynamic force are twofold: (1) The
hydrodynamic force is nearly two orders of magnitude weaker
in air than in water, so the signal-to-noise ratio of its detection
is smaller, although it could be increased by increasing ωpz,
and (2) the slip length at ambient pressures is quite large (esti-
mates range from 60 nm [62] to 118 nm [63]) and, while it can
be included in the fit, the extra free parameter further reduces
the accuracy of the separation estimation. Because ≈60 nm
of separation uncertainty would prevent theory-experiment
comparison, calibration with the electrostatic force is the
focus of this section.

A. From the electrostatic force

The electrostatic force between a plate and a sphere is

F = C′(V + V0)2

2
, (9)

where V is the applied potential between the plate and the
sphere, V0 is the minimizing potential, and C′ = ∂C/∂d ,
where C is the sphere-plate capacitance,

C′ = 2πε0R
∞∑

n=1

coth(α) − n coth(nα)

sinh(nα)
, (10)

and α is defined by the equation cosh(α) = 1 + d/R [14].
Note that because C′ < 0, the electrostatic force is attractive.
The voltage applied to the probe has two components: VAC

and VDC, so that the total voltage between the surfaces is V =
VAC cos(ωAt ) + VDC + V0. We can separate the electrostatic
force into three terms,

Fes = FDC + Fa + Fb, (11)

where the individual forces are separated according to the
frequency of the applied voltage

FDC = C′(d )

2

[
(VDC + V0)2 + V 2

AC

2

]
, (12a)

Fa = C′(d )VAC(VDC + V0) cos(ωAt ), (12b)

Fb = C′(d )

4
V 2

AC cos(2ωAt ), (12c)

where it is noted that C′ itself depends on d , which varies
with time because of both the oscillations of the plate and the
cantilever, which is why the forces are labeled with a and b
rather than frequencies.

Signals generated at the frequencies ωA and 2ωA are criti-
cal for tracking relative changes to the potential difference and
separation. The signal at ωA is generated by Fa and is used
as the input to the feedback loop that measures V0 = −VDC,
akin to the loop used in Kelvin probe force microscopy [64].
The force Fb generates the signal at 2ωA: S2ωA ≈ γ C′

4 V 2
AC/k.

Although there are systematic artifacts in determining V0

with the signal at ωA, the low noise level permits the tracking
of the contact potential difference over time [65–67]. Like-
wise, the measurements of C′ from 2ωA have a high signal-to-
noise ratio, which makes them useful for correcting for drift in
position and sensitivity between different approach and retract
runs (see Sec. V B).

To estimate the relative separation and sensitivity, the
measured values of S2ωA are fit to a function of the form

S2ωA

V 2
AC

= κ

2R
C′(dpz − d0, R), (13)

in which dpz is the position of the plate relative to a reference
height, and the two free parameters are the sensitivity (κ =
γ R/2k) and the absolute position offset (d0). Fitting separates
the two parameters d0 and κ . The relative piezo displacement
is typically measured accurately, for example, by a linear
differential transformer, so that the electrostatic force can be
fit assuming that relative displacements over a measurement
are exact, and only d0 is unknown. Both γ and k are assumed
to be frequency independent because the frequencies used are
much lower than the resonant frequency of the cantilever. The
high resonant frequency of the cantilever is enabled through
the use of a hollow, rather than solid, glass sphere. Any drift
in V0 or sensitivity across time is calibrated for using the C′
measurements.

B. From the electrostatic force gradient

We determine the absolute position and sensitivity from
measurements of the gradient of FDC, measured through the
same channel as the Casimir force (Fig. 5). The plate is
oscillated, as it is when the Casimir force signal is generated,
so that the force gradient between the sphere and the plate
is measured while VAC = 0. Simultaneously, VDC is slowly
varied across the −V0 measured in the first electrostatic step.
Because there is no AC voltage, there is no AC coupling to
the piezo. The V 2 dependence of the electrostatic force causes
the resulting signal to be a parabola, whose curvature can be
related to C′′:

SDC, pz = ε0π

2
C′′(VDC + V C′′

0

)2 Rγ�d

k
, (14)

where the superscript on V C′′
0 shows that it is the force gra-

dient minimizing voltage. Because the signal-to-noise ratio
of the force gradient measurement is much lower than the
force measurement, it is not used to estimate the minimizing
voltage or separation during the measurement for individual
approaches. However, in the final analysis, C′′ is used to
calculate separation and the minimizing voltage, because it is
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FIG. 5. (a) The total force gradient signal as a function of applied
voltage at several different separations [Eq. (14)], each noted by a
symbol in panel (b), where the measured force gradient (black dots)
is shown with the fit used to determine the absolute separation (blue
line).

much less susceptible to artifacts than C′. If the measurement
of C′ did not contain the systematic effects discussed below,
C′′ could be calculated directly from it. However, in practice,
calculating C′′ from C′ directly, rather than determining it
from a second measurement, amplifies the effect of the arti-
facts discussed below.

To compensate for the low signal-to-noise ratio of the force
gradient measurement, the relative positions of many runs
are aligned before fitting the parabola, as discussed below in
Sec. V B 6. Once the curvature of the parabolas as a function
of position is determined, it is fit to C′′ to determine the
absolute position and sensitivity. By measuring the electro-
static force through the same channel as the Casimir force,
any nonidealities in the piezo actuation of the plate appear
in the electrostatic calibration as well as the Casimir force,
which helps with diagnosing experimental problems, such as
uncertainty about the shake amplitude, �d , of the plate [68].

C. Determining spring constant and optical lever sensitivity

In our experiment, higher harmonics driven by the nonlin-
earity of the electrostatic force are used to separate the spring
constant k from the optical lever sensitivity, γ [which are
combined to give κ in Eq. (13)]. To calculate them, we expand
C′ to first order in a Taylor series around the time-averaged
separation

C′(t ) = C′(d ) + C′′(d )A cos(2ωAt ) + · · · . (15)

Then, when we input Eq. (15) into Eq. (12c), forces at higher
frequencies are found:

Fb =C′

4
V 2

AC cos(2ωAt ) + C′C′′

16k
V 4

AC cos2(2ωAt ). (16)

The second term can then be expanded, so that the electro-
static force on the cantilever at frequency 4ωA, up to first

order, is

F4ωA,1 = C′′C′

32k
V 4

AC cos(4ωAt ). (17)

Note, when the PFA for the capacitance is inserted into
Eq. (17), the strength of the force is consistent with the
calculation of de Man et al. in which the PFA is assumed from
the beginning [33]:

F4ωA,1 = −π2ε2
0 R2

8kd3
V 4

AC cos(4ωAt ). (18)

Because F4ωA,1 depends on k, independent of γ , the signal that
it drives, S4ωA , can be used to separate the two parameters.
To do so, the electrostatic force is driven with VAC = 8 V on
approach, so that both the S2ωA and S4ωA signals are generated.

