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We design a series of quantum circuits that generate absolute maximally entangled (AME) states to benchmark
a quantum computer. A relation between graph states and AME states can be exploited to optimize the
structure of the circuits and minimize their depth. Furthermore, we find that most of the provided circuits obey
majorization relations for every partition of the system and every step of the algorithm. The main goal of the
work consists in testing efficiency of quantum computers when requiring the maximal amount of genuine mul-
tipartite entanglement allowed by quantum mechanics, which can be used to efficiently implement multipartite
quantum protocols.
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I. INTRODUCTION

There is a need to set up a thorough benchmarking strategy
for quantum computers. Devices that operate in very different
platforms are often characterized by the number of qubits
they offer, their coherent time, and the fidelities of one- and
two-qubit gates. This is somewhat misleading as the perfor-
mance of circuits are far below the expected when the amount
of genuine multipartite entanglement contained in state is
relatively high.

There exist several figures of merit that try to quantify the
success performance of a quantum device. Methods such as
randomized benchmarking [1], state and process tomography
[2], and gateset tomography [3,4] are used to quantify gate
fidelities. However, they are only useful for few-qubit exper-
iments and fail when used to evaluate the performance of
greater circuits [5,6]. In that sense, IBM proposed a metric to
be used in arbitrary large quantum circuits called quantum vol-
ume [7]. This figure takes into account several circuit variables
like number of qubits, connectivity, and gate fidelities. The
core of the protocol is the construction of arbitrary circuits
formed by one- and two-qubit gates that are complex enough
to reproduce a generic n-qubit operation. One can expect
to generate high entanglement in this kind of circuit, even
though we should certify that this amount of entanglement
will be large enough to perform some specific tasks that,
precisely, demand high entanglement. A further relevant ref-
erence concerns volumetric framework for quantum computer
benchmarks [8].

Two reasonable ways to test for quantum computers are
the following: (i) implement a protocol based on maximally
entangled states and (ii) solve a problem that is hard for a
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classical computer. These two ways are linked by the fact that
quantum advantage requires large amounts of entanglement,
so that classical computers are unable to carry the demanded
task even when a sophisticated technique, e.g., tensor net-
works [9], is considered. We believe that item (i) is fully
doable with the current state of the art of quantum computers,
at least for a small number of qubits. On the other hand,
item (ii) is much more challenging, as classical computers
efficiently work with a large number of bits.

Quantum correlations depend on the delicate balance of the
coefficients of the wave function. It is natural to expect that
quantum computers will have to be very refined to achieve
such a good description of multipartite correlations along the
successive action of gates. Entanglement is at the heart of
quantum efficiency [10]. Again, if a quantum computer is not
able to generate faithful large entanglement, it will remain
inefficient.

A fundamental factor in quantum computing is the ability
to generate large entangled states, such as area law violating
states [11]. However, such ability has to be accomplished by
a sufficiently large coherence time for such multipartite maxi-
mally entangled states. Note that GHZ-like states are highly
entangled and useful to test violate qubit Bell inequalities
[12], but even more entangled are the absolute maximally
entangled (AME) states [13–15], which are maximally entan-
gled in every bipartition of the system.

Following this line of thought, along this work we ex-
plore techniques to efficiently construct quantum circuits for
genuinely multipartite maximally entangled states. Some pre-
liminary results reflect the difficulty to deal with quantum
computers. For instance, the amount of Bell inequality viola-
tion rapidly decreases with the number of qubits considered
[16]. Also, the exact simulation of an analytical solvable
model in a quantum computer significantly differs from the
expected values, even when considering four qubits and less
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than thirty basic quantum gates [17]. These examples illustrate
the difference between gate fidelity and circuit fidelity, with
the second one being much harder to improve.

We shall present quantum circuits required to build mul-
tipartite maximally entangled states. This proposal differs
from the bosonic sampling method, where large amounts
of entanglement are faithfully reproduced by classical sim-
ulations [18]. AME states find applications in multipartite
teleportation [19] and quantum secret sharing [15,19]. Along
our work, maximally entangled states will be exclusively used
to test the strength of multipartite correlations in quantum
computers. Another possible use, not discussed by us, could
be to generate quantum advantage with respect to a classical
computer or, ideally, to achieve quantum supremacy.

We describe a benchmark suit of quantum circuits, where
each one should deliver an AME state. The circuits provided
were designed to minimize the number of required gates under
the presence of restricted connectivity of qubits. Some of
them consider individual systems composed by more than
two internal levels each, which sometimes can be effectively
reduced to qubits. In general, we consider simple and compact
circuits, illustrating the way in which multipartite entangle-
ment is generated step by step along the circuit. We have
to also pay attention to a simple criteria of majorization
of the entropy of reductions, which basically implies that
multipartite entanglement, quantified by the averaged entropy
of reductions, monotonically increases for all partitions.

This work is organized as follows. In Sec. II, we review the
basic properties of AME states and show explicit examples.
In Sec. III, we present the quantum circuits that generate
AME states by using the properties of graph states. We also
propose the simulation of AME states having local dimension
larger than 2 by using qubits instead of qudits. In Sec. IV, we
analyze the entanglement majorization criteria in the proposed
circuits and find further optimal circuits for experimental
implementation by imposing a majorization arrow in terms of
entanglement. In Sec. V, we implement GHZ and AME states
for five qubit systems in IBM quantum computers, quantifying
the state preparation quality by testing maximal violation
of suitably chosen Bell inequalities. Finally, in Sec. VI we
discuss and summarize the main results of the paper.

II. REVIEW OF AME STATES

The study of AME states has become an intensive area of
research along the past years due to both theoretical foun-
dations and practical applications. In this section we briefly
review the current state of the art of the field. For a more
extensive review on AME states, see, e.g., Ref. [14].

