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Improved estimation accuracy of the 5-bases-based tomographic method
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It has been recently shown that for quantum systems with dimension d � 4 unknown pure states can be
estimated via measurements on five bases only. Here, we study by means of numerical experiments the estimation
accuracy of this method as a function of the dimension and the number of independently, identically prepared
copies, that is, ensemble size. We show that the accuracy of this method can be greatly improved by modifying
the estimation procedure, without increasing the number of measurement outcomes. The present estimation
accuracy becomes approximately d times smaller than the best accuracy achievable by tomographic methods for
unknown mixed states. We also study the case of pure states affected by a low level of white noise. We show that
the modified version of the method is very robust; that is, it remains to a large extent unaffected by the noise and
achieves an accuracy similar to the case without noise.
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I. INTRODUCTION

The main aim of quantum tomography (QT) is the accurate,
reliable estimation of unknown quantum states. In the field of
quantum information, QT has become a standard tool not only
for characterizing quantum states but also for assessing and
improving the performance of quantum processes, devices,
and experimental setups.

Quantum tomographic methods are based on a set of
measurements that are informationally complete onto the
set of states to be reconstructed, that is, measurements the
statistics of which univocally characterizes quantum states,
for instance, eigenvectors of generalized Gell-Mann matri-
ces [1,2], mutually unbiased bases [3–9], and symmetric
informationally complete positive operator-valued measures
[10–15], among many others [16–21]. These measurements
are carried out on an ensemble of identically, independently
prepared copies of the state to be estimated. The experimen-
tally acquired data are used to estimate probabilities, which
are subsequently employed to determine the unknown state.
However, finite statistic effects and unavoidable experimental
noise lead to operators that fail to be positive semidefinite.
In order to provide a physically acceptable state, the data
are postprocessed by means of statistical inference methods
such as maximum likelihood estimation [22–24] and Bayesian
inference [25].

The minimal number of total measurement outcomes re-
quired to determine an unknown d-dimensional quantum state
is d2, which is achieved by means of a generalized measure-
ment with d2 elements [11]. This quadratic scaling constitutes
a severe constraint for the experimental and computational
feasibility of quantum tomographic methods, which becomes
particularly dramatic for multipartite systems [26]. In this
case, the scaling is exponential in the number of components.
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It is possible to reduce the number of measurement outcomes
with the help of quantum tomographic methods that employ
a priori information about the unknown state such as, for in-
stance, purity [27,28], rank [29,30], distance with respect to a
previously known state [31], and states with special properties
[32]. The case of highly pure states is of particular importance.
Quantum information processes and devices, such as quantum
computers, prepare and coherently evolve pure states. In the
presence of small errors, the density matrix generated will
have a dominant eigenvalue and will be close to a pure state.
Randomized benchmarking techniques can be employed to
certify operation in this regime.

In addition to the total number of measurement outcomes,
ensemble size, that is, the total number N of independently,
identically prepared copies, is another costly resource in
experimental realizations. This is particularly important in
the case of higher-dimensional quantum systems, where the
higher the dimension becomes the smaller the ensemble size
becomes. This has led recently to the study of quantum to-
mography from the point of view of the achievable estimation
accuracy as a function of the ensemble size N and the dimen-
sion d and to the search for methods that achieve the highest
possible estimation accuracy. For instance, standard quan-
tum tomography achieves an accuracy, quantified through the
infidelity, of the orders of O(1/

√
N ) and O(1/N ) for pure

and mixed states, respectively. It is possible to increase the
accuracy for the determination of a pure state by means of
two-stage adaptive standard quantum tomography [33–36].
This method allows one to achieve a state independent accu-
racy of O(1/N ) at the expense of doubling the total number of
measurements and of requiring adaptive measurements.

Quantum Cramér-Rao [37] and Gill-Massar [38,39] in-
equalities can be employed to determine whether the accuracy
of a tomographic method approaches optimality or not. These
inequalities allow one to deduce lower bounds for the value of
several figures of merit for the tomographic accuracy, such as
infidelity, mean-square error, and trace distance. For example,
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two-stage adaptive standard quantum tomography saturates
the Gill-Massar lower bound for the infidelity and the mean-
square error for d = 2 [36]. In higher dimensions, this result
does not hold [34].

Here, we study the accuracy achieved by the process
of estimating unknown pure states of higher-dimensional
quantum systems. This is motivated by the observation that
the value of the Gill-Massar lower bound depends on the
number of parameters that describe the set of states to be
reconstructed. For a fixed ensemble size, unknown pure states
can be estimated with a higher accuracy than unknown mixed
states. In the particular case of the infidelity, the Gill-Massar
lower bound for the estimation of pure states is approximately
d2 times smaller than the lower bound for the estimation of
mixed states. Therefore, tomographic methods for pure states
might achieve a higher accuracy than tomographic methods
for mixed states, with the added benefit of requiring less
measurement outcomes.

In the present paper, we conduct a study of a tomographic
method specifically designed for unknown pure states [28].
This method is based on the measurement of five bases on any
dimension d � 4. This represents a favorable linear scaling
for the total number of measurement outcomes with the
dimension: a total number of 5d projective measurements is
required to determine any pure state. We employ the infidelity
between the unknown pure state and its estimate as the figure
of merit for accuracy [40]. This choice is dictated by the
agreement between the infidelity and the Bures distance in
the infinitesimal case [41]. Furthermore, the inverse of the
infidelity can be identified with the ensemble size required
to achieve a prescribed accuracy. Since the five-bases-based
quantum tomographic method (5BB-QT) always delivers a
pure quantum state as estimate, the infidelity is simply given
by the overlap between the unknown state and its estimate.
The 5BB-QT method requires projections onto the states of
the canonical base. The results of these measurements are
subsequently employed to adapt the remaining four bases.
The results of the projections onto these four bases are then
employed to solve a recursive system of equations, which
leads to an estimate of the unknown state. The estimation
accuracy of this method can be greatly improved. We intro-
duce three modifications of the 5BB-QT method, each one
leading to a better estimation accuracy. These modifications
of the 5BB-QT method differ in the procedure employed to
generate the estimate of the unknown state. For instance, it is
possible to employ the measurement results of the canonical
base to increase the estimation accuracy and the system of
equations can be suitably modified to reduce the propagation
of errors. The present tomographic methods, however, employ
the same number and type of measurements as the 5BB-QT
method.