Within one approach, determination of d0 is performed
with the S2ωA signal. Using the d0 found from the first fit, the
S4ωA signal is fit to Eq. (18). Then S4ω is used to separate k
and γ as

k = ε0πR

4

κ

S4ω

, (19a)

γ = κ2

2S4ω

, (19b)

where κ comes from the C′ fit [Eq. (13)]. It is not necessary
to split κ into k and γ to perform measurements, but doing so
permits the comparison of our calibration to other calibration
methods. In our previous measurements [25], we ran a large-
VAC calibration every other run, but now, we only do so at the
end of a set of runs.

V. DETERMINING MEASUREMENT UNCERTAINTIES

A. Characteristics of different uncertainties

To determine the total uncertainty in the measurement, we
divide it into several categories. All uncertainties are reported
in percent of the measured force. However, separation uncer-
tainty is first reported as a range of separations before being
converted into a percent uncertainty.

First is the calibration uncertainty, which includes uncer-
tainty in the measurements of k, R, and γ and uncertainty
in the calibration of the piezo actuation �d (Sec. IV C).
Because a number of different methods of calibrating AFM
cantilevers have been developed, comparing the results of
different methods is one way to characterize their uncertainty
[69]. Techniques used to estimate k of an AFM cantilever
include fitting the cantilever’s thermal motion to a Lorentzian,
measuring the change in the cantilever’s resonance frequency
when it is used to pick up particles of a known mass, or mea-
suring the response to a known radiation pressure [70–72].
The effect of the added mass on “colloidal probes” (like the
probes used here) changes the correction factor used for ther-
mal calibration and affects the cantilever mode shapes [73].
While variation between different techniques for calibrating k
can be as large as 17% [69], similar electrostatic calibration
experiments on colloidal probes suggest that the error in k
from using electrostatic calibration is about 5% [74]. Thus,
a calibration uncertainty of 5% is used.
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Uncertainty in the absolute position of the sample relative
to the probe is one of the most problematic sources of error in
Casimir force measurements because of the strong separation
dependence of the force. The uncertainty in the measured F ′
is calculated from the uncertainty in the position (±2 nm)
multiplied by F ′′ (Sec. V B). Note that although the force is
measured with no less precision at separations below 120 nm,
uncertainty in the separation makes comparison with theory
less viable. The calculation of the uncertainty in position is
presented below.

Interference of the optical lever is a major source of
uncertainty in the measurements. The interference varies in
both phase and magnitude between the different spheres. The
magnitude of the interference is estimated by the technique
described in Sec. V C 2.

The hydrodynamic force present in the Casimir force chan-
nel of the measurement in the limit of a small phase offset
is FH sin(�θref ), where �θref is the difference between the
reference phase of the lock-in amplifier and the response of
the cantilever to the force modulation. Below in Sec. V C 3,
�θref is determined. Then, the uncertainty originating from
the hydrodynamic force is determined by multiplying the
measured hydrodynamic force by sin(�θref ). The magnitudes
of both the hydrodynamic force and interference depend sig-
nificantly on the particular probe used for the measurement.

Stochastic noise is estimated by dividing the standard
deviation of the force gradient data within a small separation
range (≈2 nm) by the square root of the number of data points
collected within that range. Here, the stochastic noise comes
primarily from the photodetector, but there is always some
stochastic noise due to the thermal motion of the cantilever.

The electrostatic force is present because of an artifact in
the minimizing voltage detected by the Kelvin probe feedback
loop (Sec. V C 1). AC coupling causes V0 to appear to vary
with distance, even if there are no patch potentials. The AC
coupling that would cause the entire separation dependence
of the measured V0 is calculated [66]. Because AC coupling
causes the measured V0 to be offset from the actual V0, the
residual electrostatic force from the estimated V0 discrepancy
determines the uncertainty due to the electrostatic force.

B. Uncertainty in separation determination

Because the electrostatic force is used to determine the
separation between the sphere and the plate, any effects that
lead the measured electrostatic force to deviate from the
expected form of the electrostatic force lead to an error in the
determination of the absolute separation, d0. Below, we list
several effects that can contribute to error in the separation,
discuss ways to control them, and quantify the error that they
impart.

1. Electrostatic approximations and fitting

The computational demands of Eq. (10) have caused sev-
eral approximations to be used, the most prominent of which
is the proximity force approximation (PFA) for C′ (Fig. 6).
Moreover, Eq. (10) is exact for an ideal sphere-plate system,
but incorporating imperfections such as roughness or a water
layer into it is difficult. The PFA describes the force between
two curved surfaces as the sum of pairwise plate-plate forces.

Range of measurements(a)

(b)

(c)

32 terms

8 terms

2 terms

PFA

Interpolation

R uncertainty

Chen

Cantilever 

DE

C’
C’’

d/R (norm.)

(c)

R uncertainty

Cantilever 

(b)

PFA

Interpolation
Chen DE

C’
C’’

FIG. 6. (a) The full sphere-plate capacitance gradient (C′) infi-
nite sum approximated by several truncated sums. The unshaded
central region shows the range of data pertinent to the Casimir
force measurements discussed in this article. (b) The proximity force
approximation (PFA, green) deviates from the exact solution at large
d; the approximations of Chen et al. [15] (purple) and the derivative
expansion (DE, blue) [75] reduce the error somewhat. Logarithmic
interpolation (red) shows even less error. For all approximations
except Chen’s, the C′′ signal causes less systematic error than the C′

signal. (c) Uncertainty in the sphere radius and the contribution of the
cantilever itself both affect C′ less than using the PFA (�R ≈ 0.7%,
Fig. 7).

