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We show theoretically that a network of superconducting loops and magnetic particles can be used to
implement magnonic crystals with tunable magnonic band structures. In our approach, the loops mediate
interactions between the particles and allow magnetic excitations to tunnel over long distances. As a result,
different arrangements of loops and particles allow one to engineer the band structure for the magnonic
excitations. Furthermore, we show how magnons in such crystals can serve as a quantum bus for long-distance
magnetic coupling of spin qubits. The qubits are coupled to the magnets in the network by their local magnetic-
dipole interaction and provide an integrated way to measure the state of the magnonic quantum network.
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I. INTRODUCTION

Complex microscopic interactions between particles inside
materials often give rise to emergent collective excitations.
This collective behavior can be effectively described in terms
of weakly interacting quasiparticles that propagate freely in
the surrounding medium and follow dispersion relations that
are determined by the microscopic details [1]. This treatment
allows us to greatly simplify the description of otherwise
intractable problems [2]. In many cases, the dispersion re-
lation of quasiparticles can be tailored by a careful design
of the host medium. For example, photonic crystals [3] are
engineered materials where the propagation of photons is
artificially designed by periodically arranging materials with
different refractive indices [4]. Quantum emitters can then be
coupled to such structures for a variety of applications ranging
from quantum simulation [5–8] and quantum information
processing [9–11] to the study of open quantum systems
[12,13].

Magnons, collective excitations of magnetization in mag-
netically ordered materials, have recently attracted signifi-
cant attention in the context of quantum information sci-
ence. Strong quantum coherent coupling of magnons to a
microwave resonator [14–20], optical photons [21–23], and
superconducting qubits [24,25] have recently been reported.
Magnonic systems [26–28] with tailored magnonic propaga-
tion properties are also investigated as a magnon quantum bus
to couple quantum emitters over long distances [29–31]. In
present magnonic systems, spin-wave propagation between
the ferromagnetic elements is mediated by dipolar coupling.
Thus, sufficiently high coupling over long distances requires
ferromagnets with high saturation magnetization. However,
those materials suffer from high losses [32–34]. In contrast,
materials such as YIG have little loss but also have a small
saturation magnetization and thus a lower magnetic dipole
coupling.

In this article, we propose a network of superconducting
loops [35] that couples magnetic particles over distances

larger than what can be achieved with magnetic dipole-dipole
interactions in free space. This allows us to combine low loss
materials such as YIG with the desired long-range coupling.
In such a setup, the excitation of the collective magnetization
in a particle tunnels to other particles provided that there is
a superconducting loop between them. This provides a lot
of flexibility in the topology of the networks that can be
realized with this architecture thereby enabling a wide range
of applications. First we describe how to engineer artificial
magnonic crystals using a periodic arrangement of magnetic
particles and superconducting loops called hereafter a hybrid
magnetic lattice (HML), as shown in Fig. 1(a). Second, we
discuss how to interface spin qubits with HMLs via their
dipolar coupling to the magnetic particles. The coupling
enables long-range magnetic coupling of spin qubits and it
introduces quantum nonlinear elements into the magnonic
crystal. In this context, our proposal offers an all-magnetic
solid-state alternative to optical quantum emitters coupled
to photonic crystals [4]. In addition, the tunability of the
magnonic band-gap by an externally applied magnetic field
offers a handle that has no analog in photonic systems.
Through this feature, the qubit frequency can be tuned to lie
inside or outside the band gap, making the qubit dynamics pre-
dominantly conservative or dissipative, respectively [4]. Im-
portantly, the band gap can be tuned on-demand in real time,
thereby giving direct access to various, very different many-
body problems simply by varying the external magnetic bias
field.

The article is structured as follows. In Sec. II, we discuss
how magnonic crystals with a tailored band structure can
be designed from a hybrid lattice of superconducting loops
and magnetic particles. We first introduce the Hamiltonian
describing tunneling of magnons between different magnetic
particles via a loop-mediated interaction. Then, we present
some specific examples of HMLs. In Sec. III, we discuss in
detail the coupling between a qubit and a magnetic particle,
and we show how to couple two distant spin qubits via the
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(a)

(b)

FIG. 1. (a) Schematic illustration of a general hybrid magnetic
lattice (HML) of superconducting loops and magnetic particles.
(b) Scheme of the simplest cell of the HML: two magnetic particles
positioned at a distance d and height h from two opposite points of a
superconducting ring of radius l .

HML. Finally, we draw our conclusions in Sec. IV. Further
details are provided in the Appendixes.

II. ARTIFICIAL MAGNONIC CRYSTAL

In this section, we focus on how to engineer an HML
by placing magnetic particles near superconducting loops.
In Sec. II A, we present the Hamiltonian describing the in-
teraction between a single superconducting loop and several
magnetic particles. In Sec. II B, we generalize the Hamiltonian
to many loops and use this model to discuss specific HML
examples.

A. Hamiltonian of the elementary cell: One superconducting
loop and several magnets

We consider N magnetic particles with magnetic moments
μ j ( j = 1, . . . , N) located at positions r j near a supercon-
ducting circular loop with radius l . An external bias field
B0 ≡ −B0ez is applied parallel to the plane containing the
loop [see the illustration for N = 2 in Fig. 1(b)]. We model the
superconductive ring as a single-mode LC-resonator, whose
self-inductance L and capacitance C are of geometrical origin
(see Appendix A). We model the magnetic particle as a sphere
of radius R, whose center-of-mass position r j lies outside the
area encircled by the loop. The applied field B0 polarizes the
magnetic particles uniformly. Therefore, the magnetic field
produced by the particles can be approximated as the field
generated by a constant magnetic point dipole of magnitude
μ j = |μ j |. The coherent dynamics of the system is mod-
eled by the following quantum-mechanical Hamiltonian (see

Appendix B for a derivation):

Ĥ = Q̂2

2C
+ 1

2L

⎡
⎣�̂ −

∑
j

� j (μ̂ j )

⎤
⎦

2

−
∑

j

μ̂ j · B0

+ 1

2L

⎡
⎣ N∑

j=1

� j (μ̂ j )

⎤
⎦

2

+ Ud({μ̂ j}) +
∑

j

V̂ j
a (μ̂ j ). (1)

Here, Q̂ (�̂) is the charge (flux) operator of the loop [36], and

� j (μ̂ j ) ≡ �
j
bias1 + δ� j (�μ̂ j ) (2)

is the external flux induced in the coil by the magnetic dipole
moment μ̂ j . In Eq. (2), �

j
bias is the field induced in the loop

by the magnetic moment at its equilibrium value 〈μ̂ j〉0, while
δ� j (�μ̂ j ) is the flux induced in the loop by the magnetic
moment fluctuation �μ̂ j ≡ μ̂ j − 〈μ̂ j〉0. The first two terms in
Eq. (1) represent the energy of the loop in the presence of the
magnets. The third term refers to the Larmor precession of the
magnetic moments about the direction of B0. The fourth term,
[
∑

j � j (μ̂ j )]
2/2L, represents the total loop-mediated mag-

netic interaction between the magnets. The magnetic dipole
interaction between the magnets, obtained after tracing out all
the electromagnetic field modes, is modified (as compared to
free space) due to the presence of the loop, which is treated
as a single electromagnetic field mode (see Appendix A). The
correction to the free dipole-dipole interaction is precisely the
fourth term in Eq. (1). The seemingly additional dipole-dipole
interaction included in the second term of Eq. (1) is canceled
out perfectly when tracing out the loop’s electromagnetic field
mode (see Appendix B for a detailed derivation). This subtle
point was previously discussed in the literature in [37]. The
remaining contribution to the magnetic dipole-dipole inter-
action is mediated by the free-space electromagnetic modes
and is represented by Ud({μ̂ j}) in Eq. (1). The last term in
Eq. (1) is the magnetic anisotropy energy of each particle,
which represents the energy cost of magnetizing the particle
along a certain direction due to the interaction between its
magnetic moment and its internal crystal structure [38].