A. General properties of AME states

AME states, also known in some references as maximally
multipartite entangled states, are n qudit quantum states
with local dimension d such that every reduction to �n/2�
parties is maximally mixed, where � · � is the floor function.
Such states are maximally entangled when considering the
average entropy of reductions as a measure of multipartite
entanglement, that is, when the average von Neumann entropy
S(ρ) = Tr[ρ log ρ], taken over all reductions to �n/2� parties,

achieves the global maximum value S(ρ) = �n/2�, where
logarithm is taken in basis d . For instance, Bell states and
GHZ states are AME states for bipartite and three partite
systems, respectively, for any number of internal levels d .

The existence of AME states for n qudit systems composed
by d levels each, denoted AME(n, d), is a hard open problem
in general [20]. This problem is fully solved for any number
of qubits: an AME(n, 2) exists only for n = 2, 3, 5, 6 [21–23].
Among all existing AME states, there is one special class
composed by minimal support states. These states are defined
as follows: an AME(n, d) state has minimal support if it
can be written as the superposition of d�n/2� fully separable
orthogonal pure states. Here, we consider superposition at the
level of vectors, in such a way that the linear combination of
pure states always produces another pure state. For example,
generalized Bell states for two-qudit systems and generalized
GHZ states for three-qudit systems have minimal support. It is
simple to show that all coefficients of every AME state having
minimal support can be chosen to be identically equal to
d−�n/2�/2, i.e., identical positive numbers. By contrast, AME
states having nonminimal support are required to be com-
posed by nontrivial phases in their entries in order to have all
reduced density matrices proportional to the identity. In other
words, nonminimal support AME states require destructive
interference.

AME states connect to several mathematical tools. It is
known that AME states composed by n parties and having
minimal support, e.g., AME(2,2), AME(3,2), and AME(4,3),
are one-to-one related to a special class of maximum distance
separable (MDS) codes [24], index unity orthogonal arrays
[25], permutation multiunitary matrices when n is even [14],
and to a set of m = n − �n/2� mutually orthogonal Latin
hypercubes of size d defined in dimension �n/2� [26]. On
the other hand, AME states inequivalent to minimal support
states, e.g., AME(5,2) or AME(6,2), are equivalent to quan-
tum error correction codes [21], quantum orthogonal arrays
[26], nonpermutation multiunitary matrices [14], and m =
N − �n/2� mutually orthogonal quantum Latin hypercubes of
size d defined in dimension �n/2� [26].

AME states define an interesting mathematical problem
itself but also they define attractive practical applications.
These include quantum secret sharing [15,19], open destina-
tion quantum teleportation [19], and quantum error correcting
codes [21], the last one being a fundamental ingredient for
building a quantum computer.

B. Explicit expressions of AME states

The simplest AME(n, d) states, denoted �n,d , having min-
imal support are the Bell and GHZ states

�2,d = 1√
d

d−1∑
i=0

|ii〉 (1)

and

�3,d = 1√
d

d−1∑
i=0

|iii〉, (2)

respectively. These states are AME for any number of internal
levels d � 2. That is, every single particle reduction in both
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states �2,d and �3,d produces the maximally mixed state. On
the other hand, it is not obvious to prove that there is no AME
state for n = 4 qubits [23]. The AME(5,2) state [27] can be
written as

|ϒ5,2〉 = 1

4
√

2

32∑
i=1

ci|i〉, (3)

where the five-digits binary decomposition of i should be
considered inside the ket and

ci = {1, 1, 1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1, 1, 1, 1,

− 1,−1, 1,−1, 1,−1,−1, 1,−1, 1,−1,−1, 1, 1}.
(4)

By using local unitary operations, the same state can be
reduced to any of the following states [15,28]:

|0L1〉 = 1
4 (|00000〉 + |10010〉 + |01001〉 + |10100〉
+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉
− |10001〉 − |01100〉 − |10111〉 + |00101〉),

|1L1〉 = 1
4 (|11111〉 + |01101〉 + |10110〉 + |01011〉
+ |10101〉 − |00100〉 − |11001〉 − |00111〉
− |00010〉 − |11100〉 − |00001〉 − |10000〉
− |01110〉 − |10011〉 − |01000〉 + |11010〉). (5)

For n = 6, an AME(6,2) state [29] can be constructed from
the above AME(5,2) states |0L1〉 and |1L1〉 as

|�6,2〉 = 1√
2

(|0〉|0L1〉 + |1〉|1L1〉)

= 1

4
(|000〉(| + −+〉 + | − +−〉)

− |001〉(| + −−〉 − | − ++〉)

+ |010〉(| + +−〉 − | − −+〉)

− |011〉(| + ++〉 + | − −−〉)

− |100〉(| + ++〉 − | − −−〉)

− |101〉(| + +−〉 + | − −+〉)

− |110〉(| + −−〉 + | − ++〉)

− |111〉(| + −+〉 − | − +−〉)), (6)

where |±〉 = (|0〉 ± |1〉)/
√

2. This exemplifies that local uni-
taries can be used to find versions of an AME state with a
reduced support. Similarly, an AME(5,2) state having eight
real coefficients can be found by combining the two states

|0L2〉 = 1
2 (|00000〉 + |00011〉 + |01100〉 − |01111〉), (7)

|1L2〉 = 1
2 (|11010〉 + |11001〉 + |10110〉 − |10101〉) (8)

in the following way [14]:

|�5,2〉 = 1√
2

(|0L2〉 + |1L2〉). (9)

It can be shown that neither the five- nor six-qubit AME states
have minimal support.