To investigate the effects of roughness, long-range sphere de-
formations, and a water layer on the measurement, the effects
are calculated using the PFA and then used to estimate error as
discussed below. Most previous Casimir force measurements
have used the PFA or other approximations to Eq. (10) to
ease computational difficulties. For a sphere and a plate, the
approximation gives

C′
PFA = −2πε0R

d
. (20)

However, the computational difficulty of the infinite sum
is not in the evaluation of the sum itself but rather that the
sum must be recalculated for every iteration of the fitting
procedure. If, instead, the force is calculated once for a
number of points, the data for those points can be saved and
interpolated for later fit iterations. The simplest interpolation,
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FIG. 7. (a) The perimeter of a sphere is identified through a
watershed algorithm and overlaid on a SEM image of the sphere.
(b) The average radius is calculated and plotted (black) against the
actual perimeter (red). We find a standard deviation of 200 nm, which
amounts to a ≈0.7% variation in the radius.

interpolating points linearly, tends to slightly overestimate the
force. Because C′ is approximately linear on a log-log plot,
interpolating log(C′) versus log(d/R) gives better accuracy. It
deviates from the exact C′ by less than 0.5% over the whole
range of the fitting, which is less than any of the previous
approximations, even though the full Eq. (10) sum is only
calculated for 43 separations. Because the interpolation itself
is limited to the values between the minimum and maximum
value of d/R, it can be helpful for fitting to use Eq. (20) for
separations below the lowest interpolated value and the n = 1
term of Eq. (10) for separations above the largest interpolated
value. Then, the function is well defined anywhere that the
fitting algorithm may need to evaluate it. Because it is not
necessary to use an approximate form of Eq. (10), approxi-
mations do not necessarily impart any separation uncertainty.
However, we note that it is suspected that Eq. (10) itself is an
approximation at some level [76], and a deviation from it has
been reported for separations <1 nm [77].

2. Sphere radius

Concern about how variations in the sphere radius affect
Casimir force measurements emerged because they were a
possible, but unconfirmed, explanation for anomalous elec-
trostatic force versus separation power laws [54,78]. Even
though the expected electrostatic force power law is observed
in many experiments [28,55], concern about radius variations
persisted because AFM measurements on spheres showed
topographical irregularities [49]. However, the tip shape of
the scanning AFM probe imprints itself on the image, par-
ticularly when scanning the steep sides of the spheres [79].
Therefore, long-range deformation is instead calculated from
SEM images. Here, we use an SEM (Hitachi S-3400) to assess
the radius of our spheres. The sphere shown in Fig. 7 is the
sphere used for the Casimir force measurement presented in
this paper.

To determine the roundness of the microspheres, we iden-
tify the circumference of the sphere through image seg-
mentation via a watershed algorithm [80]. A centroid and
boundary are extracted from the watershed result, enabling
the overlay of the identified perimeter of the sphere on the
original SEM image, as seen in Fig. 7(a). Plotting the radius
versus angle in Fig. 7(b) shows the ellipsoidal nature of the

aberrations. We attribute the ellipsoidal nature of the hollow
glass microspheres to low-energy ellipsoidal excitations while
being formed from a liquid [81]. The standard deviation of
the radius is then about 200 nm or 0.7% of the radius, which
minimally effects the electrostatic calibration [Fig. 6(c)]. We
note that an apparatus for measuring microsphere roundness
more accurately and over the whole sphere, rather than just
in profile, is currently under development [82]. The radius
calculated from an AFM scan, 33.2 μm, is within a micron of
the radius measured with an SEM (32.54 μm), even though
measurements of the sphere topography acquired using an
AFM contain an imprint of the AFM probe.

3. Water layer

A thin water layer forms on most surfaces exposed to
ambient conditions. The large relative DC permittivity of
water (εW = 77 at 303 K [83]) causes even a nanometer-thick
water layer to noticeably affect both the capacitance and the
force. As we are considering uncertainty in d0 in this section,
we focus on the effect of the water layer on capacitance
because it is used in the determination of d0. The effect of
the water layer on the Casimir force itself is considered in a
subsequent section. The capacitance per unit area between two
parallel conducting plates that are a separation d apart with a
water layer of thickness, dW, on one of the surfaces is

Cpp(dW) = ε0

d + dW
(

1
εW

− 1
) ,

≈ ε0

d − dW
, (21)

where εW is the DC permittivity of water and Cpp is the
capacitance between parallel plates. Note that Eq. (21) implies
that uncertainty in dW is roughly equivalent to uncertainty in
d0. The relative increase of Cpp due to the water layer is

W (dW) = Cpp(dW)

Cpp(dW = 0)
,

= 1

1 + dW
d

(
1

εW
− 1

) . (22)

Using the PFA to calculate the effect of water on the
sphere-plate fit, we have

C′
PFA = 2πRCpp, (23)

so that when a water layer is included

C′
PFA(dW) = 2πRCpp(dW), (24)

= W (dW)C′
PFA(dW = 0). (25)

Because the effect of the water layer is the greatest over
the region of the sphere closest to the plate and vanishes
at separations large compared to the water layer thickness
[Eq. (22)], the equation derived with the PFA is approximate
when Eq. (10) is used for the capacitance

C′(dW) ≈ W (dW)C′(dW = 0). (26)

The effect of the water layer on C′′ is similar:

C′′(dW) ≈ W (dW)2C′′(dW = 0). (27)
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Unfortunately, the thickness of the water layer can vary
over the course of a measurement unless humidity is con-
trolled precisely, and the water layer thickness itself can
vary across a single sample, particularly at grain boundaries.
Moreover, estimates of dW on gold vary widely depending on
the type of measurement and the exact deposition process for
the gold [84–86]. Without modeling or in situ measurement,
the water leads to uncertainty in d0 of about ±0.75 nm in
air for each surface (or 1.5 nm total). In addition, because
the structure of water is much different at interfaces than in
bulk [87,88], it is plausible that a nanometer-thick layer of
water affects C′ differently than would be expected from the
bulk properties of water. Finally, although the voltage applied
between the sphere and the plate increases dW, calculations
indicate that this change should be small compared to the
overall water layer thickness [89].

4. Roughness

Roughness appears twice in the error analysis: first as un-
certainty in the separation and calibration determination and
second in the comparison of measurements to theory. Here,
we consider how roughness affect the separation uncertainty
rather than how it changes the force on average.

Many different roughness corrections have been developed
for Casimir force measurements. The first corrections were
perturbative and assumed that the surface could be described
by an average height with some standard deviation [90,91].
Including the correlation length of the surface roughness leads
to a correction that itself depends on the dielectric functions
of the interacting materials [47]. After the surface topogra-
phies of typical Casimir force probes were found to follow a
skewed probability distribution, new statistical methods were
developed to account for the irregularity of the distribution
[48]. Finally, the dependence on the particular orientation of
the sphere, typically defined by the point of least separation
(POLS) was noted, and a PFA-based technique was developed
to estimate the uncertainty in the force from the uncertainty
in the relative orientation of the sphere [49]. The POLS is
the point on the surface of the sphere that is also on the line
between the center of the sphere and the closest point on the
plate.