Let us now introduce the macrospin F̂ of a magnetic
particle, which is related to the magnetic moment by the
gyromagnetic relation μ̂ j = h̄γ0F̂ j [39]. In the following,
we assume the magnetic particles to be identical, i.e., they
have the same gyromagnetic ratio γ0, the same radius R,
and thus the same total spin F̂2 = F (F + 1)1, where we
define F ≡ μ/(h̄γ0) and μ j ≡ μ∀ j. The flux fluctuations
in Eq. (2) can be written as δ� j (�μ̂ j ) = �e j

∑
ν Iν

j �F̂ ν
j

(ν = x, y, z), where �F̂ j ≡ �μ̂ j/(h̄γ0), �e j ≡ h̄γ0μ0/4πd j .
Here, d j is the smallest distance, in the plane containing the
loop, between the dipole’s position and a point in the loop
[see Fig. 1(b)]. Iν

j is a dimensionless geometrical factor that
contains the dependence on the center-of-mass position of the
nanomagnet and on the orientation of its magnetic moment
(see Appendix C).

For a sufficiently large B0, such that the thermal
energy is negligible compared to the interaction −μ̂ j ·
B0, the fluctuations of the magnetic moment �μ̂ j can
be expressed within the Holstein-Primakoff approxima-
tion as �μ̂z

j = h̄γ0 f̂ †
j f̂ j , �μ̂x

j = h̄γ0

√
2F ( f̂ †

j + f̂ j )/2, and
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�μ̂
y
j = h̄γ0

√
2F ( f̂ †

j − f̂ j )/(2i). The operator f̂ j ( f̂ †
j ) creates

(annihilates) an excitation in the uniformly precessing (Kittel)
magnonic mode of the jth magnet, and satisfies [ f̂i, f̂ †

j ] =
δi j . Within the Holstein-Primakoff approximation (valid when
〈 f̂ †

j f̂ j〉 � 2F ) and the assumption that the LC-circuit is far
detuned from the magnonic modes (such that the degrees
of freedom of the circuit can be traced out), the coherent
dynamics of the magnets reduce to

ĤM = h̄
N∑

j=1

ω j f̂ †
j f̂ j + h̄

N∑
j �=i=1

(
Ji j + J d

i j

)
f̂ †
i f̂ j + V̂lin. (3)

Counter-rotating terms (of the form f̂ †
i f̂ †

j + f̂i f̂ j) have
been neglected within the rotating-wave approximation (see
Appendix D). Here, V̂lin is a linear term in the bosonic oper-
ators that can be reabsorbed by defining a new equilibrium
position 〈F̂〉0. Notably, for the particular case of the magnetic
particles lying in the plane containing the loops, one finds that
�

j
bias =0 ∀ j and V̂lin disappears (see Appendix D). It is thus

always possible to write the quadratic Hamiltonian describing
the magnon dynamics in a HML as

ĤM = h̄
N∑

j=1

ω j f̂ †
j f̂ j + h̄

N∑
j �=i=1

(
Ji j + J d

i j

)
f̂ †
i f̂ j . (4)

Here, ω j is the sum of the frequency associated with the
magnetic anisotropy and the Larmor precession frequency due
to the total magnetic field, which consists of the external field
B0, the field created by other magnets, and the field created
by the superconducting loop (see Appendix D). The second
term in Eq. (4) describes magnon tunneling between magnets.
The total tunneling rate has two contributions. The contribu-
tion from the free-space magnetic dipole-dipole interaction
is given by J d

i j ≡ −h̄γ 2
0 μ0F (3 sin2 θi j − 2)/(8πr3

i j ), where
ri j ≡ |ri − r j | and θi j is the angle between ri − r j and ez. The
contribution from the loop-mediated magnetic interaction is
given by (see Appendix D)

Ji j ≡
(

h̄γ0μ0

4π

)2 Ii j

2h̄did jL
F. (5)

Here, Ii j ≡ I∗
i I j , where I j ≡ Ix

j + iIy
j , depends on the mutual

position of the magnetic particles at the sites i, j and on the
orientation of their magnetic moments (see Appendix C). In
particular, Ji j can be made independent of i, j for symmetric
arrangements of magnetic particles around the loop such that
Ii j ≡ I and d j = d ∀ j (see Sec. II B). We stress that Ji j

scales as 1/(did j l ), where the factor 1/(did j ) arises from the
1/d j-dependence of � j (μ̂ j ) and the factor 1/l arises from the
linear dependence of L on the loop radius [see Eq. (A1)]. For
fixed di, d j � l , the loop-mediated interaction thus leads to
a magnon tunneling rate that scales as ∼1/ri j . The minimal
possible distance d (and thus the maximum achievable tun-
neling rate for a given loop geometry) is ultimately set by the
critical field tolerated by the loop’s wire in the Meissner state
(see Appendix E).

As an example, let us consider the simple config-
uration of one loop and two magnetic particles illus-
trated in Fig. 1(b) for the particular case of h = 0.
For this case, one has ω j = 2γ0ka/Ms + γ0B0 + J j j −

h̄γ 2
0 μ0F/[16π (l + d )3], r12 = 2(l + d ), θ12 = 0, and J12 =

[h̄γ0μ0/(4πd )]2IF/(2h̄L), where I12 = I21 ≡ I . The geomet-
rical inductance of a circular coil is approximated as L ≈
μ0l ln (8l/τ ) for τ � l , where τ is the wire thickness. For
l � d , one finds

J12

J d
12

≈ (l/d )22I2

π ln(8l/τ )
� 1. (6)

For R = 1 μm, d = 1.5 μm, l = 30 μm, h = 0, and τ =
50 nm, which leads to I ≈ 1.9 [40], the tunneling rate
due to the inductive magnetic interaction is then J12/2π ≈
5.85 MHz whereas the one due to the magnetic dipole interac-
tion is J d

12/2π ≈ 0.09 MHz. In general, for sufficiently large
loop size, magnetic dipole-dipole interactions are negligible
as compared to loop-mediated coupling [see Fig. 6(b) in
Appendix F]. In this case, the magnon tunneling can be
approximated by Ji j . We remark that larger tunneling rates
could be obtained by inscribing the magnets in the contour
defined by the loop (see Appendix F). However, this configu-
ration will not be considered further since it is not well suited
for building large networks.

B. Examples of hybrid magnetic lattices

Let us now focus on how to build networks by periodic ar-
rangements of superconducting loops and magnetic particles.
Equation (1) can be directly generalized to the case of many
superconducting loops, thus yielding the general Hamiltonian
of a HML. In the following, we neglect the magnetic dipole-
dipole coupling (J d

i j = 0) and the flux generated in a coil by
next-to-nearest-neighbor magnets as well as by neighboring
superconducting coils. Furthermore, within the assumption of
identical loops, magnetic particles, and relative positioning of
particles and loops, the magnon frequency (tunneling rate) is
site-independent, namely ω j ≡ ω0 ∀ j (Ji j ≡ J ∀i, j).

In the following, we consider three different examples of
HMLs:

(i) A one-dimensional HML, shown in Fig. 2(a), can be
described by

Ĥ1D
M = h̄ω0

∑
j

f̂ †
j f̂ j + h̄J

∑
j

( f̂ †
j f̂ j+1 + f̂ †

j+1 f̂ j ). (7)

This textbook Hamiltonian describes magnon tunneling to
nearest neighbors in a one-dimensional (1D) crystal with N
lattice sites separated by a distance a = 2(d + l ). Assum-
ing periodic boundary conditions, Ĥ1D

M can be diagonalized
in the reciprocal space leading to a magnon dispersion re-
lation ω(k) = ω0 + 2J cos(ka), where k = 2πn/(Na) (n ∈
[N/2, N/2 − 1]). In the continuum limit (N � 1), the magnon
propagation is thus restricted to the frequency band ω ∈ [ω0 −
2J , ω0 + 2J ], which can be tuned in real time by simply
modifying the external magnetic field B0, and hence ω0. Note
that this in situ tunability is a characteristic feature of the
proposed HMLs in this article.