For systems composed by n > 3 parties and d > 2 internal
levels it is not simple to construct AME states. The AME(4,3)
state [30] is defined as follows:

|�4,3〉 = 1

3

2∑
i, j=0

|i〉| j〉|i + j〉|i + 2 j〉

= 1

3
(|0000〉 + |0111〉 + |0222〉

+ |1012〉 + |1120〉 + |1201〉
+ |2021〉 + |2102〉 + |2210〉). (10)

In a similar way, we can derive the AME(6,4) state [25]:

|�6,4〉 = 1
8 (|000000〉 + |111100〉 + |222200〉 + |333300〉
+ |321010〉 + |230110〉 + |103210〉 + |012310〉
+ |132020〉 + |023120〉 + |310220〉 + |201320〉
+ |213030〉 + |302130〉 + |031230〉 + |120330〉
+ |231001〉 + |320101〉 + |013201〉 + |102301〉
+ |110011〉 + |001111〉 + |332211〉 + |223311〉
+ |303021〉 + |212121〉 + |121221〉 + |030321〉
+ |022031〉 + |133131〉 + |200231〉 + |311331〉
+ |312002〉 + |203102〉 + |130202〉 + |021302〉
+ |033012〉 + |122112〉 + |211212〉 + |300312〉
+ |220022〉 + |331122〉 + |002222〉 + |113322〉
+ |101032〉 + |010132〉 + |323232〉 + |232332〉
+ |123003〉 + |032103〉 + |301203〉 + |210303〉
+ |202013〉 + |313113〉 + |020213〉 + |131313〉
+ |011023〉 + |100123〉 + |233223〉 + |322323〉
+ |330033〉 + |221133〉 + |112233〉 + |003333〉).

(11)

This state is formed by 43 = 64 equally superposed orthogo-
nal states, so it is an AME state of minimal support.

III. QUANTUM CIRCUITS TO CONSTRUCT AME STATES

As mentioned above, AME states can be constructed in
different ways. For our purpose, we consider graph states
formalism [31]. Graph states are represented by an undirected
graph, where each vertex corresponds to a |+〉 state and each
edge with a control-Z (CZ) gate. We can easily construct
the quantum circuit for a graph state by considering a sim-
ple rule, as we will see later. In addition, a graph can be
transformed into another—equivalent—one by applying local
unitary operations [32]. This kind of transformation modifies
the number of edges of a graph but not its entanglement
properties. This property could allow us to adapt the circuit
to different quantum chip architectures, in order to reduce as
much as possible the number of gates required to physically
implement the state.
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FIG. 1. Quantum circuit to generate AME(5,2) (a) and its corre-
sponding graph (b).

Despite the fact that graph states can be defined in any
local dimension d , quantum computers can only implement
qubit quantum circuits. Nonetheless, we can simulate AME
states having larger local dimensions d by using qubits, that
is, by mapping each qudit state into a multiqubit state and by
adapting d-dimensional gates into nonlocal qubit gates, as we
explain in Sec. III C.

A. Graph states

Graph states are n partite pure quantum states constructed
from an undirected graph composed by n vertices V = {vi}
and connected by edges E = {ei j = {vi, v j}}. Each graph has
associated an adjacency matrix A, whose entries satisfy that
Ai j = 1 if an edge ei j exists and Ai j = 0 otherwise. Self-
interactions are forbidden, meaning that diagonal entries of
A vanish.

A graph state for n qudits can be constructed as follows
[30,31]:

|G〉 =
n∏

i< j

CZ
Ai j

i j (Fd |0̄〉)⊗n, (12)

where

CZi j =
d−1∑
k=0

ωkl |k̄〉〈k̄|i ⊗ |l̄〉〈l̄| j (13)

is the generalized controlled-Z gate, ω = e2π i/d , and

Fd = 1√
d

d−1∑
k=0

ωkl |k̄〉〈l̄|, (14)

is the Fourier qudit gate. From now on, we distinguish be-
tween qubits and qudits states by writing a bar over symbols
associated to qudit states, e.g., |0̄〉, keeping the usual notation
with no bar for qubits, e.g., |0〉.

Following the above definition, the explicit construction of
a graph state from its corresponding graph is simple. First,
each vertex corresponds with the qudit state |ψ̄0〉 = Fd |0̄〉
and, second, each edge corresponds with a CZ gate applied
between two vertices. For instance, consider the quantum
circuit generating the AME(5,2) state; see Fig. 1. For qubits,
note that F2 gate is actually the Hadamard gate. Preparation of
a qubit graph state (12) is equivalent to initialize all qubits
in the state |+〉 = (|0〉 + |1〉)/

√
2 and then apply CZ gates

between the qubits, according to the chosen graph.
Note that after applying the Fourier gate Fd over the initial

state |0̄〉⊗n we obtain a state with all basis elements, in the

FIG. 2. Quantum circuit to generate an AME(5,d) state by using
qubits instead of qudits. The corresponding graph is the same as
the one in Fig. 1(b). The number of qubits needed to represent
each qudit is m = �log2 d	. First, qubits are prepared in the basis
superposition state by using U in

d , which corresponds to H for qubits,
U in

3 of Fig. 6 for qutrits, and U in
4 = H ⊗ H for ququarts. Then,

CZ gates are performed between the qudits, which for d = 3 and
d = 4 can be implemented with the circuit shown in Figs. 7 and 8,
respectively.

computational basis decomposition. Then, since the CZ gates
only introduce relative phases between these elements, the
final state of a graph contains a superposition of the dn

elements of the computational basis.
Graph states can also be described by using stabilizer

states [33]. They find application in quantum error correcting
codes [34] and one-way quantum computing [35]. A graphical
interpretation of entanglement in graph states is provided in
Ref. [30] and multipartite entanglement properties in qubit
graph states, as well as its optimal state preparation, have been
studied in Refs. [31,36,37].