Here, the uncertainty due to roughness is estimated using
an oriented-PFA procedure akin to the one pioneered by
Sedmik et al. [49] (Fig. 8). To prepare AFM topography scans
of the spheres for a roughness analysis, the topography is first
fit to the shape of sphere, (x − x0)2 + (y − y0)2 + (z − z0)2 =
R2, with the radius and center as free parameters. Then, the
fit is removed from the image. The resulting image retains
systematic long-range distortions, from a combination of the
imprint that the AFM tip leaves on the image [79] and im-
perfections in the sphere fabrication process. To eliminate the
distortions from the roughness analysis, the image is median
filtered with a filter size larger than the short-range roughness
(>100 nm). The median-filtered image is then subtracted from
the raw image so that only short-range roughness remains.

Because the sphere’s orientation is only known to about
1 deg, the electrostatic force is calculated for many possible
sphere orientations. For each orientation, the measured topog-
raphy is placed onto a model sphere of the appropriate radius.
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FIG. 8. (a) An AFM image of the sphere is fit to the equation
for a sphere and the fit is removed (512 × 512 pixels). After the
fit is removed, a 64 × 64 pixel median filter is used to separate
the roughness from any imaging artifacts. (b) Several points are
chosen on the roughness image to act as possible points of least
separation (circles). (c) The electrostatic force gradient for the sphere
with roughness relative to a smooth sphere is calculated for each of
the different points, identified by their color and brightness. (d) The
Casimir force gradient for a rough sphere relative to a smooth sphere
is also calculated for the nine points and shows a much larger
uncertainty because of the stronger separation dependence of the
force. (e) The roughness leads to a systematic offset in the separation
determination up to 1 nm.

The PFA is used to compute the roughness correction because
roughness causes the largest effect at small separations. For
the regions on the sphere where the topography is known, the
force from the smooth sphere is subtracted and replaced with
the force from the rough sphere, pixel by pixel,

Fr(d ) = Fs(d ) −
∑
i, j

[Fpp(hs(d, xi, j )) − Fpp(hr(d, xi, j ))],

(28)

where
∑

i, j is a sum over all the pixels in an image, Fr and Fs

are the forces from the rough sphere and a smooth sphere, re-
spectively, in the PFA limit, Fpp is the force between each pixel
and the pixel directly below it, and hs(d, xi, j ) and hr(d, xi, j )
are the separations between the surface of the sphere and the
plate at that particular pixel for smooth and rough spheres,
respectively, when the point of closest approach is d away
from the plate. The electrostatic force on the rough surface
is compared to the PFA calculation of the force on a smooth
surface so that the same approximation is used throughout the
calculation.

The median rather than the mean is used to compute the
height of the imaged portion relative to the smooth portion
of the sphere because of the skewed height distribution. Note
that this formulation of a roughness PFA correction can be
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used to calculate either the electrostatic or Casimir force, as
in Ref. [49], and works similarly well with force gradients.
Figure 8(c) shows that roughness primarily affects the elec-
trostatic force near the surface. By fitting the electrostatic
force gradient with the roughness corrections included, we
determined that the uncertainty due to roughness on the
sphere is 0.2 nm (standard deviation of the offset from the
49 calculations, of which 16 are shown).

5. Surface states

The assumption that the macroscopic equation for capac-
itance is adequate for describing plate-plate and sphere-plate
capacitance at the nanoscale has not been stringently tested
for gold. For materials where this assumption has been tested
(e.g., silicon and germanium), naively fitting a measured elec-
trostatic force to the macroscopic form of the capacitance can
lead to distance offsets between 60 and 600 nm, depending
on preparation (for silicon), which were attributed to surface
states [92].

The offset for gold is likely less because it is more con-
ductive and a recent measurement shows agreement between
the predicted C′ and experiment out to 2 μm [55], and here we
observe C′′ consistent with theory from 110 nm to 4 μm. How-
ever, the presence of water or other adsorbates may complicate
the nature of surface states. Further studies are necessary to
determine the extent to which surface states affect C′.

6. Drift

Drift can both impart error to each individual determination
of the sensitivity and separation and hinder the averaging
of multiple data sets. To address drift in our experiments,
the absolute separation, d0, is determined for each individual
approach or retract [Fig. 9(a)]. The time dependence of d0 is
determined from the entire series of approach and retract runs
and is found to drift at a rate of about 50 nm/h, but decreases
as the elapsed time increases. To account for the drift in the
analysis of the measurement data, the drift within a run is
determined by interpolating d0 from the two runs before it and
the two runs after it. By making d0 itself a function of time, the
effect of drift is accounted for in the data analysis procedure.

Likewise, drift in the electrostatic sensitivity calibration is
also determined. To understand the stochastic error and drift
in the electrostatic calibration, the calculated absolute position
offset d0 and force gradient sensitivity are recorded for each
approach (Fig. 9). Over the 13 h of measurements, the force
gradient sensitivity shows systematic drift and changes by a
little over 10%. The change is likely due to drift between
the photodiode and the photodetector used to track cantilever
motion, so in the analysis the change is included in the optical
lever sensitivity, γ , and its uncertainty.

7. Cantilever bending

Because the cantilever bends as it approaches the surface,
the effect of the bending must be accounted for when deter-
mining d . The bending itself is often used for Casimir force
measurements, but in our experiment deflection is detectable
above the noise level only out to about 100 nm. The deflection
signal (μV) is converted into a bending distance (nm) by
dividing by the optical lever sensitivity γ . The static deflection
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FIG. 9. (a) The position of the plate, d0, drifts over time at a rate
of about 50 nm/h on average. For each run, a line is fit to d0 vs
time, including the two previous runs, the two subsequent runs, and
the run itself. The drift is then deduced from the fit, and the linear
drift correction is applied. (b) The force sensitivity increases by about
10% over the measurement, but (c) the stochastic run-to-run variation
is closer to ±1%.

is recorded at each height and a phenomenological power
law is fit to the data to describe it because the deflection
signal itself is too noisy to use as a correction on its own.
Then, the recorded piezo extensions are adjusted to account
for the cantilever’s bending toward the surface based on the
phenomenological fit. Although bending leads to a small
correction, it imparts uncertainty into the final separation,
which is proportional to the uncertainty in the optical lever
sensitivity γ . If all the drift in the sensitivity is attributed
to γ , then we can bound its variation by about 10% over the
measurement (Fig. 9). Because the bending is almost 3 nm
at the closest approach, it adds about 0.3 nm of uncertainty
to d0.