Monte Carlo numerical experiments in a wide range of
dimensions show that the expected value of the infidelity, over
many determination attempts for a fixed unknown pure state,
achieved by the best performing modification of the 5BB-QT
method, has the scaling αd1.87/N , where α depends on the
dimension. This scaling is better than the best achievable
accuracy by means of a tomographic method for unknown
states that does not rely on a priori information, which is given
by the Gill-Massar lower bound of (d2 − 1)(d + 1)/4N .

We also study the important case of estimating highly
pure states. We consider the effect of white noise on the
estimation accuracy, which transforms pure states into mixed
states. For a purity of 0.98, we show that the original 5BB-QT
method stagnates; that is, an increase of the ensemble size
beyond a certain limit does not lead to an improvement of the
estimation accuracy. However, one of the modified versions
of this method achieves the scaling αd1.86/N0.97. This is still
better than the Gill-Massar lower bound in the inspected
ranges of dimension and ensemble size. This result is achieved
without increasing the number of measurement outcomes
required to characterize the unknown states. Thereby, our
results indicate that the 5BB-QT method can be modified
in such a way that it makes possible the highly accurate
estimation of pure quantum states even in the presence of
white noise. This estimation accuracy is d times better than
that achievable by tomographic methods for unknown mixed
states. Additionally, the estimation accuracy is nearly state
independent, and mean and median exhibit very close values,
which are contained in a very narrow interquartile range.

This paper is organized as follows. In Sec. II we briefly
introduce the 5BB-QT method. In Sec. III, we introduce
three variations of the 5BB-QT method that achieve a higher
estimation accuracy than the original method. In Sec. IV, we
briefly review some results from quantum estimation theory.
In Sec. V, by means of a series of Monte Carlo numerical
simulations, we analyze the tomographic accuracy achieved
by the 5BB-QT method and its variations. In Sec. VI, we study
the impact of white noise on the four tomographic methods.
In Sec. VII we summarize, comment on possible experimental
realizations, and conclude.

II. FIVE-BASES-BASED QUANTUM TOMOGRAPHIC
METHOD

An arbitrary pure state |ψ〉 of a d-dimensional quantum
system is given by the linear combination

|ψ〉 =
d−1∑
i=0

|ci|eiφi |i〉, (1)

where B0 = {|i〉} with i = 0, . . . , d − 1 is an arbitrary base of
the relevant Hilbert space. This state is completely specified
by the values of 2d − 2 real parameters: d − 1 amplitudes |ci|
and d − 1 phases φi.

Let us now consider the polarization identity (for complex
numbers) for two consecutive probability amplitudes ck and
ck+1, that is,

ckc∗
k+1 = 1

4 (|ck + ck+1|2 − |ck − ck+1|2

−i|ck + ick+1|2 + i|ck − ick+1|2), (2)

where | · | is the absolute value. The terms entering on the
right-hand side of Eq. (2) are proportional to the probability
of projecting the unknown state |ψ〉 onto the non-normalized
states |k〉 ± |k + 1〉 and |k〉 ± i|k + 1〉, respectively. This sug-
gests that unknown pure states can be reconstructed via the
iterative application of Eq. (2) on consecutive probability
amplitudes. The total set of states required by this procedure
to reconstruct any pure state in dimension d can be sorted in
five orthonormal bases [28]. These are given by B0 together
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with the four additional bases

B1 =
{
|ϕν

±〉1 = 1√
2

(|2ν〉 ± |2ν + 1〉)

}
,

B2 =
{
|ϕ̃ν

±〉2 = 1√
2

(|2ν〉 ± i|2ν + 1〉)

}
,

B3 =
{
|ϕν

±〉3 = 1√
2

(|2ν + 1〉 ± |2ν + 2〉)

}
,

B4 =
{
|ϕ̃ν

±〉4 = 1√
2

(|2ν + 1〉 ± i|2ν + 2〉)

}
, (3)

where ν ∈ [0, (d − 2)/2]. Operations with labels are carried
out modulo d . In the case of odd dimensions, the integer part
of (d − 2)/2 is considered and every basis is completed with
the state |d〉.

Defining coefficient p(k)
± with k even (odd) as the transition

probability from the unknown pure state |ψ〉 to the state |ϕk
±〉

in basis B1 (B3) and p̃ (k)
± with k even (odd) as the transition

probability from the unknown state to the state |ϕk
±〉 in basis

B2 (B4), the 5BB-QT method can be defined by the system of
equations

2ckc∗
k+1 = �k, (4)

with

�k = (p(k)
+ − p(k)

− ) + i( p̃ (k)
+ − p̃ (k)

− ). (5)

The solutions of Eq. (4), that is, the coefficients ck entering in
the unknown pure state |ψ〉, can be recursively calculated as

ck =
⎧⎨
⎩

c0
∏k/2−1

j=0
�∗

2 j+1

�2 j
, k > 0 even,

�∗
0

2c0

∏(k−3)/2
j=0

�∗
2 j+2

�2 j+1
, k > 1 odd,

(6)

where c1 = �∗
0/2c0 and c0 is obtained from the normalization

condition
∑

k |ck|2 = 1.
Let us note that bases Bi with i = 1, . . . , 4 allow one to

determine any pure state up to a null-measure set, which
corresponds to the statistically unlikely (d − 2)-dimensional
manifold of states with two or more nonconsecutive vanishing
amplitudes. Base B0 is employed to detect whether a state
belongs to this manifold or not. If the state belongs to the
manifold, then it can be reconstructed with the remaining four
bases but adapted to a known lower-dimensional subspace.