B. AME states from graph states

We can write an AME state by using its corresponding
graph, as described above. This is a particular form of an AME
state having maximal support, as we have the superposition of
all elements of the computational basis.

We are interested in finding optimal AME graph states,
in the sense of having the minimum number of edges and
coloring index [36]. The smaller the number of edges the
smaller the number of operations required to generate AME
states. Coloring index is related with the number of operations
that can be performed in parallel, so it is proportional to the
circuit depth. It worth mentioning that graph AME states are
hard to construct in general, especially for large values of local
dimension d and number of parties n. Fortunately, there are
suitable tools useful to simplify the construction of graphs for
specific values of d and n [30].

The first interesting property is that some graph states can
be constructed in any dimension d . The simpler cases are
given by the generalized Bell (n = 2) and generalized GHZ
states (n = 3). The graph states of n = 5 and n = 6, shown in
Figs. 2 and 4, respectively, produce AME states in any prime
dimension d . The n = 4 graph state of Fig. 3 also fulfills this
property for every prime dimension d � 3.

For a nonprime local dimension there exists some methods
to find AME graph states [30]. One of those consists on
taking the prime factorization d = d1d2 · · · dm and looking for
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FIG. 3. Graph state that generates an AME(4,d) state for any
prime dimension d � 3 (b) and its corresponding circuit (a) by using
qubits instead of qudits.

every AME(n, di) state. The AME(n, d) is just given by the
tensor product of the AME(n, di) states, followed by a suitable
relabeling of symbols. When prime factorization of d includes
a power of some factor, we can construct an AME state by
artificially defining each party, i.e., by using qudits in lower
dimension m < d and then performing the suitable set of CZ

gates between the m level qudit systems. For instance, this
method can be used to find the AME(4,4) state from qubits
instead of ququarts (qudits with d = 4 levels each), as we
illustrate in Fig. 5. The—real—local dimension of each party,
d = 4, is achieved by grouping qubits in pairs [30].

C. AME states circuits using qubits

As we have seen above, Bell and GHZ states together with
the graphs from Figs. 2 to 5 serve to construct AME(n, d), for
n = 2–6 and prime number of internal levels d � 3, and also
the AME(4,4) state. Moreover, we can use a combination of
these graphs to construct AME states of greater levels d .

The construction of a qubit quantum circuit from a
graph state is straightforward since we just have to perform
Hadamard gates on all qubits initialized at |0〉 state and CZ

gates, according to graph edges. These quantum gates are
commonly used in current quantum devices, e.g., in quantum
computing [38]. However, in order to implement an AME
state for d > 2 internal levels we require a qudit quantum

FIG. 4. Graph state that generates an AME(6,d) state (b) and
its corresponding circuit (a) by using qubits instead of qudits. The
number of qubits needed to represent each qudit is m = �log2 d	.
Qubits are prepared by using U in

d and CZ gates in dimension d ,
simulated by using the circuits shown in Figs. 7 and 8.

FIG. 5. Quantum circuit producing the AME(4,4) state with
qubits (a) and its corresponding graph (b). Parties A, B, C, and D are
maximally entangled between them but not the qubits inside each
party. Notice that this circuit does not correspond to an AME(8,2)
state, since this AME state does not exist.

computer, i.e., a machine performing quantum operations be-
yond binary quantum computation. The construction of such
a device is much more challenging than the current quantum
computers and, therefore, performing such a kind of experi-
ment becomes really hard. Here, we propose to simulate AME
states having larger local dimension by using qubits instead
of qudits. To do so, we translate the local dimension d into
a multiqubit dimensional space. For instance, to transform
a ququart system d = 4 into a two qubit system m = 2 we
consider the following identification:

|0̄〉 ≡ |00〉, |1̄〉 ≡ |01〉, |2̄〉 ≡ |10〉, |3̄〉 ≡ |11〉. (15)

For d > 4, we need to increase the number of qubits ac-
cordingly, i.e., we need m = �log2 d	 qubits to describe each
d-level system, where � · 	 denotes the ceiling function. Since
we have the graphs for these states, the challenge is to simulate
the effect of the generalized CZ gate (13) and the Fourier gate
(14), with qubit gates. To be precise, we are not interested
in the exact Fourier gate but on generating the state |ψ̄0〉 =
Fd |0̄〉. For that purpose, we will look for an initialization gate
U in

d that acts on qubits in the state |0〉 and obtains the |ψ0〉
state, i.e., the state |ψ̄0〉 written in terms of qubits according
to the mapping established by Eq. (15).

When local dimension d is a power of 2, the state |ψ̄0〉
can be easily generated by using Hadamard gates only. In
particular, for d = 4 we have

|ψ̄0〉 = F4|0̄〉 = 1
2 (|0̄〉 + |1̄〉 + |2̄〉 + |3̄〉),

|ψ0〉 = U in
4 |00〉 = (H ⊗ H )|00〉

= 1
2 (|00〉 + |01〉 + |10〉 + |11〉). (16)

Despite F4 �= U in
4 = (H ⊗ H ), the tensor product unitary

transformation is suitable, as we just want to obtain the state
|ψ̄0〉 with qubits.

For d = 3 the state |ψ̄0〉 can be obtained from the gate U in
3 ,

defined in Fig. 6:

|ψ̄0〉 = F3|0̄〉 = 1√
3

(|0̄〉 + |1̄〉 + |2̄〉),

|ψ0〉 = U in
3 |00〉 = 1√

3
(|00〉 + |01〉 + |10〉). (17)

In general, the circuit producing the state |ψ0〉 is hard to
find, except when d is a power of 2, as explained above. On
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FIG. 6. Quantum circuit to obtain |ψ̄0〉 qutrit state using two
qubits, i.e., to generate |ψ0〉 = (|00〉 + |01〉 + |10〉)/

√
3 state. The

angle of the rotational gate is θ = −2 arccos(1/
√

3).

the contrary, a circuit implementing the generalized CZ gate is
simpler since this gate only introduces a phase in some qudit
states and we can reproduce this effect by using controlled-
phase gates, i.e., CPh(θ ) = |00〉〈00| + |01〉〈01| + |10〉〈10| +
eiθ |11〉〈11|.