8. Second-order oscillation

The nonlinearity of the electrostatic force not only leads
to oscillations at harmonics but also leads to higher order cor-
rections to the S2ωA signal. Because second-order oscillation is
a dynamic effect, it only appears in the C′ electrostatic mea-
surement and not the C′′ voltage parabolas, which incorporate
only a static voltage. Using the PFA, the signal is [33]

S2ωA = −γ ε0πRV 2
AC

2kd
− γ ε2

0π
2R2V 4

AC

2k2d3
− O

(
V 6

AC

)
,

= −γ ε0πRV 2
AC

2kd
(1 + δ + · · · ), (29)
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where δ = ε0πRV 2
AC

kd2 . Now, estimating δ is equivalent to estimat-
ing the effect of the second-order oscillation on the separation
determination. Because VAC is controlled by a feedback loop
to produce a constant signal, Sset, during the measurement run,
it is possible to solve for δ, assuming it is much less than one:

δ ≈ 2Sset

γ d
. (30)

With a typical cantilever (Table I) and Sset = 1 mV, δ ≈
0.014 at 100 nm. Thus, the correction is only a very small
portion of the overall electrostatic signal. However, the slow
d dependence makes it difficult to avoid the error without
correcting for it. Note that these oscillations have a similar
source as in Eq. (17) and can, in principle, be estimated by
measuring the 4ωA signal. However, recording 4ωA with our
AFM setup would require a four-step rather than a three-
step measurement procedure, in order to collect all the data
channels. To estimate the effect of the second-order oscillation
on the separation, we calculate how much the uncertainty in
γ leads to uncertainty in δ. We then determine how much
the uncertainty in δ affects the overall fit procedure by fitting
with several different δ within the range of its uncertainty and
predict that the imparted uncertainty is 0.3 nm, but only in
the C′-based separation determination because the C′′-based
determination uses only DC voltages.

9. Overall uncertainty in separation

Most of the above sources of error tend to cause the surface
to appear closer than it is. Moreover, these different sources
of uncertainty can cause correlated error. The water layer
thickness varies by a few nanometers in previous experiments
depending on how it is measured [84–86], so we posit a 1.5 ±
0.75-nm water layer on each surface, which in turn leads to
a ±1.5 nm uncertainty in the separation of the two metal
surfaces. Bending contributes about ±0.3 nm of uncertainty,
while roughness also contributes about ±0.2 nm of separation
uncertainty, so that the total uncertainty in position is about
±2 nm for the C′′-based separation determination. For the
C′-based method, there is an additional 0.3 nm of uncertainty
from second-order oscillations.

C. Uncertainty in the measured signal

1. Systematic uncertainty in voltage offset

The first major source of uncertainty in V0 comes from
using Fa to determine V0 [Eq. (11)]. Fa has a much higher
signal-to-noise ratio than FDC , but it is also susceptible to
AC coupling between the applied voltage and the drive piezo.
From Kelvin probe force microscopy, it is known that the
voltage that minimizes the electrostatic force is not the same
as the voltage that minimizes the electrostatic force derivative
because the cantilever, rather than the tip, contributes much of
the electrostatic force signal, but the tip contributes most of
the force derivative signal [93]. For Casimir force measure-
ments, the spherical probe has a much larger radius than an
AFM probe (40 μm vs 30 nm), so the cantilever contributes a
much smaller portion of electrostatic force.

The second source of uncertainty is present because an AC
voltage is applied to the probe. The AC voltage applied to
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FIG. 10. The interference artifact is analyzed by comparing the
calibrated force gradient signal at distances larger than 500 nm.
The laser causes interference fringes on the order of ±10 N m−2

(red), but the superluminescent diode (SLD) produces fringes with a
magnitude of about 1 N m−2 (for a 40-μm-radius sphere). Thus, the
SLD detector reduces the error imparted by interference by a factor
of 10. Because the interference appears in the force data and is linear
in shake amplitude like the force itself, it is reported, after calibration,
in N m−2.

the probe can couple into the drive piezo, which leads to an
extra signal fed into the voltage feedback loop [65,66]. The
additional signal combined with the separation dependence
of the electrostatic force leads to a distant-dependent artifact
in V0. Any generic offset of the output of a lock-in amplifier,
in fact, leads to such an error. The voltage artifact is pro-
portional to 1/C′, and knowledge of C′ permits an estimate
of the voltage error. If all the separation dependence of V0

is attributed to the extraneous voltage, then estimates can be
made of the original offset and the residual electrostatic force
that remains because of the extraneous voltage. Based on the
separation dependence of V0, we estimate that the offset in the
signal is less than 10 μV, which would lead to an error in V0

of less than 10 mV at separations where the Casimir force is
measured.

2. Optical interference

Because the optical lever used to detect the motion of the
cantilever is coherent, an interference pattern appears in the
response signal of the cantilever to the shaking plate. A small
amount of the optical beam that falls off of the cantilever (e.g.,
Airy disks) has a different path length to the detector than the
light reflected directly off the cantilever [94]. As the surface
is brought toward the cantilever, the interference condition at
the photodiode changes. The interference artifact is common
to AFMs that use optical lever detection [94] and has been
identified before in Casimir force measurements as a factor
that limits accuracy at large separations [31,33].

In order to minimize the optical interference in the Casimir
measurements presented here, two different optical sources
are tested. A diode laser and a superluminescent diode (SLD)
[95], which limits the coherence of the light by increasing its
wavelength spread, are tested using the same force measure-
ment procedure (λ = 860 nm for both). The interference ap-
pears in the force data channel. Figure 10 shows the signal for
the approaching cantilever once with the laser and once with
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the SLD. The SLD is confirmed to decrease the interference
artifact in the force signal by about an order of magnitude
relative to the laser. Even so, the interference from the SLD
appears in the data at a level of about 1 N m−2.