III. MODIFICATIONS OF THE FIVE-BASES-BASED
QUANTUM TOMOGRAPHIC METHOD

The 5BB-QT method employs the base B0 to decide
whether a state can be reconstructed with bases Bi or with an
adaptation of the bases Bi to a lower-dimensional subspace.
Thereby, unknown states are always estimated by means of
projections on bases Bi, or its adapted version, and the infor-
mation about the probability amplitudes of the unknown state
provided by the projections on the base B0 remains unused.

The estimate of the unknown state is given by the solution
Eq. (6) of the equation system Eq. (4). The solution Eq. (6)
is of iterative nature; that is, to estimate the coefficient ck we
need the information provided by the measurements on bases
Bi and, in addition, the value of all coefficients ck′ with k′ < k.
Thereby, estimation errors in the probabilities p(k)

± and p̃(k)
± are

propagated across the coefficients. Thus, the 5BB-QT method
might lead to estimates of low accuracy.

There are, however, modifications of the estimation pro-
cedure employed by the 5BB-QT method that can help to
increase significantly the estimation accuracy. For instance,
the base B0 allows for an easy estimation of the amplitudes
|ck|, where each one is estimated independently. Thus, we can
estimate the complex phases eiφk by means of the solution
Eq. (6) and combine them with the estimates of the amplitudes
|ck| provided by the base B0. This method is referred to as
the corrected 5BB-QT (C5BB-QT) method. Since we only
modify the estimation procedure, the C5BB-QT and 5BB-QT
methods employ the same measurements.

We can also modify the 5BB-QT method to reduce the im-
pact of small amplitudes in the accuracy of the estimation of
the complex phases, which in turn can improve the estimation
accuracy of the unknown states. First, we proceed to measure
the diagonal basis B0, which will give us an idea of the size
of each of the amplitudes |ci|. Then, we apply an operator Up

that permutes the probability amplitudes of the state, in such
a way that the state

|ψp〉 = Up|ψ〉 =
d−1∑
i=0

c′
i|i〉 (7)

has the amplitudes in decreasing order, that is, |c′
0| � |c′

1| �
. . . � |c′

d−1|. Finally, we apply the 5BB-QT method to this
new state, which will lead to an estimate |ψ ′

p〉. To obtain the
estimate |ψ ′〉, we only need to apply the inverse transfor-
mation U †

p . This method will be referred to as the improved
5BB-QT method (I5BB-QT).

In this modification of the 5BB-QT method, the total
number of measurements is still 5d , since the adaptation is
made after measuring the diagonal base B0, which provides
information about the modulus of the coefficients. The oper-
ator Up only permutes the coefficients, and due to this it does
not erase the information obtained before the adaptation. We
can thus now combine both modifications, that is, the direct
estimation of the amplitudes |ck| via the base B0 and the use
of the operator Up, to increase the accuracy in the estimation
of the complex phases eiφk . This will be referred to as the
improved corrected 5BB-QT method (IC5BB-QT).

As we will show in the next sections, the modification
of the 5BB-QT method leads to a significant increase in the
estimation accuracy, even in the case of estimating pure states
affected by white noise.

IV. QUANTUM ESTIMATION THEORY

In order to study the accuracy of the 5BB-QT method and
its variation, we employ Fisher’s theory of statistical estima-
tion. This leads to inequalities for the estimation uncertainty
of the parameters of a quantum state, which are obtained by
means of a measurement strategy. The relevant inequalities
are the Cramér-Rao inequality C � I−1 [37], the quantum
Cramér-Rao inequality C � J −1 [37], and the Gill-Massar
inequality Tr(IJ −1) � d − 1 [38], where C is the covariance
matrix, I is the classical Fisher information matrix, and J
is the quantum Fisher information matrix. These inequalities
consider the impact of a finite ensemble size on the estimation

022340-3



L. ZAMBRANO, L. PEREIRA, AND A. DELGADO PHYSICAL REVIEW A 100, 022340 (2019)

uncertainty and allow one to establish fundamental lower
bounds for several error measures, for instance, infidelity or
mean-square error. These bounds represent the ultimate accu-
racy permitted by the laws of quantum mechanics. However,
Fisher’s theory does not give hints about which measurements
allow one to attain the bounds: finding these measurements is
a contemporary challenging problem, especially in the mul-
tiparameter case, which is precisely the context of quantum
tomography.

We employ the infidelity as figure of merit [40]. This is
a simple and well-motivated distance between two quantum
states ρ and ρ̃ that is defined by

I (ρ, ρ̃ ) = 1 − Tr(
√√

ρρ̃
√

ρ )2. (8)

In particular, if the considered states are pure, that is, ρ =
|ψ〉〈ψ | and ρ̃ = |ψ̃〉〈ψ̃ |, the infidelity is reduced to the
overlap between states I (|ψ〉, |ψ̃〉) = 1 − |〈ψ |ψ̃〉|2. The infi-
delity has two important properties that motivate its use: for
infinitesimally close states, it agrees with the Bures metric
[41] and its inverse can be identified with the sample size
required to reach a prescribed accuracy [33]. Depending on
the measurement strategy and the number of independent
parameters, different lower bounds for the mean infidelity Ī
are known. The mean infidelity is the expected value of the
infidelity with respect to all possible estimates ρ̃ of a state ρ,
that is,

Ī (ρ) =
∫

I (ρ, ρ̃ ) f (ρ̃)dρ̃, (9)

where f (ρ̃) is the probability density function of obtaining the
estimate ρ̃.