Figure 7 shows the required circuit to implement the gen-
eralized CZ gate for qutrits with qubits. We’ll need four qubits
and four CPh gates to achieve the expected result of this gate.
The quantum circuit required to implement the generalized
CZ gate for ququarts is shown in Fig. 8. Only three gates are
needed here: two qubit CZ gates and a controlled-S gate, which
is a CPh with θ = π/2.

At this point, all ingredients to construct the AME states for
qubits and to simulate AME states with local dimension d > 2
have been introduced. Figures 2 and 4 can be used to simulate
any AME(5,d) and AME(6,d) state with qubits, providing U in

d
and CZ gates. Similarly, Fig. 3 can be used to simulate any
AME(4,d) state for prime dimension d � 3. Finally, Fig. 5
shows explicitly the circuit and the graph required to obtain
the AME(4,4) state.

D. AME states circuits of minimal support

Since AME states of minimal support have connections
with error correcting codes, it could be interesting to find the
corresponding quantum circuits to generate them.

For qutrits, the AME(4,3) state of Eq. (10) has minimal
support. The quantum circuit that generates this state is shown
in Fig. 9 [14]. The quantum gates required to construct this
circuit are the Fourier transform gate for qutrits F3 and the
C3–adder gate

C3|i〉| j〉 = |i〉|i + j〉, (18)

which is the generalization of controlled-NOT (CNOT) gate
for qutrits. It is represented with the CNOT symbol with the
superscript 3;, see Fig. 9.

The simulation of the state F3|0̄〉 by using qubits has been
already explained in the previous subsection. The construction

FIG. 7. Generalized CZ gate for qutrits, d = 3, performed with
four qubits. First two CPh gates and last two CPh gates can be
implemented in parallel, so the circuit depth is just two CPh gates.

FIG. 8. Generalized CZ gate for ququarts, d = 4, performed with
four qubits. First gate is a controlled-S gate, which is actually a CPh
gate with θ = π/2. Last two CZ gates can be implemented in parallel,
so the circuit depth is just two gates.

of the C3–adder gate is more cumbersome and we leave the
details to the Appendix. The strategy that we use consists
in using controlled gates that allow us to perform the sums
separately for each control state. If the control qutrit is in the
state |0̄〉 we should apply the identity, so that no gates are
needed in this case. If the control qutrit is prepared in the state
|1̄〉, i.e., |01〉, then we should implement CNOT and Toffoli
gates (CCNOT) that take the second qubit as a control qubit,
i.e., the second pair of qubits is not affected when the first two
are prepared in a different state. Similarly, if the qutrit state is
|2̄〉, i.e., |10〉, we should search for a sequence of CNOT and
CCNOT gates that implement the corresponding sums by using
as a control qubit the first qubit.

The resulting circuit is depicted in Fig. 10, where we have
used approximate CCNOT gates described in Fig. 11, CCNOTa

and CCNOTb, instead of the usual CCNOT gates in order to
reduce significantly the circuit depth [39]. This circuit is
divided into two sectors, each one performing the C3–adder
gate if the controlled qubit is |1̄〉, the first three gates, or |2̄〉,
the last three gates. Any of those gates affect the qubit state if
the control qutrit is in the |0̄〉 state.

Clearly, gate C3 is the one responsible for the growth of
circuit depth. However, we can implement the first two adders
by using two CNOT gates, each one taking advantage that the
target qutrit state is |0̄〉, i.e., qubits are prepared in the state
|00〉.

The final circuit required to simulate the state |�4,3〉 with
qubits is shown in Fig. 12, where CZ gates are framed because
they are only necessary if we are implementing the CCNOTa

gate.

IV. ENTANGLEMENT MAJORIZATION

Majorization has deep implications in quantum informa-
tion theory [40]. In particular, quantum algorithms obey a

FIG. 9. Quantum circuit required to generate the state |�4,3〉
(four qutrits) based on the Fourier gate F3 and C3–adder gate for
qutrits.
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FIG. 10. C3–adder implemented with approximate Toffoli gates
of Fig. 11. The C3–adder that uses the CCNOTa gates needs extra
controlled-Z gates to cancel out the minus signs introduced by the
approximation.

majorization arrow, which means that majorization could be
at the core of their efficiency [41,42]. Following this idea, we
wonder whether the above quantum circuits designed to con-
struct AME states obey majorization. If not, it is interesting to
ask whether more efficient circuits obeying majorization exist.

Let a, b ∈ Rd be vectors having entries ordered in decreas-
ing order, namely a↓ and b↓ with a↓

i+1 � a↓
i , and similarly for

b↓. We say that a majorizes b, i.e., a � b, iff

k∑
i=1

a↓
i �

k∑
i=1

b↓
i for k = 1, . . . , d, (19)

and
∑d

i=1 ai = ∑d
i=1 bi.

First, we should choose a set of parameters to study if
they majorize at each step during the computation, i.e., after
the application of each CZ gate. Since all circuits start with
a product state and finish with a maximally entangled state
in all bipartitions, a natural choice will be the eigenvalues
of the reduced density matrices. At some step s during the
computation, the circuit has generated a quantum state with
density matrix ρs. We then compute the reduced density
matrix of every one of its bipartitions in two subsystems, A
and B, i.e., ρs

A = TrBρs, and diagonalize this matrix to obtain
its eigenvalues λs = {λs

i }. We will establish that this circuit
obeys majorization iff λs � λs+1, i.e.,

k∑
i=1

(λ↓
i )s �

k∑
i=1

(λ↓
i )s+1 for k = 1, . . . , dm − 1 ∀A, s, (20)

where m = n − �n/2� is the number of qudits in A bipartition.
We do not consider the last summation k = dm because the
eigenvalues of a density matrix are normalized to the unity.