The force uncertainty from interference is estimated by
fitting the data from the force gradient signal channel to
sine waves at separations >500 nm. The least-squares fit
to the sum of a sine curve at the primary wavelength in
the interference, which is half the wavelength of the source
(λ/2) and a sine curve at wavelength of the next harmonic
(λ/4). Only the amplitude and phase of one of wavelengths is
permitted to vary at a time in the fit procedure. The amplitudes
of both sine curves are summed for a rough estimate of
the uncertainty imparted by interference. Even though the
fits characterize the uncertainty, attempts to use the fits to
remove the interference after measurement are unsuccessful.
This is because the two spatial frequencies do not completely
describe the interference and the interference may change its
amplitude at at different separations, as it does between 2 and
4 μm in Fig. 10. The interference artifact varies by up to a
factor of 4 between measurements when the cantilever probe
varies but the light source remains the same.

3. The hydrodynamic force

For dynamic measurements in air, the hydrodynamic force,
FH, is of comparable magnitude to the Casimir force. The
Casimir force decays more rapidly with increasing separation,
so that the hydrodynamic force limits how far from the surface
it can be observed. However, the hydrodynamic force is
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FIG. 11. (a) The detection beam is focused at least 15 μm away
from the edges of the cantilever, in order to minimize interference
during force measurements. (b) The interference is greatly increased
by focusing the detection beam at the tip of the cantilever. [(c),
(d)] Interference is used to determine the reference phase of the
lock-in amplifier to within about 0.2 deg because, when the refer-
ence phase is set properly, the interference only appears in the in-
phase channel of the lock-in amplifier. The hydrodynamic force can
be excluded from the Casimir force channel more completely (0- to
5-deg reference phases shown). For these measurements, a phase lag
of 2.4 deg is optimal.
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FIG. 12. The hydrodynamic force (a) is measured as well. The
increase in the hydrodynamic force increases the phase shift of the
cantilever’s response (b). The phase shift caused by the hydrody-
namic force is measured by monitoring the phase of the electrostatic
S2ωA . The red lines are fits used in the analysis of the uncertainty
coming from the hydrodynamic force.

proportional to velocity, which is 90 deg out of phase with the
displacement of the plate. A lock-in amplifier separates the
in-phase from the quadrature signal in order to separate
the hydrodynamic force from the Casimir force (Fig. 3).

The accuracy of the reference phase, θref, determines the
imprint of the hydrodynamic force in the Casimir force mea-
surement signal. Uncertainty in the phase has two parts: a
constant phase offset and a phase offset that depends on
separation, due to dissipation. The delay between the direct
digital synthesizer and plate must be measured in order to
set the reference phase to sufficient accuracy, because the
hydrodynamic force enters into the Casimir force signal as
FH sin(�θref ), where �θref is the error in the reference phase,
which is about 0.2 deg in our measurement. The uncertainty
from the hydrodynamic force is calculated from the hydrody-
namic force measured by the quadrature channel multiplied
by sin(�θref ).

While interference is problematic in the force measure-
ment, it can be utilized to set the reference phase of the LIA
that records the response of the cantilever to the shaking plate
(Fig. 11). Because the interference is determined by the posi-
tion of the plate, relative to the cantilever, and is independent
of the velocity of the plate, it appears in the in-phase channel
and is excluded from the quadrature channel of the LIA. To
determine the reference phase, we first replace the SLD with
the laser light source and focus it at the edge of the cantilever
in order to accentuate the amount of interference. Second,
the cantilever approaches and retracts from the surface with
several different reference phases. The reference phase for
which the interference falls entirely in the in-phase channel of
the lock-in amplifier is chosen for use in force measurements.
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The accuracy of the interference method of setting the
reference phase is also limited by changes to the cantilever’s
transfer function due to the hydrodynamic force. The phase
lag is [Q(d )]−1(ω/ω1) in the ω � ω1 limit, where Q is
determined by the hydrodynamic damping [62,63,96]

Q = k

ω1

[
�0 + 6πηR2

d
f ∗(d/6b)

]−1

, (31)

where �0 is the damping of the probe far from the plate, η

is the dynamic viscosity, b is the slip length, and f ∗, called
a correction function in Ref. [62], is a monotonic function
that approaches 1 for d 
 b and approaches 0 for d � b.
The phase lag of the cantilever’s response is measured from
the frequency shift of the S2ω electrostatic signal (Fig. 12).
Once the phase lag is known as a function of separation, it is
incorporated into the force measurement and uncertainty anal-
ysis. First, the expected phase shift of the cantilever response
at the piezo shake frequency is calculated as φc(ωpz, d ) ≈
[ωpz/(2ωA)]φc(2ωA, d ). Second, FH sin(φc/2) is subtracted
from the measured force gradient signal. Third, |φc/2| is
added to the reference phase uncertainty. The uncertainty is
consistent with the electrostatic estimate of the phase lag and
the estimate of no phase lag.

VI. TOTAL MEASUREMENT UNCERTAINTY

To understand how the different sources of error contribute
to the force measurement at different separations, the un-
certainties are combined at separations from 30 to 300 nm
(Fig. 13). They are added in quadrature, under the assumption
that each source is uncorrelated with the others. At short sep-
arations, separation uncertainty is the dominant contribution.
At large separations, interference, stochastic noise, and the
hydrodynamic force dominate the uncertainty. The force sen-
sitivity is limited to about 2 pN when approximated from the
smallest observable force. Therefore, significant reductions in
uncertainty are possible.
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FIG. 13. The expected uncertainty in the Casimir force measure-
ments is calculated from several sources of error. At short range,
separation determination (Sec. V B) dominates the error. Although
the force is detected well above the noise level there, uncertainty
in the position makes experiment-theory comparison less clear. At
large separations, the hydrodynamic force, as well as interference
and stochastic noise, dominate (Secs. V C 2, V C 3, and III).

The measured force sensitivity compares favorably to other
AFM force measurements, which report an optimal sensitivity
of ≈1 pN [97]. Other Casimir force measurements in the
sphere-plate geometry report a force sensitivity of 2–5 pN in
air [30,33], while in the parallel-plate geometry the sensitivity
is limited to a few nN (but with a much larger interaction area)
[36]. A few measurements of the Casimir force in vacuum
report force sensitivities at the fN level with a ≈ 1 s integra-
tion time per separation [26,28] (using equivalent noise for
force gradient measurements [98]). Sensitivities at or below
the fN level are reported in fluid [99,100], but because the
spheres used were all <10 μm and the electric double-layer
force was present, the Casimir force was not unambiguously
observed. Measurements in liquid that do observe the Casimir
force report a 50- to 100-pN sensitivity [61,101].