(ii) A HML where N magnets couple to each other with
the same strength can be realized with the circular geometry
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(a)

(b) (c)

(d) (e)

FIG. 2. (a) Top view of a 1D HML. (b) Top view of a system of vertically polarized magnets around a common loop. (c) Unit cell of a 2D
HML comprising one loop and four magnetic particles. (d) Top view of a 2D HML implementing a 2D magnonic crystal by a checkerboard
arrangement of the single cell in (c). The black dashed arrows indicate coupling between nearest neighbors at the same rate J and the red
dashed area corresponds to the elementary cell of such a magnonic crystal with Bravais vectors v1 and v2. (e) Plot for the magnonic bands
(ω± − ω0)/J of the 2D HML in (d).

shown in Fig. 2(b). The Hamiltonian is given by

ĤND
M = h̄ω0

N∑
j=1

f̂ †
j f̂ j + h̄J

N∑
i �= j=1

f̂ †
i f̂ j, (8)

with an all-to-all interaction ∼J [cf. Eq. (5)]. Here, the geo-
metrical factor Ii j = I is different from example (i) due to the
fact that the magnets are now polarized perpendicularly to the
superconducting coils. In principle, this Hamiltonian could
be used to generate magnonic superradiance by enhancing
dissipation in the coil and allowing the system to evolve
beyond the quadratic approximation [41].

(iii) A two-dimensional HML can be realized by a repe-
tition of the single cell in Fig. 2(c) leading to the structure
displayed in Fig. 2(d). Due to the checkerboard arrangements
of superconducting loops, we distinguish two magnonic sub-
lattices: magnons in the D (A) sublattice preferably tunnel
along the direction of the main diagonal (antidiagonal) in the
yz-plane. This HML can thus be described as a 2D Bravais lat-
tice with a basis where each elementary cell contains the two
types of sites D and A [see Fig. 2(d)]. The operators f̂ A

j , f̂ A†
j

( f̂ D
j , f̂ D†

j ), respectively, create and annihilate a magnon in the
sublattice A (D) within the cell at position j = jyv1 + jzv2 ≡
( jy, jz ), ( jy, jz ∈ Z), where v1 = (2a, 0) and v2 = (a, a) are
Bravais vectors. The Hamiltonian of this 2D HML is given by
(see Appendix G)

Ĥ2D
M = h̄ω0

∑
j

(
f̂ D†
j f̂ D

j + f̂ A†
j f̂ A

j

)

+ h̄J

⎡
⎣∑

j,β

f̂ D†
j f̂ A

j+β +
∑
j,α

f̂ A†
j f̂ A

j+α

+
∑
j,δ

f̂ D†
j f̂ D

j+δ + H.c.

⎤
⎦. (9)

Here, β ∈ {(±1/2,∓1), (±1/2, 0)}, α ∈ {(∓1,±1)},
and δ ∈ {(±1, 0)}, with α (δ) and β connecting the

nearest neighbors of a point along the main antidiagonal
(diagonal) and along the z, y direction in the basis
specified by v1 and v2 [Fig. 2(d)]. The magnon
dispersion relation of Eq. (9) leads to two bands given
by ω±(k) = ω0 + 2J [4 cos(kxa) cos(kya) ± √

�], where
� ≡ 4 + 4 cos(kxa) cos(kya) − cos(2kya) − cos(kxa) + 2 cos
(2kxa) cos(2kya), with a = √

2(l + d ). As shown in
Fig. 2(e), the upper band ω+(k) features saddle points at
k = (±π/2a,±π/2a) where the density of states diverges
[42]. As recently shown in [43], these types of exceptional
points may give rise to very exotic features in the quantum
dynamics of emitters coupled to a two-dimensional crystal.

III. SPIN QUBITS INTERFACED WITH A HYBRID
MAGNETIC LATTICE

Our three examples show that HMLs can be engineered
to realize artificial long-range magnonic crystals. Let us now
address how to magnetically interface spin qubits with the
magnons in a given HML. In Sec. III A, we describe the local
coupling between a spin qubit and a magnetic particle in a
single site of a HML. In Sec. III B, we discuss the sources
of dissipation of the system. In Sec. III C, we analyze the
magnon-mediated qubit-qubit interaction.

A. Magnon-qubit coupling at a single site

A spin qubit is coupled to a magnetic particle in a HML
by local magnetic dipole-dipole interactions. Specifically, we
consider the interaction between the jth magnet and an NV-
center spin qubit, which is obtained from the {|0〉, |−1〉}
subspace of the NV ground-state triplet [44], placed at a
position rq with respect to the center of the magnet. The
Hamiltonian of this system is given by

Ĥ ( j)
MQ = h̄

2
ωqσ̂

z
j − h̄

2
γqσ̂ j · B(rq, μ̂ j ), (10)

where ωq ≡ �NV − γqB0, γq is the qubit gyromagnetic ratio
(generally different from γ0), �NV is the NV-center zero-field
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splitting, and B(rq, μ̂ j ) is the magnetic field generated by
the magnet at the position of the qubit. Within the Holstein-
Primakoff approximation, the rotating-wave approximation,
and assuming the qubit to be positioned along the x-axis
of a reference frame centered in the magnet, rq = rqex, and
oriented as in Fig. 1(b) (see Appendix H for the generalization
to any other position), Eq. (10) is approximated by the Jaynes-
Cumming Hamiltonian (see Appendix H)

Ĥ ( j)
MQ = 1

2 h̄ωσ j σ̂
z
j − h̄g( f̂ †

j σ̂
−
j + H.c.). (11)

Here, g ≡ 3h̄γ0γqμ0

√
2F/(8πr3

q ) and the qubit frequency
ωσ j = ωq + h̄γ0γqμ0F/(4πr3

q ) already contains the shift in-
troduced by the dipole interaction. The dynamics of a general
2D HML with magnetically coupled spin qubits at each lattice
site is described by the Jaynes-Cummings-Hubbard Hamilto-
nian ĤT = ĤM + ∑

j Ĥ (j)
MQ, namely in k-space [see Eq. (H14)

for the expression in real space]

ĤT = h̄
∑
ν,k

ων (k) f̂ †
νk f̂νk + h̄

∑
j

ωσ

2
σ̂ z

j

− h̄
∑
ν,j,k

(gνjk f̂ †
νkσ̂

−
j + H.c.). (12)

Here, we introduced the k-space magnonic operator f̂νk =
(1/N )

∑
j f̂νj exp(−iaj · k), which creates a magnon of mo-

mentum k in the ν-magnonic band propagating in an N × N
2D lattice characterized by the dispersion relation ων (k),
and the coupling rate gνjk ≡ (gν/N ) exp(−iaj · k), where gν

is the local coupling to a magnon in the ν-band, a is the
HML lattice constant, and j labels the sites in a 2D HML.
In Eq. (12), we neglected the small interaction between the
qubit and the loop as well as counter-rotating terms of the
form σ̂+

j f̂ †
νk + σ̂−

j f̂νk within the rotating-wave approximation,
valid provided g, |ων (k) − ωσ | � ων (k).