FIG. 11. Approximations of CCNOT gate. They introduce a
change of sign in some states, in particular, CCNOTa|101〉 = −|101〉
and CCNOTb|100〉 = −|100〉.

Since there are ( n
�n/2�) bipartitions, this analysis leads to a total

number of ( n
�n/2�)(d

m − 1) inequalities to fulfill.
We can apply less strict tests by looking at the majorization

of other figures of merit to quantify bipartite entanglement,
for instance, von Neumann entropy or purity, which in terms
of λi are defined as S = −∑

i λi logd λi and γ = ∑
i λ

2
i , re-

spectively. Both of these functions are convex in terms of λi,
so we can apply the Karamata’s inequality [43] to prove that

λs � λs+1 ⇒ Ss � Ss+1

⇒ γ s � γ s+1. (21)

Thus we can first do one of these less restrictive tests. If the
above inequalities are not fulfilled in every step, then there is
no majorization in eigenvalues.

As an example, Fig. 13 shows the majorization of the
AME(4,4) state of Fig. 5 in terms of entropy and eigenvalues
of the reduced density matrix for each bipartition. The cir-
cuit majorizes since entropy never decreases and eigenvalues
never increase at each step. At the end of the computation, all
bipartitions have reached the maximum value S = 2 log2 4 =
4 when all eigenvalues are identical, meaning that reduced
density matrices are proportional to the identity, as expected
for an AME state.

After analyzing the circuit to construct the state |�4,3〉
written in Fig. 9, we found that it does not majorize, i.e.,
when the fourth C3–adder is applied, the entropy of one
of the bipartitions decreases before reaching the maximum
value after the application of the last C3–adder gate. For this
reason, we conclude that this circuit is not optimal, being
possible to obtain an AME(4,3) state with minimal support
from a smaller number of gates. In particular, we found many
equivalent circuits that can obtain this kind of state with only
four C3–adder gates. An example is shown in Fig. 14. Notice
that, in this example, two C3–adders are applied in parallel,
which reduces significantly the circuit depth, especially if we
want to simulate this AME with qubits.

We found that circuits for AME(n, d) states majorize up
to n = 6 and d = 4, with the exception of AME(6,2) and
AME(6,4). In these two cases, only one bipartition does not
majorize, which shows the high optimality of the entangle-
ment power of the circuits proposed.

One can use this majorization criteria to find optimal
entangling circuits based on graph states. For instance, if we
are interested in entangled eight parties of our circuit, we
can construct a greedy algorithm that finds such a circuit
by imposing entanglement majorization. Moreover, we can
restrict this algorithm to the given chip architecture, making
it suitable for the experimental implementation.

V. EXPERIMENTAL IMPLEMENTATION

The experimental implementation of an AME state is a
highly demanding task for a quantum computer. It requires
the consideration of some figure of merit in order to test
the quality of the preparation state. For qubit AME states of
bipartite and three-partite systems one can consider Mermin
Bell inequalities as a figure of merit, as they are maximally
violated by these states [12]. On the other hand, for AME(5,2),
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FIG. 12. Circuit for the construction of the AME(4,3) state by using two qubits to represent each qutrit. The controlled-Z gates (framed
with dots) are only necessary when we use the approximation of Toffoli gate CCNOTa.

AME(6,2), and any qubit graph state in general, there exist
Bell inequalities maximally violated by these states [44].
Besides Bell inequalities, one can also implement a quantum
tomography protocol to reconstruct the state, with the fidelity
of state reconstruction being the figure of merit. This kind
of protocol typically requires a quadratic number of mea-
surement outcomes, as a function of the dimension of the
Hilbert space [45–47]. However, this number can be reduced
to scale linearly with the dimension when a priori information
is available, e.g., when the state is nearly pure [48].

As a first attempt to test the quality of implementation
of AME states in quantum computers we considered a very
simple test: check whether probability outcomes associated

FIG. 13. Majorization in AME(4,4) state circuit of Fig. 5. En-
tropy increases at each step s in all bipartitions until it reaches
the maximum value S = 2 log2 4 = 4 (a). Majorization in terms
of eigenvalues of the reduced density matrix. At the end of the
computation, all eigenvalues are the same, which leads to a density
matrix proportional to the identity (b).

to a measurement in the computational basis are similar to
theoretical probabilities. This is not a refined test, as complex
phases of entries also play a crucial role. However, a suitable
behavior of probabilities along a single projective measure-
ment is a first indication that the state could be successfully
prepared.

We have run two different circuits to generate the
AME(5,2) state in two quantum computers: the ibmqx4 device
from IBM [49] and the Acorn device from Rigetti Computing
[50]. Due to connectivity restriction, it is not possible to
implement the simplest quantum circuits predicted by graph
states. For instance, the ibmqx4 chip needs at least one extra
CZ gate, as shown in Fig. 15. We were able to generated an
AME(5,2) state composed by five entangling gates and taking
into account the restricted connectivity. The circuit is shown
in Fig. 16. For the Rigetti device, we were not able to find
a circuit composed by five entangling gates, so we had to
adapt the AME(5,2) graph state to the restricted connectivity
by using SWAP gates.

The AME(5,2) state of Fig. 16 is given by

|AME5,2〉 = 1

2
√

2
(|00000〉 + |00011〉 + |01101〉 + |01110〉

+ |10101〉 + |10110〉 + |11000〉 + |11011〉).