Comparing Casimir force measurements performed with
an AFM to other microsphere measurement technologies,
such as torsion pendulums and optical traps, shows that AFM
measurements have lower overall sensitivity but offer more
control. In vacuum, force sensitivities using microspheres in
optical traps report measurements up to aN-level sensitivity
[102,103] but, though there has been much recent progress,
controlling the position relative to a surface remains a chal-
lenge. Torsion pendulums give a pN-level sensitivity with
much larger spheres (R ≈ 1 cm [7,104]). AFM measurements,
such as those presented here, allow control over orientation,
which enables measurements between surfaces of different
shapes and characterization of the exact regions of the sur-
faces that are interacting [25]. Even though optical traps and
torsion pendulums provide greater sensitivity or interaction
area, AFM probes will continue to have a role in Casimir force
measurements because they allow the investigation of intricate
geometric orientations and the detailed characterization of the
interacting surfaces.

A. Reducing measurement uncertainty

Based on the above analysis, there are two routes to reduce
the uncertainty in Casimir force measurements. Near the
surface, improvements in the separation determination reduce
uncertainty the most. Far from the surface, improvements to
interference, stochastic noise, and the hydrodynamic force
reference phase all reduce the total uncertainty. Reductions
to calibration uncertainty reduce uncertainty everywhere.
Investigations into the reliability of calibrations using the
electrostatic calibration could be performed by comparing
them to calibrations performed with optical or other forces
[63,72,100]. A better understanding of calibration uncertainty
is critical to Casimir force measurements, because it affects
them at all separations. Because of similarities between the
measurement presented here and prior measurements, we
expect that the following uncertainty reduction strategies
will also lower error in other Casimir force measurements
as well.

1. Near the surface

At small separations, the Casimir force can be measured
well above the stochastic noise level. To improve the measure-
ment, it is necessary to improve the separation determination.
Because many factors contribute to the uncertainty in the
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separation as determined by the electrostatic force, it would
be infeasible to address them simultaneously. Some, such
as the presence of a water layer, could be addressed with
improved characterization of the samples. Most inhibitive is
the presence of surface states which would require significant
experimentation in surface science to characterize. Therefore,
one tactic to evaluate and improve the accuracy of the sep-
aration determination is to develop new ways to measuring
separation and comparing them [105].

A direct way to measure the position of the surface is
through contact measurements, but roughness adds significant
uncertainty in the relationship between the distance-upon-
contact and the absolute separation of the two surfaces. How-
ever, for sufficiently smooth surfaces, the difference vanishes.
The electrostatic force is typically used to determine the abso-
lute separation because it has a strong separation dependence
that is described by an analytic formula. In addition, the
hydrodynamic force has been used successfully for separation
determination in liquids [61]. It might also work in air even
though the slip length is considerably larger (≈60 nm versus
<10 nm) because it can be amplified by using larger probes
and higher frequencies [62,106]. Using the hydrodynamic
force in air may also permit Casimir force measurements with
insulators, as is possible in liquid [4].

2. Far from the surface

The Casimir force is predicted to be observable out to a
separation about four times larger than reported in this paper.
Therefore, at large separations, there is potentially more to
reveal about the Casimir force by decreasing the uncertainty.
The hydrodynamic force can be made smaller by shaking the
plate at a lower frequency, by varying the reference phase
with separation, or by using smaller spheres because the
hydrodynamic force is proportional to R2 rather than R [63].
The interference is harder to eliminate because the SLD is
already designed to minimize coherence.

One possible way to minimize the interference would
be to measure the position of the cantilever with light at
several wavelengths. Other possibilities include measuring
the force with the optical lever at a few different positions
along the back of the cantilever to change the path length
of the interference or varying the focus of the light onto
the cantilever. Different detection techniques, such as laser
doppler vibrometry [107] or piezoelectric cantilevers [108],
might circumvent the artifact. Uncertainty from stochastic
noise can be reduced by taking more data, using a larger
shake amplitude, operating at a lower temperature, or finding
a lower-noise photodetector.

VII. COMPARISON TO OTHER TECHNIQUES

Above, several major sources of error in force modulation
measurements have been listed and quantified as a function
of tip-sample separation, and the uncertainty in the Casimir
force measurements is calculated from them. In this section,
the uncertainties of the force modulation method are com-
pared to those in the frequency modulation and deflection
methods.

A. Frequency modulation

Measurements using frequency modulation (FM) detection
with AFM probes in vacuum report the highest precision of
any Casimir force measurements [26,28]. In the FM detection
scheme, the force gradient is measured through the change of
the first resonance frequency of the cantilever as the sphere
approaches the surface. The frequency shift is given by

�ω1 ≈ −ω1,0

2k

∂F

∂d
, (32)

where ω1,0 is the resonance frequency of the first eigenmode
far from the surface and �ω1 is the change in the resonance
frequency at separation d . Note that the resonant frequency
is then ω1 = ω1,0 + �ω1. To date, all reported Casimir force
experiments using the FM technique took place in vacuum
environments. Our attempts toward an FM measurement in air
and the artifacts we found in that environment are discussed
in Ref. [109].

Frequency modulation measurements, despite their higher
overall sensitivity, are subject to several additional sources
of error in air. First, direct piezoactuation of the cantilever,
at frequencies above the first resonance of the piezo, hides
the cantilever resonance in a “forest of peaks” [110–113],
which increases the uncertainty in the determination of the
resonance frequency. Second, as the cantilever approaches
the surface and is damped by the hydrodynamic force, the
error in the resonance frequency grows in proportion to the
damping, which leads to an artifact proportional to d−1.
Third, any coupling between the voltage applied to the drive
piezo, used to maintain constant excitation amplitude, and the
lock-in amplifier causes an artifact proportional to d−2. In
the experiments discussed in Ref. [109], these three artifacts
prevent us from observing the Casimir force in air using the
frequency modulation method.

B. Deflection

Several experiments in air have measured the Casimir force
through the detection of the cantilever’s deflection [30,31].
At any one height, the deflection is D = F (d )/k, but low-
frequency 1/ f noise dominates the signal, which leads to
a trade-off: Acquiring force curves more quickly excludes
more low-frequency drift but also leads to more correlation
between the error at nearby separations. Moreover, increasing
the speed at which the data are collected causes the hydrody-
namic force, which is proportional to velocity, to be present
in the data at higher levels. In addition, repeated contact with
the surface during measurements can damage the tip. While
damage does not always occur and can be observed after the
measurement by AFM or SEM images of the probe itself, it
can be difficult to identify when during a set of measurements
the probe is damaged.