For the estimation of pure states, which have 2(d − 1)
independent parameters, the ultimate accuracy is given by the
Gill-Massar bound [39]

I (pure)
GM = (d − 1)/N. (10)

For mixed states, which have d2 − 1 independent parameters,
and when the measurement strategy is restricted to individual
measurements, that is, measurements on single members of
the ensemble, the ultimate limit is the Gill-Massar bound [39]:

I (mixed)
GM = (d2 − 1)(d + 1)/4N. (11)

If collective measurements, that is, measurements that are car-
ried out on several members of the ensemble, are allowed, the
ultimate limit is the quantum Cramér-Rao bound ICR = (d2 −
1)/4N . Thereby, the accuracy achieved by a tomographic
method can be studied by comparing its mean infidelity Ī with
the corresponding bound.

In general, the behavior of the mean infidelity as func-
tion of the ensemble size can be fitted with the monomial
Ī (α, β ) = αNβ , so the tomographic protocols are character-
ized by its proportionality constant α and its scaling β. Let
us note that α and β might be functions of the dimension d .
For instance, it is known that standard quantum tomography
for a single qubit delivers a mean infidelity for pure states
that scales as O(1/

√
N ) while for mixed states it scales as

O(1/N ). Two-stage adaptive standard tomography achieves an
infidelity that scales as O(1/N ) for all quantum states [33,34].
In the particular case of d = 2, two-stage adaptive standard

quantum tomography saturates the Gill-Massar bound I (mixed)
GM

[39]. This, however, does not hold for d > 2.
Clearly, it is possible to determine pure states by means

of tomographic methods designed to reconstruct any quan-
tum state. These, however, are at disadvantage with respect
to tomographic methods specifically designed to determine
pure states, because the bound I (pure)

GM for pure states is lower
than the bound I (mixed)

GM for density matrices. For large d , the
difference between both bounds scales quadratically with the
dimension. Therefore, tomographic methods specifically de-
signed to determine pure states have the potential to achieve a
higher accuracy than the best tomographic method for density
matrices. Furthermore, tomographic methods for pure states
require less measurement outcomes than methods for mixed
states. Moreover, a priori information, such as purity, range,
or distance with respect to another state [31], reduces the
number of parameters of the states, decreases the value of the
bound, and, therefore, helps to formulate tomographic meth-
ods with a higher accuracy for specific families of quantum
states.

V. NUMERICAL SIMULATIONS

In this section we study the accuracy of the 5BB-QT,
C5BB-QT, I5BB-QT, and CI5BB-QT methods. In particular,
we analyze the dependence of the mean infidelity Ī (|ψ〉) with
respect to the ensemble size N and the dimension d of the
Hilbert space.

In order to estimate the value of the mean infidelity Ī (|ψ〉)
we resort to Monte Carlo simulations. For a given dimension
d , we generate a set 
d composed of 102 pure quantum
states that are drawn from a uniform distribution on the
Hilbert space. The determination of each state |ψi〉 ∈ 
d

(i = 1, . . . , 102) by means of each one of the tomographic
methods is simulated 100 times considering a finite ensemble
size N . This procedure generates for each state |ψi〉 100
estimates |ψ̃ j〉 and 100 values of the infidelity I (|ψi〉, |ψ̃ j〉)
( j = 1, . . . , 100).

Figure 1 displays, in logarithmic scale for both axes, the
behavior of the mean and the median of the infidelity Ī (|ψi〉)
as a function of N obtained by means of the 5BB-QT (solid
brown dots), C5BB-QT (solid red stars), I5BB-QT (solid blue
squares), and CI5BB-QT (light blue crosses) methods for four
randomly selected states |ψi〉 in 
d with d = 4. The mean
infidelity Ī (|ψi〉) is estimated according to the equation

Ī (|ψi〉) = 10−2
100∑
j=1

I (|ψi〉, |ψ̃ j〉). (12)

This quantity can be properly compared with the relevant
bounds provided by the Gill-Massar inequality. As is apparent
from the left column of Fig. 1, the CI5BB-QT and the I5BB-
QT methods reach in all four cases infidelities that are almost
indistinguishable. These methods also generate consistently
the lowest infidelities, or the highest estimation accuracies,
in the four inspected cases. The 5BB-QT and the C5BB-QT
methods provide mixed results. For a single state, which is
illustrated in the second row in Fig. 1, the 5BB-QT and the
C5BB-QT methods achieve infidelities that are comparable
to the ones achieved by the I5BB-QT and the CI5BB-QT

022340-4



IMPROVED ESTIMATION ACCURACY OF THE 5-BASES- … PHYSICAL REVIEW A 100, 022340 (2019)

FIG. 1. The left (right) column shows the mean (median) infi-
delity Ī (|ψ〉), as a function of the ensemble size N , obtained via the
5BB-QT (solid brown dots), C5BB-QT (solid red stars), I5BB-QT
(solid blue squares), and CI5BB-QT (light blue crosses) methods for
four randomly chosen states in d = 4. Shaded areas represent the
corresponding interquartile range.

methods. For the remaining three states (first, third, and fourth
rows in Fig. 1), the infidelities achieved by the 5BB-QT
and the C5BB-QT methods are approximately two orders of
magnitude higher than the ones achieved by the I5BB-QT and
the CI5BB-QT methods.

A similar result is illustrated in the right column of Fig. 1,
where the median of the infidelity Ī (|ψi〉) is displayed together
with the respective interquartile range (shaded areas). All
estimation methods generate similar values for the mean and
median infidelity, which is an indication of a symmetric prob-
ability distribution f (ρ̃ ). However, states where the 5BB-QT
and the C5BB-QT methods provide a higher infidelity are
characterized by a wider interquartile range, which indicates a

larger variability in comparison to the I5BB-QT and CI5BB-
QT methods. These two methods lead to similar interquartile
ranges for the four randomly selected states.

An additional feature of Fig. 1 is that mean and median in-
fidelity exhibit a linear dependence with the ensemble size N .
This suggests approximating Ī (|ψi〉) by the monomial αNβ ,
where coefficients α and β might depend on the dimension d
of the underlying Hilbert space.