(22)

FIG. 14. Quantum circuit to obtain an AME(4,3) of minimal
support. This circuit has been found after applying a majorization
test in the circuit of Fig. 9. The number of C3–adder gates and circuit
depth have been reduced in one unit, since two of these gates can be
applied in parallel. For the qubit simulation, this is a significant gain
in terms of circuit complexity.
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FIG. 15. Left graph shows the ibmqx4 connectivity. After ap-
plying LU operations, one can transform this graph into the linear
graph, which belongs to a different graph state class than the one
that includes the AME state [31]. The recipe is the following: taking
one vertex (in red or light gray), one connects all vertices that are
connected with the selected one or, in case they are connected, one
erases these edges (dashed green lines). This result means that more
connections are necessary in order to generate the AME(5,2) graph
state in this device.

The theoretical probability Pi jklm of obtaining each element
of the five-qubit computational basis |i jklm〉 shown in (22) is
1/8 = 0.125. The results obtained after running the circuit of
Fig. 16 in the ibmqx4 device, when considering 8192 shots,
are the following:

P00000 = 0.105, P00011 = 0.058,

P01101 = 0.038, P01110 = 0.128,

P10101 = 0.035, P10110 = 0.135,

P11000 = 0.084, P11011 = 0.052, (23)

where |ψ〉 is the real quantum state generated by the quantum
device. It seems that only three element bases are well repro-
duced, namely |10110〉, |01110〉, and |00000〉. In addition,
two detected probabilities are not related to the AME(5,2)
state (22), namely P00010 = 0.050 and P00110 = 0.042. These
imprecise results do not allow us to efficiently implement the
adaptative tomographic method presented in Ref. [48], as it
requires a faithful identification of the highest weights when
measuring along the computational basis.

The results with Acorn chip from Rigetti computing were
even worst, not allowing us to distinguish results from white
noise state preparation. A possible explanation of the failure
is related to the large circuit depth due to the consideration of
SWAP gates.

FIG. 16. Circuit to generate an AME(5,2) state on the ibmqx4
quantum computer provided by IBM. We optimized the circuit
according to connectivity restriction, in the sense of minimizing the
number of entangling gates. The minimal circuit depth achieved is
not possible to reproduce when considering the graph AME state.

FIG. 17. Quantum circuit required to prepare the five qubit GHZ
state, restricted to the architecture imposed by the five-qubit IBM
quantum computer ibmqx4. It is worth mentioning that the exper-
iment has been implemented in December 2017. Nowadays, the
restricted architecture of the computer ibmqx4 has changed.

The above results illustrate the difficultly in successfully
implementing AME states on currently existing quantum
computers; the large amount of genuine entanglement re-
quired by the states implies a fast decoherence process, re-
flected even when demanding effective simple measurement
in the computational basis. Our experiment reveals that there
are two possible factors involved: (i) although the quantum
circuit of Fig. 16 looks simple, a fast decoherence process
occurs due to the high amount of multipartite entanglement
required and (ii) the difficulty to successfully implement
the challenging state is due to physical limitations of the
chip.

Additionally, we implemented the GHZ state in the five-
qubit IBM quantum computer ibmqx4, in order to test viola-
tion of the five-qubit Mermin Bell inequality,

M5 = − (a1a2a3a4a5) + (a1a2a3a′
4a′

5 + a1a2a′
3a4a′

5

+ a1a′
2a3a4a′

5 + a′
1a2a3a4a′

5 + a1a2a′
3a′

4a5

+ a1a′
2a3a′

4a5 + a′
1a2a3a′

4a5 + a1a′
2a′

3a4a5

+ a′
1a2a′

3a4a5 + a′
1a′

2a3a4a5)

− (a1a′
2a′

3a′
4a′

5 + a′
1a2a′

3a′
4a′

5 + a′
1a′

2a3a′
4a′

5

+ a′
1a′

2a′
3a4a′

5 + a′
1a′

2a′
3a′

4a5), (24)

where a j and a′
k denote two dichotomic observables for five

quantum observers [12]. The theoretical state achieving the
maximal violation of the inequality is the GHZ state depicted
in Fig. 17. This inequality has a classical value C = 4 and
a quantum value Q = 16. Optimal settings are given by
a j = σx and a′

k = σy, for j, k = 1, 5. Despite the shortness
of the circuit shown in Fig. 17, the strong correlations de-
manded by genuine entanglement imply a fast decoherence
process, reflected in a reduction of the strength of violation
of the inequality. Nonetheless, the experimentally achieved
violation Qexpt = 6.90 ± 0.01 is large enough to confirm the
genuine nonlocal nature of the five-qubit quantum computer
ibmqx4.
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VI. DISCUSSION AND CONCLUSIONS

Quantum computing is a challenging field of research
in quantum mechanics that could change the way we do
computations in the future. The ultimate goal of a quantum
computer is to coherently control a relatively large number
of qubits in such a way that a multipartite quantum proto-
col can be successfully implemented, despite the inherent
decoherence of quantum information. It is natural to expect
that quantum over classical advantage in computing is di-
rectly related to the amount of quantum correlations exist-
ing in the involved qubits. It is thus a remarkably impor-
tant task to understand the behavior of quantum computers
when multipartite correlations take extreme values, e.g., when
the system is a genuinely multipartite maximally entangled
state.

In this work, we studied the simplest possible ways to
implement genuinely multipartite maximally entangled quan-
tum states, so-called absolutely maximally entangled (AME)
states, in order to test the strength of quantum correlations
in quantum computers. We explicitly showed a collection of
quantum circuits required to implement such states in some
simple scenarios composed by a few qubit systems. For higher
dimensional Hilbert spaces, where AME states of qubits do
not exist, we considered qudit AME states, where every qudit
was artificially generated by considering a group of qubits; see
Sec. III. For instance, the lack of the AME state for eight qubit
systems can be somehow compensated by considering the
AME state of four ququarts, where every ququart is composed
by two qubits. In this way, pairs of qubits are maximally
correlated with three complementary pairs of qubits, thus
exhibiting a maximal amount of quantum entanglement in a
sense; see Fig. 5.