B. Sources of dissipation

The Hamiltonian Eq. (12) can lead to strongly correlated,
coherent magnon physics [45,46], provided that the relevant
decoherence rates are sufficiently small compared to the
coherent coupling rates of the system. While the coherent
magnon tunneling J can reach several MHz (as discussed
above), the coherent magnon-qubit coupling can be quanti-
fied as g/(2π ) ≈ 5.2 × 102(R [nm]1/2/rq [nm])3 MHz, as a
function of both the magnet size R and magnet-qubit distance
rq > R; see the caption of Fig. 3 for the remaining parameters.
The main sources of decoherence arise from qubit dephasing
and magnon decay, as any potential damping in the supercon-
ducting loop is suppressed by its large detuning. For a NV-
center spin qubit, characteristic dephasing times T ∗

2 ≈ 200 μs
have been reported [47], which can further be increased
by dynamical decoupling schemes up to T2 ≈ 0.5 s [48].
In the low-temperature regime ∼1 K the magnon linewidth
[49] for a millimeter-size pure single-crystal YIG sphere has
been measured as κ/2π ≈ 0.5 MHz [15], at a relatively high
magnon frequency of ∼10 GHz; this number could potentially
be further reduced by working at lower frequencies according
to the linear frequency dependence of the Gilbert damping
rate in YIG [50]. Accordingly, the regime J > π/T ∗

2 , κ is
within reach for particles of size R ≈ 1 μm (see Sec. II A)

(a) (b)

(c) (d)

FIG. 3. (a) Elementary HML configuration (single cell) with
two identical spin qubits locally coupled to each magnetic particle.
(b) Level structure of the system, where ω0 ± J is the magnonic
normal mode of the elementary cell. (c) Relevant frequencies and
coupling of the system in (a) as a function of the applied field
B0. (d) Cooperativity C0 as a function of the decoherence rates κ

and π/T2 for a fixed magnet-qubit coupling g. Other parameters:
R = 350 nm, rq − R = 20 nm, d − R = 100 nm, l = 5 μm, τ =
50 nm, h = 0, γ0 = 1.761 99 × 1011 rad Hz T−1, γq = 1.761 49 ×
1011 rad Hz T−1, Ms = 196 × 103 T m−3 (YIG saturation magneti-
zation), and ka = 2480 J m3 (YIG anisotropy energy density). The
parameters for YIG are taken from [51].

with current experimental capabilities, while the regime g > κ

is found to be challenging with the current reported values of
the magnon linewidth. However, the detrimental effects due to
magnon decay can be reduced efficiently by operating in the
dispersive regime, as detailed next.

C. Effective qubit-qubit interaction through a single
cell of a HML

Let us consider two identical spin qubits coupled to the
elementary configuration described in Fig. 3(a), and thus
separated by a distance 2(d + l ). The system is described
by the Hamiltonian ĤT = ∑2

j=1[h̄ω0 f̂ †
j f̂ j + J

∑
i �= j f̂ †

i f̂ j +
Ĥ j

MQ]. In the dispersive regime, when the qubits are detuned
from the magnonic eigenmodes of the system, it is possible to
adiabatically eliminate the magnonic degrees of freedom. The
qubit dynamics are thus described by the following effective
spin-spin interaction Hamiltonian (see Appendix I):

ĤQQ = h̄

2

[
ωσ − g2

2�
− g2

� − 2J

](
σ̂ z

1 + σ̂ z
2

)

− h̄geff(σ̂
+
1 σ̂−

2 + σ̂−
1 σ̂+

2 ), (13)

where � ≡ ω0 + J − ωσ , and the effective spin-spin cou-
pling strength reads geff = g2[1/� − 1/(� − 2J )]. The level
structure and typical values of frequencies and couplings are
shown in Figs. 3(b) and 3(c). ĤQQ can be used to swap
excitations between the two qubits at a rate π/geff when-
ever geff � γ , κeff, where γ ≡ π/T ∗

2 and κeff = κg2[1/�2 +
1/(� − 2J )2] is the qubit damping induced by the lossy
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magnonic bus (see Appendix I) [52]. In this strong-coupling
regime, the error ε on the state transfer fidelity for optimized
values of the detuning � and magnon-tunneling J is given
by ε ≈ √

ακαγ /(2C0) with cooperativity C0 ≡ g2/(γ κ ) where
we numerically estimate αγ � 0.779 and ακ � 0.006 as de-
tailed in Appendix I. In Fig. 3(d), values of C0 are shown as
a function of magnon damping κ and qubit dephasing times
T2 and fixed values for the remaining parameters. As qubit
dephasing times T2 ≈ 0.5 s are achievable with dynamical
decoupling schemes [48], the main limitation is given by the
magnon damping rate [15] for the current experimental state
of the art.

IV. CONCLUSIONS

In conclusion, we have shown that hybrid magnetic lat-
tices allow us to implement artificial magnonic crystals with
engineered band structures. Our approach extends the range
of magnetic interactions beyond the limit set by free-space
magnetic-dipole interactions and provides an attractive al-
ternative to existing methods, where magnonic crystals are
built from arrays of dipolarly coupled nanostripes of mag-
netic materials [32–34]. Furthermore, it presents an alternative
platform to study magnetic crystallization and the dynam-
ics of low-density ensembles of nanomagnets embedded in
a nonmagnetic matrix. Thus, it is relevant for the field of
artificial spin systems [53,54]. For those systems it would
be interesting to replace the lattice of loops with a super-
conducting wire network [55,56], since this would allow us
to study how the interplay between connectivity and super-
conductivity affects the dynamics of magnetic particles in
the network. In addition, spin qubits coupled to the magnets
in the network allow us to perform local magnetometry and
thereby probe the state of the network. The spin network
configuration also allows us to use magnons as a quantum
bus to magnetically couple spin qubits over long distances
[31], analogously to what is done with quantum emitters
coupled to photonic crystals [4], albeit in a different parameter
regime.

The potential of our proposal depends very much on the
linewidth of magnons in a magnetic sphere. While the micro-
scopic origin of such damping is still not completely under-
stood, interesting strategies to possibly reduce the damping
can be envisioned. Smaller magnetic particles might show
a lower damping at T � 1 K due to the discretization of
phononic modes in the sample. A levitated version of our
proposal [57,58] might allow us to study the impact of the
conservation of total angular momentum on the (dissipative)
dynamics of the magnetization. Finally, we remark that the
present discussion could be generalized beyond the macrospin
approximation to include other magnonic modes inside the
magnetic particles, which might result in an improvement on
the magnon linewidth [59].
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APPENDIX A: DESCRIPTION
OF A SUPERCONDUCTING LOOP

In this Appendix, we describe a superconducting loop
as a multimode microwave resonator, and we derive under
which conditions it can be approximated as a single-mode
LC-oscillator.

Superconducting rings on top of a dielectric substrate have
been shown to behave as microwave multimode resonators
[60,61] characterized by a large quality factor Q ≈ 106 at GHz
frequencies [62–64]. The spectrum of the resonator is doubly
degenerate, each frequency corresponding to both a clockwise
and a counterclockwise traveling wave. Within a transmis-
sion line model, the mode frequencies can be approximated
by ωn/2π ≡ n/(2π l

√
LlCl ) for n ∈ N, where Ll (Cl ) is the

inductance (capacitance) per unit length of the loop and l is
the loop radius.

Adjusting the external magnetic field B0 so as to tune
the Larmor precession frequency of the magnetic particle’s
macrospin close to the fundamental resonance of the ring
resonator, it is possible to neglect the coupling between F̂
and the higher resonant modes. Moreover, the degeneracy of
the fundamental mode can be broken by introducing small
asymmetries or imperfections, as was done, for instance, in
[62,63]. The ring thus behaves as a single-mode LC-resonator
of frequency ωc ≡ 1/

√
LC, where L (C) is the total inductance

(capacitance) of the ring. C is the capacitance between the
loop and the ground plate at the opposite end of the dielectric
substrate, and it can be arbitrarily reduced by careful design.
L amounts to the geometrical self-inductance of the loop,
which depends on the particular shape of the loop and on the
thickness τ of the wires as detailed in [65]. For the case of
a circular loop of radius l and wire of a circular section, the
self-inductance reads [65]

L = μ0l

[
ln

(
8l

τ

)
− 7

4
+ O

(
τ 2

l2

)]
. (A1)

Here we are assuming for simplicity the electric permittivity
(magnetic permeability) of the substrate supporting the loop,
Fig. 5(a), to be εr ≈ 1 (μr ≈ 1).

APPENDIX B: DERIVATION OF THE
SYSTEM HAMILTONIAN

In this Appendix, we derive the quantum-mechanical
Hamiltonian Eq. (1) describing the dynamics of the coupled
system composed by the circuit and the magnetic dipole
moments.