VIII. UNCERTAINTY FROM THE FORCE CALCULATION

The uncertainty in Casimir force data comes not only
from the measurement error but also from uncertainty about
the sample being used, which includes uncertainty regarding
optical properties [44–46], roughness [30,47–49], and patch

022508-14



SENSITIVITY AND ACCURACY OF CASIMIR FORCE … PHYSICAL REVIEW A 100, 022508 (2019)

10-4

10-2

100

102

1 10 100 1000 10000
Energy (eV)

15

10

0.90.80.70.6Palik
Ellipsometry

Drude model

 ,ytivitti
mrep e vit ale

R
|ε

2| ωp = 7.50 eV ωp = 8.84 eV
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model at lower energies. The inset shows the boundary between the
measured data and different fits for the Drude model.

potentials [38,50,51,53,114]. Because of these factors, the
calculated total force has uncertainty itself. Of the different
uncertainties, the uncertainty in the gold’s optical properties
is the limiting uncertainty over most of the range (Fig. 14).
At the shortest separations, the water layer and roughness
become larger sources of uncertainty (Fig. 15).

A. Sample dielectric function

Uncertainty in the dielectric function of the interacting
surfaces leads to uncertainty in the calculated Casimir force.
Because εair ≈ 1, the two gold surfaces contribute most of
the uncertainty to the Casimir force measurement. Because
tabulated optical data used on its own leads to 5–15% uncer-
tainty in the force [44,45], the dielectric response is measured
with ellipsometry of an evaporated 100-nm Au film on a glass
slide in the 0.73- to 6.3-eV range (Fig. 14). The ellipsometry
data are then compared to the tabulated Palik data [115].
Because of the agreement with the ellipsometry data at high
energies, the Palik data at energies above those collected with
ellipsometry are used. The tabulated dielectric data agree with
the measurement less well at low energies, so the response
there is extended with the Drude model. Pirozhenko et al. [44]
lists the Drude model parameters for several different samples
of gold.
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FIG. 15. The uncertainty in the force calculation comes from un-
certainty in the dielectric constant, water layer thickness, roughness,
and patch potentials.

By comparing measured ellipsometry data to the Drude
parameters, the data from ellipsometry are determined to be
most similar to a plasma frequency ωp = 8.84 eV and ωτ =
0.042 eV or ωp = 7.50 eV and ωτ = 0.061 eV (Fig. 14).

Because the resulting force difference from uncertainties
in modeling the Drude parameters is larger than the difference
between the force when calculated with either the plasma or
Drude model with the same plasma frequency (≈1%) [28],
the experiments presented here are not yet at the level of
accuracy to be able to comment on that discrepancy. The
force is computed using the combined optical data together
with each set of reference Drude parameters. The difference
between the two calculations is used as the uncertainty from
the optical properties [116].

B. Patch potentials

The force from patch potentials on gold tends to be about
1% of the Casimir force over the pertinent measurement
range, but it has become a major concern in Casimir force
experiments because it tends to follow a similar separation
dependence. Because the patch potential contribution to the
total force cannot be separated from the Casimir force during
an experiment, we include it as a source of uncertainty in the
calculation of the total expected force.

A few experiments used Kelvin probe force microscopy
images of the surface potential on a plate to calculate the
patch potential force between a sphere and a plate, using either
the assumption that the potentials on a sphere and a plate
are statistically identical [53,114] or by comparing samples
with different patches [117]. For the estimation of uncertainty
presented here, the calculated patch potential forces from
Ref. [53] are used. Note that the uncertainty comes from the
sample-to-sample variation in the patch potential force, rather
than its average value.

C. Calculating the Casimir force with roughness

Roughness also adds uncertainty to the calculated force.
Atomic force microscopy is used to measure the roughness on
both the sphere and the plate, as has been performed before
[30,49,91]. If the relative positions of sphere and plate are
known, then the predicted forces can be calculated directly
from the topography images [116,118–120]. However, there
is uncertainty in the exact orientation of the sphere because
the point of closest approach is known only to a few microns
and the exact position above the plate is unknown as well.

The spheres tend to be much rougher than the plates
because the fabrication processes for hollow spheres have
been developed only recently, and, while precision fabrication
techniques exist [121], our spheres were procured from a
commercial source (Trelleborg SI-100). Because the sphere
tends to be much rougher than the plate, the focus of the
roughness uncertainty comes from uncertainty in the orien-
tation of the sphere [49]. The technique used to calculate
electrostatic roughness corrections is used again [Fig. 8(d)].
To compute the roughness uncertainty, the Casimir force
gradient is calculated for 49 different points on the sphere
profile, and the uncertainty is computed as the range around
the most likely estimate within which about 68% of the
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calculated roughness corrections fall. Note that the distribu-
tion of corrections is extremely irregular (Fig. 8).

D. Calculating the Casimir force with a water layer

The water layer discussed above affects not only the sep-
aration determination but also the calculation of the Casimir
force itself. Because the presence of a water layer on the metal
surfaces tends to increase the Casimir force between metal
plates, due to a decrease in the absolute surface separation
[122], uncertainty in the thickness of the water layer leads to
uncertainty in the Casimir force theory.

To investigate the effect of the water layer thickness uncer-
tainty, we calculate the Casimir force with 0.75-, 1.50-, and
2.25-nm-thick water layers on each surface. The uncertainty
of the water layer is calculated as the average of the differ-
ences of the 1.50-nm calculation with the 0.75- and 2.25-nm
calculations at each separation (e.g., uncertainty = |F0.75 −
F1.50|/2 + |F2.25 − F1.50|/2). At small separations, the water
layer becomes the largest source of error in the calculation.

IX. CONCLUSIONS

A measurement of the Casimir force has been presented,
as well as several experiments designed to characterize the

uncertainty in Casimir force measurements. Some of the
sources of uncertainty are characteristic of ambient environ-
ments (water layers, drag, etc.), but many of the sources
of error, such as interference artifacts and irregular transfer
function from piezoelectric actuation, may appear in other en-
vironments as well. Comparing the measurements shown and
characterized here to the force that should be observable by a
thermal-noise limited measurement shows that the reduction
of uncertainty could allow the Casimir force to be observed at
separations up to 1.4 μm in this configuration. At separations
below 120 nm, calibration and separation uncertainty domi-
nate the error analysis, but under those considerations the data
are consistent with the Lifshitz theory.

Higher accuracy will assist the search for materials that can
be used to electronically modulate the Casimir force, which
could have many uses in future technologies, e.g. in next-
generation microelectromechanical systems [39,123,124].
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