One of the main problems when trying to prepare a mul-
tipartite quantum circuit over a quantum computer having a
restricted architecture is the circuit depth. This is so because
some bipartite quantum operations—like CNOT—are forbid-
den for some pairs of qubits, as they cannot communicate
directly. This physical limitation considerably extends the
length of quantum circuit, as typically one has to consider
swap operations to complement the lack of communication.
In order to deal with this problem, we designed a tool
that finds the optimal quantum circuit required to efficiently
implement AME states based on entropic majorization of
reductions; see Sec. IV. As an interesting observation, optimal
quantum circuits for AME states typically admit monotoni-
cally increasing entropies of reductions, implying that those
states can be efficiently generated with our algorithm in a
few steps; see Fig. 13. In other words, our algorithm finds
the minimal number of local and nonlocal quantum gates
required to implement those AME states, taking into account
the restrictions imposed by the architecture of a real quantum
chip.

As a further step, we implemented the GHZ state of five
qubits over a five-qubit quantum computer provided by IBM,
where we optimized the circuit according to the restrictions
imposed by the architecture. The figure of merit to quantify
the quality of the state preparation was the violation of the
five-qubit Mermin Bell inequality [12], which is maximally
violated by the GHZ state. We achieved the experimental

nonlocal value 6.90 ± 0.01, whereas the classical value is C =
4 and the quantum value is Q = 16. This result demonstrates
the genuine nonlocal nature of the quantum computer ibmqx4
designed by IBM, which improves a previously achieved
quantum value 4.05 ± 0.06 [16]. These negative results reflect
that the current state of the art of the considered quantum
computers is not yet ready to fully exploit the strongest
quantum correlations existing in five and six qubit quan-
tum computers. Nonetheless, we remark that some protocols
involving a partial amount of multipartite quantum entan-
glement have been successfully implemented in quantum
computers for a few [51,52] and large [53–55] number of
qubits.
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APPENDIX: C3–ADDER GATE CONSTRUCTION

To construct the C3–adder gate with qubits we should find
a sequence of gates that perform the following operations:

C3|00〉|00〉 = |00〉|00〉, C3|01〉|00〉 = |01〉|01〉,
C3|00〉|01〉 = |00〉|01〉, C3|01〉|01〉 = |01〉|10〉,
C3|00〉|10〉 = |00〉|10〉, C3|01〉|10〉 = |01〉|00〉,

C3|10〉|00〉 = |10〉|10〉,
C3|10〉|01〉 = |10〉|00〉,
C3|10〉|10〉 = |10〉|01〉. (A1)

As a result, besides from CNOT gates, we will need from
CCNOT gates. Three-qubit gates are difficult to implement ex-
perimentally, so we should decompose them in terms of one-
and two-qubit gates. The exact decomposition of a CCNOT gate
consists of 12 gates of depth. However, we can use instead an
approximate decomposition which differs from the previous
for some phase shifts of the quantum states other than zero
[39]. In particular, we can use the approximate CCNOT gates
shown in Fig. 11. The only changes that those gates introduce
with respect to the exact CCNOT gate are

CCNOTa|101〉 = −|101〉,
(A2)

CCNOTb|100〉 = −|100〉.
This is translated into the use of the controlled-Z gate in the
first approximation to obtain the desired result after applying
the gate sequence to construct the C3–adder. The sign intro-
duced in the CCNOTb gate is canceled after this sequence, so
the circuit remains equal as exact CCNOT gates were used.

We can keep saving more gates. Notice that the first two
C3–adders of the AME circuit of Fig. 9 are implemented
on qutrits in the state |0̄〉. Let’s write it explicitly. After the
Fourier transform on qutrit 1, the circuit applies the C3–adder

022342-10



QUANTUM CIRCUITS FOR MAXIMALLY ENTANGLED … PHYSICAL REVIEW A 100, 022342 (2019)

on qutrit 3:

(C̄3)13

[
1√
3

(|0̄〉 + |1̄〉 + |2̄〉)1 ⊗ |0̄〉3

]

= 1√
3

(|0̄0̄〉 + |1̄1̄〉 + |2̄2̄〉)13,

where the subindex 13 stands for the qutrits affected from this
operation. In qubits form

(C3)13

[
1√
3

(|00〉 + |01〉 + |10〉)1 ⊗ |00〉3

]

= 1√
3

(|00〉|00〉 + |01〉|01〉 + |10〉|10〉)13.

Then, the above operation consists uniquely in two CNOT

gates between even and odd qubits. Similarly, the next
C3–adder acting on qutrit 4 can be implemented in the

same way:

(C̄3)14

[
1√
3

(|0̄0̄〉 + |1̄1̄〉 + |2̄2̄〉)13 ⊗ |0̄〉4

]

= 1√
3

(|0̄0̄0̄〉 + |1̄1̄1̄〉 + |2̄2̄2̄〉)134,

which in the qubit form becomes

(C3)14

[
1√
3

(|00〉|00〉 + |01〉|01〉 + |10〉|10〉)13 ⊗ |00〉4

]

= 1√
3

(|00〉|00〉|00〉 + |01〉|01〉|01〉 + |10〉|10〉|10〉)134.

Again, the above state can be obtained from the previous using
two CNOT gates between even and odd qubits. This enormous
simplification cannot be extended to the other C3–adder gates,
as all elements of the basis appear once we implement the F3

gate on qutrit 2.
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