Within the single-mode approximation, a superconductive
LC-ring resonator can be modeled as an LC-circuit (see
Appendix A). The equations of motion for the LC-circuit
can be derived from Kirchhoff’s current and voltage laws,
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together with the constitutive relations, which relate current
and voltage at each element of the circuit. Defining VC ≡ ∂t�C

(VL ≡ ∂t�L) the flux at the capacitor (inductor) of the circuit,
we write the constitutive relations for the capacitor as �̈C =
IC/C and for the inductor as

�L = LIL +
N∑

j=1

� j (μ j ). (B1)

Here, C (L) are the circuit capacitance (inductance), and
� j (μ j ) is the flux induced in the ring by the jth magnetic
dipole. The equation of motion for the circuit can be derived
from Kirchhoff’s law as

C�̈ + �

L
=

N∑
j=1

� j (μ j )

L
, (B2)

where � ≡ �L = −�C [66].
The coherent dynamics of the magnetic moment μ j ≡

μ(cos ϕ j sin θ j, sin ϕ j sin θ j, cos θ j ), for θ j ∈ [0, π ] and ϕ j ∈
[0, 2π ], is described by the Landau-Lifshitz equation ∂tμ j =
−γ0μ j × B(r j ), where B(r j ) is the total magnetic field acting
on the jth magnetic moment. In terms of the polar ϕ j and
azimuthal θ j angles, the Landau-Lifshitz equations read [67]

ϕ̇ j = − γ0

μ sin θ j
∂ϕ jU, θ̇ j = γ0

μ sin θ j
∂θ jU, (B3)

where U ≡ ∑N
j=1 V j

a (μ j ) + U0 + Ud + Uind is the magnetic

interaction energy of the dipoles. V j
a (μ j ) represents the

magnetic anisotropy energy of the jth magnetic particle.
U0 = −∑N

j=1 μ j · B0 represents the interaction energy of the
dipoles with the external bias field. Ud represents the free-
space dipole-dipole interaction energy between the magnetic
moments

Ud({μ j}) = −1

2

N∑
j=1

N∑
i �= j=1

μ j · Bdip
i (r j ). (B4)

The dipolar field created by the dipole moment μi at position
r reads

Bdip
i (r) = μ0

4π

[
3�ri(μi · �ri )

|�ri|5 − μi

|�ri|3
]
, (B5)

with �ri ≡ r − ri. Uind = IL
∑

j � j (μ j ), where IL is given
by Eq. (B1), represents the interaction between the magnetic
dipoles and the field produced by the current flowing in the
ring [68].

The equations of motion Eqs. (B2) and (B3) can be derived
from the Lagrangian

L = C

2
�̇2+ μ

γ0

N∑
j=1

ϕ̇ j cos θ j − 1

2L

⎡
⎣�−

N∑
j=1

� j (ϕ j, θ j )

⎤
⎦

2

− 1

2L

⎡
⎣ N∑

j=1

� j (ϕ j, θ j )

⎤
⎦

2

−
N∑

j=1

μB0 cos θ j − Udip

−
∑

j

V j
a (ϕ j, θ j ). (B6)

From Eq. (B6), the classical Hamiltonian of the system is
obtained introducing the generalized momenta Q ≡ C�̇ and

p j ≡ μ cos θ j/γ0 conjugated to � and ϕ j , respectively. Fol-
lowing the usual canonical quantization procedure, one can
then derive the quantum-mechanical Hamiltonian of the sys-
tem given in Eq. (1). The charge Q̂ and flux �̂ operators of the
circuit appearing in the system Hamiltonian satisfy canonical
commutation relations [�̂, Q̂] = ih̄. The components of the
magnetic moment μ̂ j ≡ μ(sin θ̂ j cos ϕ̂ j, sin θ̂ j sin ϕ̂ j, cos θ̂ j )T

commute as [μ̂ν
j , μ̂

η
i ] = iμδi jενηξ μ̂

ξ
j for ν, η, ξ = x, y, z, ac-

cording to the canonical quantization of the classical Poisson
bracket,

{ f , g} = −
N∑

j=1

1

μ sin θ j

(
∂ f

∂ϕ j

∂g

∂θ j
− ∂ f

∂θ j

∂g

∂ϕ j

)
, (B7)

for any f , g functions of θ j, ϕ j .

APPENDIX C: MAGNETIC FLUX THROUGH A COIL

In this Appendix, we derive the expression for the flux
induced by a magnetic dipole moment in a neighboring su-
perconducting loop.

We consider the inductive coupling between a magnet with
magnetic moment μ̂ = h̄γ0F̂ and a coil of arbitrary shape. We
assume the magnet to be placed at a distance h above the coil
and at a horizontal distance d from the coil’s closest wire [see
Fig. 1(b) in the main text]. The flux induced in the coil by the
magnet reads

�(F̂) =
∮

dl · A(r, F̂), (C1)

where A(r, F̂) is the magnetic vector potential generated by
the magnet, and the integral is taken on the contour de-
fined by the coil. Equation (C1) can be written as �(F̂) =
h̄γ0μ0

∑
ν IνF̂ν/(4πd ) for ν = x, y, z, where

Iν ≡ d
∮

(�r × dl)ν
|�r|3 (C2)

is a dimensionless factor that depends only on the shape of
the coil and on the mutual position of the magnet and the coil.
Here �r is the distance between the magnet and a point in
the coil. For instance, for a circular coil of radius l centered at
(0, 0, l + d ) and for a nanomagnet at a position (h, 0, 0), the
factors Iν in Eq. (C2) read

Iz =
∫ l/d

−l/d
dλ F

(
λ,

l

d
,

h

d

)
,

Ix =
∫ l/d

−l/d
dλ G

(
λ,

l

d
,

h

d

)
, (C3)

and Iy = 0, where

F (λ, x, y) ≡ yλ/
√

x2 − λ2

[y2 + x2 + (x + 1) + 2λ(x + 1)]3/2
,

G(λ, x, y) ≡
√

x2 − λ2 + λ√
x2−λ2

(x + 1 + λ)

[y2 + x2 + (x + 1) + 2λ(x + 1)]3/2
. (C4)

As shown in Fig. 4, the integrals in Eq. (C3) have an
optimal value around unity as a function of h/d in the limit
of a large loop radius, l/d � 1.
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1
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0
0 8 10

h/d
642

I2
z

I2
x

FIG. 4. Plot of the parameters Iz and Ix as a function of h/d for
l/d = 10 (dotted line), 102 (dashed line), and 103 (solid line). For Ix

the dashed and solid lines are almost coincident.

APPENDIX D: MAGNON DYNAMICS IN A HML:
HAMILTONIAN DERIVATION

In this Appendix, starting from Eq. (1), we derive Eq. (4),
which describes the propagation of magnons in a HML.
We consider the simple case of two magnets as depicted in
Fig. 1(b) (generalization to the case of several magnets is
straightforward). By substituting the definition Eq. (2) into
Eq. (1), one obtains

Ĥ = h̄ωcâ†â − �c

L
(â† + â)δ�̂ + h̄ωL

2∑
j=1

F̂ z
j + (δ�̂)2

L

+ �bias

L
δ�̂ + Ûd({μ̂ j}) +

2∑
j=1

V̂ j
a (μ̂ j ), (D1)

where ωc ≡ 1/
√

LC, �bias ≡ ∑
j �

j
bias, and δ�̂ ≡∑

j δ� j (�μ̂ j ). Here, we expressed the circuit operators
in terms of creation and annihilation operators
(�̂ − �bias) ≡ �c(â† + â) and Q̂ ≡ i(â† − â)/(2�c), where
�c ≡ √

h̄/(2Cωc).
We consider the applied field B0 to be sufficiently large

so as to initially polarize the macrospin at the two nodes
along −ez, such that 〈F̂ j〉0 = −Fez. The fluctuations of F̂ j

around the equilibrium state can be described by a bosonic
mode f̂ j, f̂ †

j (magnon) according to the Holstein-Primakoff

approximation F̂ z
j = −F + f̂ †

j f̂ j and F̂+
j � √

2F f̂ †
j . In

the limit of small fluctuations 〈 f̂ †
j f̂ j〉 � 2F , Ĥ can be

approximated by a quadratic Hamiltonian in the bosonic
operators â†, â, f̂ †

j , and f̂ j as

Ĥ � h̄ωcâ†â − h̄(â† + â)
2∑

j=1

(χ j f̂ j + H.c.)