Figure 2 displays, in logarithmic scale for both axes,
the average 〈Ī〉 (solid dots) of the mean infidelity Ī (|ψi〉),
generated by each one of the estimation methods, over the
set 
d as a function of the ensemble size N for dimension
d = 4, 8, 16, 32, and 64, from bottom to top. This average is
estimated as the mean of Ī (|ψi〉) on 
d , that is,

〈Ī〉 = 10−2
100∑
i=1

Ī (|ψi〉). (13)

Figure 2 also displays other relevant central tendency indi-
cators such as median (solid stars) and interquartile range
(shaded areas) for each dimension.

In all four subplots in Fig. 2, the mean and median of
Ī (|ψi〉) in 
d exhibit a linear dependence with the ensemble
size, which is different for each estimation method. Figure
2(a) displays the average accuracy generated by the 5BB-QT
method, which is characterized by a median that reaches
a lower value than the average. This shows that the 5BB-
QT method is characterized by a state dependent estimation
accuracy. The average of Ī (|ψi〉) is located approximately at
the upper border of the interquartile range, which indicates
that 25% of the states in 
d are estimated with an accuracy
lower than the average. The resting states are estimated with
a better accuracy. This occurs for all inspected dimensions.
Figure 2(b) shows the average accuracy that is generated by
means of the C5BB-QT method. As in the previous case, the
median reaches a lower value than the average. However, the
average tends to be located beyond the interquartile range,
which indicates the existence of estimation attempts charac-
terized by small estimation accuracies and a variability wider
than the one exhibited by the 5BB-QT method. Nevertheless,
the average infidelity achieved by the C5BB-QT method is
approximately 0.5 times smaller than the one achieved by
the 5BB-QT method. The situation in Figs. 2(c) and 2(d)
is radically different. Here, the I5BB-QT and CI5BB-QT
methods exhibit an average and a median of Ī (|ψi〉) that are
indistinguishable from each other. Furthermore, the shaded
areas depicting the interquartile range are very narrow fringes,
when compared to the cases of the 5BB-QT and C5BB-QT
methods in Figs. 2(a) and 2(b), respectively. This indicates
that the I5BB-QT and CI5BB-QT methods estimate all states
in 
d with an accuracy that is approximately independent of
the state to be estimated. This accuracy is then well repre-
sented by the average 〈Ī〉, which exhibits a lineal behavior
with the ensemble size. The CI5BB-QT method achieves
an average infidelity that is approximately 0.5 times smaller
than the one achieved by the I5BB-QT method. Thereby,
the estimation provided by the CI5BB-QT method achieves
the highest accuracy among the four estimation methods.
This can be one order of magnitude better than the one
exhibited by the 5BB-QT method. In higher dimensions, the
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(a) (b)

(c) (d)

FIG. 2. Mean (solid dots) and median (solid stars) of Ī on 
d as a function of ensemble size N , for dimension d =
4 (purple), 8 (green), 16 (yellow), 32 (blue), and 64 (red), obtained by means of the four different estimation methods: (a) 5BB-QT method,
(b) C5BB-QT method, (c) I5BB-QT method, and (d) CI5BB-QT method. Shaded areas represent interquartile range.

CI5BB-QT method performs even better. For instance, for
d = 64 the 5BB-QT method reaches an average infidelity
of 10−3 while the CI5BB-QT method achieves an average
infidelity of 3 × 10−5.

The estimation accuracy also depends on the dimension d
that characterizes the system to be estimated. This is studied
in Fig. 3, which illustrates the average (solid dots) and the
median (solid stars) of Ī (|ψi〉) over 
d , obtained by the four
estimation methods, as a function of d for ensemble sizes
N = 5 × 104, 105, 5 × 105, 106, 5 × 106, and 107 (from top
to bottom). As the dimension increases, the average and the
median decrease for a fixed ensemble size. The 5BB-QT and
C5BB-QT methods [Figs. 3(a) and 3(b), respectively] show an
average located above the median for all inspected dimensions
and ensemble sizes. In this case, however, average and median
do not exhibit a liner behavior with the dimension d . Thereby,
the accuracy of these two methods clearly departs from the
Gill-Massar lower bounds Ipure

GM and Imixed
GM , which exhibit a

lineal behavior with the dimension.
The situation is different in the case of the I5BB-QT

and CI5BB-QT methods, which is illustrated in Figs. 3(c)
and 3(d), respectively. As is apparent from these figures, the
I5BB-QT and CI5BB-QT methods are characterized by an
accuracy located approximately one order of magnitude below
the one achieved by the 5BB-QT method. However, unlike the

5BB-QT method and within the set of inspected dimensions,
the I5BB-QT and CI5BB-QT methods exhibit a linear behav-
ior of the average and the median of Ī (|ψi〉), akin to the Gill-
Massar lower bounds for pure and mixed states. This suggests
that the average infidelity of the I5BB-QT and CI5BB-QT
methods can be approximated by the monomial αdγ N−β .

In order to obtain the values of the coefficients α, β, and γ

for the best performing CI5BB-QT method, we approximate
the mean infidelity Ī (|ψi〉) by means of the function

log10[Ī (|ψi〉)] = log10(α) − β log10(N ) + γ log10(d ), (14)

which depends linearly on the logarithms of the ensemble size
N and of the dimension d . For a fixed value of dimension
d , we obtain 100 values of β, one for each state in 
d to
be estimated. The mean value β̄ of β in 
d is indicated in
Table I, together with the standard deviation, as a function of
the dimension. As is apparent from Table I, β̄ turns out to
be independent of the dimension and well represented by the
choice β̄ = 1. Similarly, Table I exhibits the value of the mean
value γ̄ of γ in 
d as a function of the ensemble size N . This
mean value is also independent of N and well represented by
the value γ = 1.87. Thereby, we can approximate the average
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(a) (b)

(c) (d)

FIG. 3. Mean (solid dots) and median (solid stars) of Ī on 
d as a function of the dimension d , obtained by means of the four different
estimation methods, for ensemble size N = 5 × 104 (purple), 105 (green), 5 × 105 (yellow), 106 (blue), 5 × 106 (red), and 107 (lightblue):
(a) 5BB-QT method, (b) C5BB-QT method, (c) I5BB-QT method, and (d) CI5BB-QT method. Shaded areas represent interquartile range.

infidelity achieved by the CI5BB-QT method as

〈Ī〉 ≈ α
d1.87

N
, (15)

where the values of α as a function of the dimension are dis-
played in Table I. Since the distribution of the mean infidelity
Ī (|ψi〉) is characterized by a very narrow interquartile range,
we can perform a further approximation, that is,

Ī (|ψi〉) ≈ α
d1.87

N
, (16)

TABLE I. Mean values and standard deviations of the coeffi-
cients α, β, and γ entering in the lineal fit of the mean infidelity,
Eq. (14), generated by the CI5BB-QT method.

d ᾱ ± �α β̄ ± �β N γ̄ ± �γ

4 1.73 ± 0.01 0.99 ± 0.01 107 1.87 ± 0.05
8 1.76 ± 0.01 1.00 ± 0.01 5 × 106 1.87 ± 0.04
16 1.79 ± 0.005 1.00 ± 0.02 106 1.87 ± 0.04
32 1.81 ± 0.02 1.00 ± 0.02 5 × 105 1.87 ± 0.05
64 1.71 ± 0.02 0.99 ± 0.02 105 1.86 ± 0.04

5 × 104 1.87 ± 0.05

for all |ψi〉 in 
d . The previous result can be appropri-
ately compared to the Gill-Massar lower bound for pure and
mixed states. The mean infidelity generated by the CI5BB-
QT method, Eq. (16), compares favorably with the lower
bound Imixed

GM , since the latter behaves, for d large, as Imixed
GM ≈

d3/4N . For all inspected dimensions and states, the CI5BB-
QT method achieves a mean infidelity that is much lower
than Imixed

GM .
Thereby, the CI5BB-QT method leads to an estimation

accuracy for unknown pure states that surpasses the best
possible estimation accuracy for unknown mixed states, with
the added benefit of requiring many fewer measurement out-
comes. The CI5BB-QT method exhibits another interesting
feature; namely, it produces a mean and a median that are
nearly indistinguishable and contained in a very narrow in-
terquartile range.

As we shall see in the next section, the advantages obtained
via the CI5BB-QT method hold even in the presence of white
noise.

VI. PERFORMANCE OF THE 5BB-QT METHOD AND ITS
MODIFICATIONS UNDER NOISE

The tomographic methods here studied have been de-
signed to estimate pure states. Nevertheless, experimentally
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generated states are mixed. It is possible, however, to ex-
perimentally generate highly pure states. Here, we study the
accuracy of the 5BB-QT, C5BB-QT, I5BB-QT, and CI5BB-
QT methods in this regime. In particular, we will assume
that the states to be reconstructed are affected by white
noise.

Unknown pure states |ψ〉 affected by white noise are
transformed into mixed states of the form

ρ = (1 − λ)|ψ〉〈ψ | + λ

d
I, (17)

where I is the identity operator and λ is the mixing parameter.
The purity Tr(ρ2) of this state and the parameter λ ∈ [0, 1] are
related by the expression

λ = 1 −
√

Tr(ρ2) − 1/d

1 − 1/d
. (18)

Since the initially unknown pure state |ψ〉 becomes a
mixed state ρ, an estimate of |ψ〉 can be obtained by estimat-
ing ρ via a quantum tomographic method for unknown mixed
states and the error model for white noise. This procedure
increases the number of measurement outcomes and decreases
the achievable estimation accuracy. However, as we will show,
it is possible to employ the CI5BB-QT method to obtain
an estimate of |ψ〉 in the presence of white noise without a
significant decrease in the estimation accuracy; that is, the
estimation procedure reaches an accuracy that is very close
to the case without white noise.

Let us now consider the impact of the white noise on
the 5BB-QT method defined by Eqs. (4)–(6). The transition
probabilities p′

k affected by the white noise are related to the
transition probabilities pk of the unknown state |ψ〉 by the
relation

p′
k = (1 − λ)pk + λ

d
, (19)

which leads to the noisy �′
k given by

�′
k = (1 − λ)�k. (20)

Thereby, the system of equations (4) has now the solution

c′
k =

⎧⎨
⎩

c′
0

∏k/2−1
j=0

�′∗
2 j+1

�′
2 j

= c′
0

c0
ck, k > 0 even,

�′∗
0

2c′
0

∏(k−3)/2
j=0

�′∗
2 j+2

�′
2 j+1

= (1 − λ) c0
c′

0
ck, k > 1 odd,

(21)

where c′
0 = √

p′
0 and c′

1 = �′∗
0 /2c′

0 = (1 − λ)c0c1/c′
0. Since

the coefficients c′
0, c0, and (1 − λ) are positive, the probabil-

ity amplitudes c′
k and ck have the same complex phase. Thus,

the 5BB-QT method in the presence of white noise provides
an estimate |ψ ′〉 of |ψ〉 = ∑

k ckeiφk |k〉 given by

|ψ ′〉 =
√

(1 − λ)c2
0 + λ

d

c0

∑
k�0 even

|ck|eiφk |k〉

+ (1 − λ)c0√
(1 − λ)c2

0 + λ
d

∑
k�1 odd

|ck|eiφk |k〉, (22)

or equivalently

|ψ ′〉 =
√

(1 − λ)c2
0 + λ

d

c0
|ψ〉

− λ

dc0

√
(1 − λ)c2

0 + λ
d

∑
k�1 odd

|ck|eiφk |k〉. (23)