+ h̄
2∑

j=1

⎧⎨
⎩ω j f̂ †

j f̂ j + 2
∑

i

(�i j f̂ †
i f̂ †

j + H.c.)

+
2∑

i, j=1

[
(2 − δi j )Ji j + (1 − δi j )J d

i j

]
f̂ †
i f̂ j

⎫⎬
⎭

+ h̄
2∑

j=1

(η j f̂ j + η∗
j f̂ †

j ). (D2)

We have defined

ω j ≡ γ0B0 + 2
γ0ka

Ms
+ J j j

+
2∑

i=1

h̄γ 2
0 μ0

4πr3
i j

(3 cos2θi j − 1)F, (D3)

�i j ≡ −3(1 − δi j )
h̄γ 2

0 μ0

16πr3
i j

F sin2 θi je
i2ϕi j + �2

eF

2h̄L
IjIi, (D4)

Ji j ≡
(

h̄γ0μ0

4π

)2 Ii jF

2h̄did jL
, (D5)

J d
i j ≡ − h̄γ 2

0 μ0

8πr3
i j

(3 sin2 θi j − 2)F, (D6)

χ j ≡ �e�c

2h̄L
Ij

√
2F , (D7)

η j ≡
∑

i

3h̄μ0γ
2
0

8πr3
i j

F
√

2Fei2ϕi j cos θi j sin θi j

+�e�bias

2h̄L

√
2FIj . (D8)

Here, �e is independent of j as we assumed the particles to
be at the same distance d from the loop’s wire (see Sec. II A),
ka is the magnetic anisotropy energy density, and Ms is
the saturation magnetization of the magnetic particle. We
additionally assumed the easy magnetization axis of the
magnetic anisotropy potential of the material to be aligned
along the direction of the applied magnetic field. In this case,
the anisotropy energy contributes only as a shift to the magnon
oscillation frequency within the quadratic approximation.

The linear term in Eq. (D2) shifts the equilibrium orien-
tation of the magnetic moments and the equilibrium value
of the flux in the loop. It can be formally eliminated from
Eq. (D2) displacing the bosonic operators â†, â, f̂ †

j , and

f̂ j to represent the fluctuations around the new equilibrium
values. The linear term in Eq. (D2) is identically zero when
the magnetic particles are placed in the plane of the LC-
resonator (h = 0), as in Fig. 5(a), and the distance between the
magnets is such that the free-space dipole-dipole interaction
is negligible [69]. We thus neglect hereafter the last term in
Eq. (D2) assuming the shift in the relevant couplings and
frequencies to be negligible (h ∼ 0). We remark that all the
quantitative predictions made in the main text are calculated
for h = 0 and negligible dipole-dipole interaction.

Due to the large detuning between ωc and the frequencies
defined in Eqs. (D3)–(D7), we adiabatically eliminate the
LC-resonator degrees of freedom, which are assumed to be
in the vacuum state. Within the rotating-wave approximation
and taking into account the circuit-induced shifts of the fre-
quencies and couplings, one obtains the effective Hamiltonian
Eq. (4) that describes the magnon dynamics.

APPENDIX E: MAGNETIC FIELD INTENSITY
AT THE WIRES OF THE LOOP

Here, we calculate the field produced by the magnetic
particle at the wire of the loop. From the requirement that this
field should not exceed the critical field to keep the loop in the
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(a)

(b)

FIG. 5. (a) Lateral view (not to scale) of a magnetic particle
positioned on the substrate (hatched gray region) sustaining the
superconducting ring (h = 0) at a distance d − τ/2 from the closest
point of the superconducting-ring wire (dark gray region) of thick-
ness τ . (b) Critical distance dc − τ/2 in units of R at which the field
produced by the magnetic moment at the closest wire point equals
Bc. Other physical parameters are taken from the caption of Fig. 3.

Meissner state, we derive the minimal distance from the wire
at which a magnetic particle can be placed.

The magnetic field produced by the particle at any point in
the wire must be smaller than the critical field (first critical
field) Bc of the type I (type II) superconductor that makes up
the loop. Consider the situation illustrated in Fig. 5(a). The
distance at which the center of the magnetic particle should
be placed such that the ez-component of the magnetic field at
the closest point of the loop equals Bc reads

dc = τ

2
+

(
2μ0Ms

3Bc

)1/3

R, (E1)

where Ms is the saturation magnetization of the magnetic
particle, R is the particle radius, and τ is the wire thickness.
In Fig. 5(b), (dc − τ/2)/R is plotted as a function of the field
Bc at the wire position. For the values used in Fig. 3, the field
produced by the magnetic particle at the position of the loop
wire is ≈110 mT, which is below the first critical field of many
type II superconductors such as Nb [70].

APPENDIX F: BONE-SHAPED CONFIGURATION

In the following, we analyze a different coil geometry in
which the magnets are inscribed inside the perimeter defined
by the coil’s wire. We show that while such a configuration is
not suitable to build hybrid magnetic lattices, it can achieve
a larger magnon tunneling rate than the configuration in
Fig. 1(b). Let us consider the situation illustrated in Fig. 6(a),
where two magnets are coupled through a bone-shaped loop.
Here, d is the radius of the circular end-rings, w is the
separation of the middle parallel wires, and 2l is their length.

(a)

(b)

FIG. 6. (a) Bone-shaped coil for enhancing the magnon tunnel-
ing rate between distant magnets. In such a configuration the total
distance between the magnets is a = 2d + 2l . (b) Magnon tunneling
rate J12 (solid blue line), J d

12 (dashed red line), and J bone
12 (dotted

green line) as a function of the magnets separation a. We assumed
R = 1 μm, d = 500 nm, and τ = 50 nm. The tunneling rate J12

(J d
12) corresponds to the loop-mediated (free-space magnetic dipole)

tunneling rate in the configuration shown in Fig. 1(b).

For w � d2/l , the middle region connecting the two circular
ends of the loop has a negligible contribution to the self-
inductance L of the loop. Moreover for R < d , the magnetic
flux produced by the magnetic particle is obtained as the flux
generated by a magnetic moment μ placed at the origin of a
circular coil and of intensity μ = Ms4πR3/3. For l � d , the
flux produced by a magnet in the loop at the opposite end of
the coil can be neglected. The fluctuating magnetic moment
μ̂ j produces a fluctuating flux �̂ j = h̄γ0μ0�F̂x/(4l ), where
�F̂y and �F̂z contribute only at higher order. In this configu-
ration, the direct inductive magnetic coupling contribution to
the magnon-tunneling rate thus reads

J bone
12 ≡ γ 2

0 μ2
0 h̄F

8d2L
. (F1)

Here, L represents the inductance of a circular coil of radius d
[cf. Eq. (A1)].

In Fig. 6(b), J bone
12 is plotted as a function of the magnet

separation a = 2(l + d ), keeping d fixed. Realistically, at
larger values of l the contribution of the middle region to
the total inductance will affect the scaling of J bone

12 . However,
for a sufficiently small separation w between the two parallel
wires, the tunneling rate is expected to vary only slightly with
an increase of l . The bone-shaped configuration [Fig. 6(a)]
thus allows us to enhance the magnon tunneling rate for a
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given separation a as compared to the simpler configuration
in Fig. 1(b).

APPENDIX G: HAMILTONIAN FOR THE 2D HML

In this Appendix, we derive the Hamiltonian Eq. (9), which
describes the two-dimensional HML illustrated in Fig. 2(d),
whose band structure is shown in Fig. 2(e).

Let us consider the elementary cell of such a configuration
shown in Fig. 2(c). For large loop size l , J d

i j � Ji j [see
Fig. 6(b)], and thus the magnon tunneling rate is given by
Ji j = J eiφi j , with

J = �2
eF

2h̄L

(
I2
x + I2

y

)
, (G1)

where we defined Ix ≡ Ix
1 = Ix

2 = Ix
3 = Ix

4 and Iy ≡ Iy
1 = Iy

3 =
−Iy

2 = −Iy
4 , and φi j is a function of Ix, Iy. The magnon

dynamics in the elementary cell in Fig. 2(c) is thus described
by

Ĥ cell
M = h̄ω0

4∑
j=1

f̂ †
j f̂ j + h̄J

4∑
i �= j=1

f̂ †
i f̂ j, (G2)

where we redefined some of the magnonic operators to absorb
the phase factor appearing in the tunneling rate Ji j .