Calculating the inner product between |ψ〉 and |ψ ′〉, we have

〈ψ |ψ ′〉 =
√

(1 − λ)c2
0 + λ

d

c0

− λ

dc0

√
(1 − λ)c2

0 + λ
d

∑
k�1 odd

|ck|2. (24)

Taking the square of Eq. (24), we obtain

|〈ψ |ψ〉|2 = 1 − λ + λ

dc2
0

(
1 − 2

∑
k�1 odd

|ck|2
)

+ λ2

d2c2
0

[
(1 − λ)c2

0 + λ
d

]( ∑
k�1 odd

|ck|2
)2

. (25)

Thereby, the infidelity between |ψ〉 and |ψ ′〉 is given by the
expression

I (|ψ〉, |ψ ′〉) = λ − λ

dc2
0

(
1 − 2

∑
k�1 odd

|ck|2
)

− λ2

d2c2
0

[
(1 − λ)c2

0 + λ
d

]( ∑
k�1 odd

|ck|2
)2

, (26)

which is bigger than zero for λ 	= 0. Thus, the estimate |ψ ′〉
provided by the 5BB-QT method will be different from the
original unknown state |ψ〉, as long as λ 	= 0, which is a great
disadvantage of the protocol.

Figure 4 displays the mean (solid dots) and the me-
dian (solid stars) of Ī (|ψi〉) onto 
d as a function of
the ensemble size N , obtained by means of the four es-
timation methods, with a constant purity of 0.98. Fig-
ure 4(a) shows the accuracy achieved by the 5BB-QT
method. As is apparent from this figure, the average 〈Ī〉
becomes a constant independent of the ensemble size N
for all dimensions. Thereby, an increase in the ensemble
size does not lead to an increase in the estimation accuracy
and, consequently, the 5BB-QT method stagnates. The av-
erage infidelity 〈Ī〉 tends to localize asymptotically around
〈Ī〉 ≈ 10−3 for all dimensions. This conveys a severe loss of
accuracy with respect to the case of unitary purity [see Fig.
2(a)]. For instance, in the particular case of d = 4, the average
infidelity is increased from 10−6 to 10−3 for N = 5 × 10−7.
Figure 4(a) also exhibits an increase of several orders of
magnitude in the gap between the average and the median of
the infidelity Ī (|ψ〉) and the average is located clearly outside
of the interquartile range. In contrast, the case of perfectly
pure states shows that average and median have the same
order of magnitude and are within the interquartile range [see
Fig. 2(a)]. This indicates a large increase in the variability of
the estimation accuracy of the 5BB-QT method when the un-
known pure states are affected by white noise. The stagnation
of the method can be explained as the result of error sources
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(a) (b)

(c) (d)

FIG. 4. Mean (solid dots) and median (solid stars) of Ī on states in 
d as a function of the ensemble size N under white noise of Eq. (17)
with purity of 0.98, for dimension d = 4 (purple), 8 (green), 16 (yellow), 32 (blue), and 64 (red), obtained by means of the four different
estimation methods: (a) 5BB-QT method, (b) C5BB-QT method, (c) I5BB-QT method, and (d) CI5BB-QT method. Shaded areas represent
interquartile range.

that behave differently with respect to the ensemble size. In
the case free of white noise, the only error source is the finite
character of the ensemble size, which introduces an error in
the estimation of the probabilities required to estimate the un-
known state. As the ensemble size increases, the finite statis-
tics effects become less severe and the estimation accuracy
increases. In the limit case of an infinite ensemble size, the
5BB-QT method delivers an estimate that agrees with the un-
known state. The error introduced by the white noise behaves
differently. It cannot be decreased by increasing the ensemble
size, as Eq. (26) shows. Thus, an increase in the ensemble size
leads to an increase in the accuracy up to a certain point where
the white noise becomes the dominating error source. Beyond
this point, estimation accuracy cannot be increased.

The performance of the 5BB-QT method in the presence of
white noise can be greatly improved. This is done by noting
that the measurement results allows us to estimate the value of
the unknown parameter λ. Let us consider the following two
measured probabilities from the basis B0:

p′
k = (1 − λ)|ck|2 + λ

d
, (27)

p′
k+1 = (1 − λ)|ck+1|2 + λ

d
, (28)

with k arbitrary. Recalling that �′
k = 2c′

kc′∗
k+1 = 2(1 −

λ)ckc∗
k+1, we have that

|�′
k|2 = 4(1 − λ)2|c0|2|c1|2. (29)

The value of �′
k is obtained from the bases Bi with i =

1, . . . , 4. Solving Eqs. (27) and (28) for |ck|2 and |ck+1|2,
respectively, and replacing in Eq. (29) we obtain

|�′
k|2 = 4

(
p′

k − λ

d

)(
p′

k+1 − λ

d

)
. (30)

The previous expression becomes a quadratic equation for the
parameter λ, that is,

λ2

d2
− λ

d
(p′

k + p′
k+1) + p′

k p′
k+1 − |�′

k|2
4

= 0. (31)

The solution of this equation is given by

λk = d

2
[p′

k + p′
k+1 −

√
(p′

k − p′
k+1)2 + |�′

k|2], (32)

where we chose the solution with negative sign since λ must
be a small quantity. Let us note that in the case of a pure state,
that is, λ = 0, Eq. (32) becomes |�′

k|2 = 4p′
k p′

k+1. This shows
that the tomographic method allows one to test the purity
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assumption [28]. If the experimentally acquired data originate
in a mixed state, the previous condition cannot be satisfied.
The estimation of λ can be carried out with any value of k and
will lead to the same result λk = λ. However, due to statistical
fluctuations, we propose to estimate λ as the average of the
{λk}, that is,

λ = 1

d

d∑
k=1

λk. (33)