The extended 2D HML shown in Fig. 2(d) is built by rep-
etition of this elementary cell. As discussed in the main text,
the magnon dynamics of such a 2D HML can be described
by a two-interacting-sublattices model, labeled by A and D
according to the Hamiltonian

Ĥ2D
M = h̄ω0

∑
j

(
f̂ D†
j f̂ D

j + f̂ A†
j f̂ A

j

)

+ h̄J

⎡
⎣∑

j,β

f̂ D†
j f̂ A

j+β +
∑
j,α

f̂ A†
j f̂ A

j+α

+
∑
j,δ

f̂ D†
j f̂ D

j+δ + H.c.

⎤
⎦.

(G3)

Here, the operators f̂ A
j , f̂ A†

j ( f̂ D
j , f̂ D†

j ) create and annihilate
a magnon in the sublattice A (D) within the cell at position
j = ( jy, jz ), and the vectors α and β (δ and β), for β ∈
{(±1/2,∓1), (±1/2, 0)}, α ∈ {(∓1,±1)}, and δ ∈ {(±1, 0)},
connect the nearest neighbors of a point in the sublattice A (D)
in the basis of the Bravais vectors v1 and v2.

In terms of the operators

f̂ D
k = 1

N

∑
j

e+ik·j f̂ D
j , (G4)

f̂ D†
k = 1

N

∑
j

e−ik·j f̂ D†
j , (G5)

f̂ A
k = 1

N

∑
j

e+ik·j f̂ A
j , (G6)

f̂ A†
k = 1

N

∑
j

e−ik·j f̂ A†
j , (G7)

FIG. 7. Plot of the couplings ξ , g, and � vs the position angle
θ . The remaining parameter have the following values: R = 350 nm,
r0 = R + 20 nm, B0 = 70 mT, and γ0, γq as in the caption of Fig. 3.
Inset: general configuration of the nanomagnet-qubit system.

which create or annihilate a magnon of momentum k =
(ky, kz ) in the sublattice D or A, the Hamiltonian in Eq. (G3)
can be written as Ĥ2D

M = 2J �̂†M�̂, where �̂ ≡ ( f̂ D
k , f̂ A

k )T

and

M ≡
(

2 cos[(ky + kz )a] cos(kya) + cos(kza)
cos(kxa) + cos(kya) 2 cos[(kx − ky)a]

)
. (G8)

The eigenvalues of Ĥ2D
M read

ω±(k) = ω0 + 2J [4 cos(kxa) cos(kya) ±
√

�], (G9)

where �≡ 4 + 4 cos(kxa) cos(kya) − cos(2kya) − cos(kxa) +
2 cos(2kxa) cos(2kya), with a = √

2(l + d ) being the lattice
constant. Equation (G9) corresponds to the magnon bands
illustrated in Fig. 2(e).

APPENDIX H: SPIN QUBITS COUPLED TO A HML

In this Appendix, we derive the general Hamiltonian
Eq. (12) describing NV-center qubits coupled to the magnetic
particles in a HML. In particular, we obtain first Eq. (11) for
an NV-center qubit coupled to a magnetic particle by magnetic
dipole-dipole interaction, and we later generalize this result to
the case of several NV-center qubits coupled to a HML.

Let us first consider a single NV-center located at rq ≡
rq(sin θ cos ϕ, sin θ sin ϕ, cos θ ) around a magnetic particle
(see the inset Fig. 7). The magnetic dipole interaction Hamil-
tonian between the NV-center and the magnetic particle reads

ĤM-NV = h̄�NVŜ2
z + γqB0Ŝz − h̄γqŜ · B̂dip(rq), (H1)

where Ŝ is a spin-1 operator of the NV-center, �NV is its zero-
field splitting, γq is its gyromagnetic ratio, and Bdip(rq) is the
dipole field produced by the magnet at the NV position [see
Eq. (B5)]. In the following, as the derivation is the same at
each node, we drop the site-index j.

Expressing the NV spin operators in terms of the eigen-
states of Ŝz, namely Ŝz = |1〉〈1| − |−1〉〈−1| and Ŝ+ =
(Ŝ−)† = √

2(|0〉〈−1| + |1〉〈0|), the Hamiltonian Eq. (H1) can
be rewritten as ĤM-NV = Ĥ1 + Ĥ−1, where Ĥk acts only on the
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states |0〉, |k〉 (k = ±1) of the NV center. In the following,
we assume the frequency of the magnon to be close to the
NV center transition frequency between |0〉 and |−1〉. This
can be achieved by appropriate values of the applied field
B0, the magnet size R, and the relative distance rq between
the NV and the magnet [see Fig. 3(c)]. With this assumption,
the coupling between the magnet and the higher level |1〉 is
negligible, and the NV-magnet coupling is thus well approx-
imated by Ĥ−1. Hence, within the two-level approximation
and the Holstein-Primakoff approximation, the magnon-NV
center Hamiltonian is given by

ĤMQ = h̄ωσ (θ )
σ̂ z

2
+ h̄

√
F

2
ξ (θ )(eiϕσ̂− + H.c.)

− h̄{[g(θ )e−i2ϕ f̂ † + �(θ ) f̂ ]σ̂− + H.c.}
+ h̄ξ (θ )(eiϕ f̂ + H.c.)

σ̂ z

2
, (H2)

where σ̂ z ≡ |−1〉〈−1| − |0〉〈0|, σ̂+ = |−1〉〈0|, σ̂− ≡
|0〉〈−1|, and we defined the frequencies

ωσ (θ ) ≡ �NV − γqB0 − h̄γ0γqμ0

4πr3
q

F (3 cos2 θ − 1), (H3)

ξ (θ ) ≡ 3h̄γqγ0μ0

4πr3
q

√
2F sin θ cos θ, (H4)

�(θ ) ≡ h̄γ0γqμ0

8πr3
q

√
F (3 sin2 θ − 2), (H5)

g(θ ) ≡ 3h̄γ0γqμ0

8πr3
q

√
F sin2 θ. (H6)

The spin qubit in Eq. (H2) can be diagonalized in terms of
dressed states |±〉. These are obtained from the uncoupled
state |0〉, |−1〉 by the unitary transformation matrix

Û =
(

e−iϕ/2 cos(�/2) −e−iϕ/2 sin(�/2)
eiϕ/2 sin(�/2) eiϕ/2 cos(�/2)

)
, (H7)

where the angle � ∈ [0, π ] is defined as

� =
⎧⎨
⎩

π − arctan
(√

F |ξ (θ )|
|ωσ (θ )|

)
, ξ (θ )/ωσ (θ ) < 0,

arctan
(√

F |ξ (θ )|
|ωσ (θ )|

)
, ξ (θ )/ωσ (θ ) > 0.

(H8)

In the dressed state basis, Eq. (H2) reads

ĤMQ = h̄ωσ

σ̂ z

2
+ h̄ξ (eiϕ f̂ + H.c.)

σ̂ z

2

− h̄g(eiϕ f̂ †|+〉〈−| + H.c.)

− h̄�(eiϕ f̂ †|−〉〈+| + H.c.). (H9)

The Pauli operator in Eq. (H9) refers now to the dressed states,
namely σ̂ z ≡ |+〉〈+| − |−〉〈−|. The dressed state frequency
is

ωσ ≡
√

ωσ (θ )2 + Fξ (θ )2, (H10)

and the spin qubit-magnon couplings are

ξ ≡ ξ (θ )eiϕ cos � + (�(θ )e−iϕ + g(θ )e2iϕ ) sin �, (H11)

g ≡ 1
4ξ (θ ) sin � + g(θ ) cos2(�/2) − �(θ ) sin2(�/2),

(H12)

and

� ≡ 1
4ξ (θ ) sin � + �(θ ) cos(�/2) − g(θ ) sin(�/2).

(H13)
Figure 7 shows the dependence of the coupling ξ , g, and � in
Eqs. (H11), (H12), and (H13) as a function of θ .

The Hamiltonian describing the general scenario of quan-
tum emitters (NV centers) locally coupled to the magnets
in a HML by magnetic dipole-dipole interaction reads ĤT =
ĤM + ∑N

j=1 Ĥ j
MQ, where ĤM is the Hamiltonian of the HML

and Ĥ j
MQ is the magnet-NV interaction at site j and is

given by Eq. (H9). For a quasiresonant interaction, � ≡ ω0 −
ωσ � ωσ , ω0, the total Hamiltonian of the system, within
the rotating-wave approximation, is given by the following
Jaynes-Cummings-Hubbard Hamiltonian:

ĤT = h̄
∑

j

[
ω0 f̂ †

j f̂j + ωσ

σ̂ z
j

2
− g( f̂ †

j σ̂−
j + f̂jσ̂

+
j )

]

+ h̄J
∑
i �=j

f̂i f̂ †
j , (H14)

where j = ( jx, jy) and i = (ix, iy) are the index labeling the
nodes of a general 2D HML. Note that Eq. (H14) is the real-
space representation of Eq. (12) in the main text.

APPENDIX I: EFFECTIVE SPIN-SPIN INTERACTION
THROUGH A MAGNONIC QUANTUM BUS

In this Appendix, we derive Eq. (13) describing the
magnon-mediated interaction between the two qubits, and
we obtain the figure of merit presented in Sec. III C, which
estimates the efficacy of a SWAP gate operation performed by
the magnonic quantum bus.

We consider two spin qubits locally coupled by magnetic
dipole-dipole interactions to two magnetic particles coupled
by a superconducting loop resonator [see Fig. 3(a)]. The
dynamics of the quantum state of the total system is described
by the following master equation:

∂t ρ̂ = − i

h̄
[ĤT, ρ̂] + κ

2∑
j=1

(
f̂ j ρ̂ f̂ †

j − 1

2
{ f̂ †

j f̂ j, ρ̂}
)

+ γ

2∑
j=1

(
σ̂ z

j ρ̂σ̂ z
j − ρ̂

)
, (I1)

where ρ̂ represents the quantum state of the two qubits and the
magnons at site j = 1, 2, κ is the magnon damping rate, γ ≡
π/T ∗

2 the qubit dephasing rate, and ĤT is defined in Eq. (H14)
for the simple case in which i, j = 1, 2. In terms of the modes
f̂± ≡ ( f̂1 ± f̂2)/

√
2, the Hamiltonian ĤT reads

ĤT = h̄ω+ f̂ †
+ f̂+ + h̄ω− f̂ †

− f̂− + h̄ωσ

(
σ̂ z

1

2
+ σ̂ z

2

2

)

− g√
2

[ f̂+(σ̂+
1 + σ̂+

2 ) + f̂−(σ̂+
1 − σ̂+

2 ) + H.c.], (I2)

where ω± ≡ ω0 ± J . The dissipative term in Eq. (I1) main-
tains the same structure whereas the magnonic operators
f̂ j, f̂ †

j ( j = 1, 2) are replaced by the normal modes f̂ †
±, f̂±.
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In the limit of a large detuning between the spin qubits
and the magnons, it is possible to adiabatically eliminate the
magnonic degrees of freedom and obtain an effective master
equation describing the effective dynamics of the spin qubits.
Transforming the master equation describing the total system
via the unitary operator

Û ≡ exp

{
− g√

2�
[ f̂ †

+(σ̂−
1 + σ̂−

2 ) − H.c.]

− g√
2(� − 2J )

[ f̂ †
−(σ̂−

1 − σ̂−
2 ) − H.c.]

}
, (I3)

keeping terms up to second order in g/�, g/(� − 2J ) � 1,
and projecting the result on the vacuum subspace of the
magnons Hilbert space, one obtains

∂t ρ̂eff = − i

h̄
[ĤQQ, ρ̂eff] + κeff

2∑
j=1

D j j
σ̂−[ρ̂eff]

+�eff

2∑
i �= j=1

Di j
σ̂−[ρ̂eff] + γ

2∑
j=1

(
σ̂ z

j ρ̂σ̂ z
j − ρ̂

)
, (I4)

where

ĤQQ ≡ h̄

2
ω̃σ

(
σ̂ z

1 + σ̂ z
2

) − h̄geff(σ̂
+
1 σ̂−

2 + σ̂−
1 σ̂+

2 ), (I5)

and

Di j
σ̂−[ρ̂eff] ≡ σ̂−

i ρ̂effσ̂
+
j − 1

2 {σ̂+
j σ̂−

i , ρ̂eff}. (I6)

Here, ρ̂eff represents the effective state of the two qubits, and
we defined the effective frequencies and decay rates

ω̃σ ≡ ωσ − g2

(
1

� − 2J + 1

�

)
, (I7)

geff ≡ g2

(
1

�
− 1

� − 2J

)
, (I8)

κeff ≡ κ g2 �2 + (� − 2J )2

�2(� − 2J )2
, (I9)

�eff ≡ κ g2 �2 − (� − 2J )2

�2(� − 2J )2
. (I10)

The Hamiltonian Eq. (I5) can be used to implement a long-
range qubit-qubit interaction through the magnonic quantum
bus provided by a HML.

The intrinsic qubit dephasing γ as well as the bus-
induced effective qubit damping κeff described in Eq. (I4)
affect the performance of coherent exchange of excitations
between the qubits. In the following, we describe the impact
of these noise sources and derive a figure of merit for the
performance of the coherent qubit coupling.

Let us consider a SWAP gate that transfers an excitation
from the first to the second qubit through the interaction
described by Eq. (I5). The performance of the gate can be
estimated in terms of the quantum state fidelity [71] F (t ) =
[Tr

√〈ψt|ρ̂(t )|ψt〉]2 between the state of the system ρ̂(t ) af-
ter the evolution governed by Eq. (I1) and the target state
|ψt〉 ≡ |01〉 ⊗ |vac〉, where |vac〉 is the vacuum of the magnon

(a) (b)

FIG. 8. Distribution of the fidelity error ε for the optimized
detuning �∗ = J as a function of (a) κ/geff for π/T ∗

2 = 0 and
(b) γ /geff for κ = 0. Each panel shows the numerically calculated
points (square/circles) together with the linear interpolation (dashed
line) with slope (a) ακ and (b) αγ .

bus and |01〉 is the two qubits state where only the second
(target) qubit is excited. We assume that the system is initially
prepared in the pure state ρ̂(0) = |ψ〉〈ψ | with |ψ〉 ≡ |10〉 ⊗
|vac〉, where only the first qubit is excited. The performance
of the SWAP gate can then be estimated by maximizing F (t )
over the total evolution time t , and calculating the fidelity error
ε ≡ 1 − maxt [F (t )] in the presence of noise. A numerical
optimization of ε over all the relevant parameters of the
system g, J , �, κ, and γ yields a figure of merit for the
performance of the gate.

An analytical expression for the scaling of the optimal
error can be obtained in the dispersive regime g/�, g/(� −
2J ) � 1. In the strong-coupling limit geff � κeff, γ , ε scales
approximately linearly with the decoherence rates as ε ≈
αγ γ /geff + ακκeff/geff [72], where the coefficients αγ and ακ

are assumed to be approximately independent of the detuning
�. This assumption can be numerically checked by simulating
the error scaling for different values of � for the same values
of κeff/geff, γ /geff � 1. After substituting Eq. (I8) into the
linear expansion for ε, one obtains

ε = −αγ

γ�(� − 2J )

2g2J − ακ

κ

2

�2 + (� − 2J )

J�(� − 2J )
. (I11)

For the optimal values �∗ = J ∗ = √
2ακg2κT ∗

2 /(παγ ) [73],
Eq. (I11) reads

ε =
√

ακαγ

2C0
, (I12)

where the cooperativity C is defined as

C0 = g2

γ κ
. (I13)

In Fig. 8, the error ε optimized for � = J is plotted as a
function of the normalized decoherence rates κeff/geff and
γ /geff.
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