This choice increases the robustness of the method. There-
after, the value of λ can be employed to correct the coefficients
c′

k . The corrected coefficients c′′
k are given by

c′′
k =

√
p′

k − λ/d

1 − λ

c′
k

|c′
k|

, (34)

while the final estimate of |ψ〉 is

|ψ ′′〉 =
∑

k

c′′
k |k〉. (35)

The effect of this estimate on the C5BB-QT method is dis-
played in Fig. 4(b). Clearly, there is a large improvement
in the estimation accuracy when compared to the case of
the 5BB-QT method. The lineal behavior with respect to the
ensemble size is restored, there are no signs of stagnation,
the average and the median of Ī (|ψi〉) on 
d are similar,
and the interquartile range is narrow. In fact, the achieved
estimation accuracy resembles very much the case of the
C5BB-QT method without white noise, which is displayed in
Fig. 2(b). We stress the fact that this good result is achieved by
noting that the projections onto the five bases Bi allow us to
obtain the value of λ. This allows one to correct the action of
the white noise onto the probabilities, Eq. (19), employed to
estimate the unknown state. Furthermore, it is not necessary
to increase the total number of measurement outcomes.

The effect of white noise on the I5BB-QT method is
illustrated in Fig. 4(c), which depicts a different scenario for
the same amount of purity as in Figs. 4(a) and 4(b). Average
and median of Ī (|ψi〉) on 
d are nearly indistinguishable and
the interquartile range is of the same order of magnitude
as the average. The first three values of ensemble size N
exhibit values of 〈Ī〉 that are nearly identical to those in Fig.
2(c). Thereby, in this range of ensemble size the I5BB-QT
method seems to be unaffected by the presence of noise. As
the ensemble size increases, the average infidelity 〈Ī〉 for the
lowest dimensions enters into an asymptotic regime, as in the
case of the 5BB-QT method in Fig. 4(a). Nevertheless, the loss
of accuracy of the I5BB-QT method is less severe than in the
case of the 5BB-QT method. Let us recall that the I5BB-QT
method does not employ the probability amplitudes obtained
via projections onto the base B0.

The results obtained by the C5BB-QT and I5BB-QT meth-
ods suggest that the CI5BB-QT method might achieve a good
performance. Indeed, the best estimation accuracy is achieved
by the CI5BB-QT method, as illustrated in Fig. 4(d). The
lineal behavior is recovered and stagnation does not arise.
The average and the median of Ī (|ψi〉) on 
d have very close
values that are contained within a very narrow interquartile.
The hallmark of the CI5BB-QT method is that it achieves

TABLE II. Mean values and standard deviations of the coeffi-
cients α, β, and γ entering in the lineal fit of the mean infidelity,
Eq. (14), generated by the CI5BB-QT method in the presence of
white noise at a purity level of 0.98.

d ᾱ ± �α β̄ ± �β N γ̄ ± �γ

4 1.4 ± 0.1 1.00 ± 0.02 107 1.9 ± 0.2
8 0.98 ± 0.04 0.99 ± 0.05 5 × 106 1.9 ± 0.2
16 1.0 ± 0.1 0.96 ± 0.07 106 1.9 ± 0.1
32 1.23 ± 0.07 0.95 ± 0.05 5 × 105 1.9 ± 0.1
64 1.50 ± 0.08 0.95 ± 0.04 105 1.8 ± 0.1

5 × 104 1.8 ± 0.1

an estimation accuracy in the presence of white noise that is
almost the same as in the case without white noise depicted in
Fig. 2(d). This shows that the CI5BB-QT method can reliably
estimate with a high accuracy pure states affected by white
noise. As in the case of the CI5BB-QT method in the absence
of white noise, we can obtain an approximate expression
for the mean infidelity in the presence of white noise. This
approximation is given by

Ī (|ψi〉) ≈ α
d1.86

N0.97
, (36)

for all |ψi〉 in 
d , where the values of ᾱ, β̄, and γ̄ as functions
of the dimension and the ensemble size are indicated in
Table II. Thereby, the estimation accuracy achieved by the
CI5BB-QT method surpasses the estimation accuracy of any
tomographic method designed to estimate unknown mixed
states via separable measurements.

The tomographic schemes here studied are based on the
projection of the unknown state onto a set of bases. Another
error model arises naturally by assuming that the experimental
setup cannot project onto the states of the bases but onto
very close states. Let us assume that |φ〉 is one of the states
of the five bases. Then, the experimental setup implements a
projection onto the state

|φ̃〉 = |φ〉 + c|η〉√
1 + 2cRe(〈φ|η〉) + c2

, (37)

where c is a non-negative constant and the state |η〉 is chosen
uniformly in the corresponding Hilbert space. The normaliza-
tion constant takes account of the nonorthogonality between
|φ〉 and |η〉.

The probability of projecting the unknown state |ψ〉 onto
|φ̃〉 is given by the expression

|〈ψ |φ̃〉|2 = |〈ψ |φ〉|2 + 2cRe(〈φ|ψ〉〈φ|η〉) + c2|〈ψ |η〉|2
1 + 2cRe(〈φ|η〉) + c2

.

(38)

Since the states |η〉 are randomly chosen, we calculate the
average of |〈ψ |φ̃〉|2, that is,∫

dη|〈ψ |φ̃〉|2 = 1

1 + c2
|〈ψ |φ〉|2 + c2

1 + c2

1

d
, (39)

where we have employed the properties
∫

dη|η〉 = 0 and∫
dη|η〉〈η| = (1/d )I of the Haar measure dη on the Hilbert
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space of dimension d . With the identification λ = c2/(1 +
c2), the previous expression becomes identical to the white-
noise model of Eq. (19). Therefore, both error models—white
noise and approximate projections—are identical, as long as
λ and c are constant.

VII. DISCUSSION AND CONCLUSIONS

We have studied the accuracy achieved in the process of
estimating pure quantum states of finite-dimensional quantum
systems. We have resorted to the 5BB-QT method, which was
specifically designed to reconstruct pure states. This method
is based on the projection of the unknown state onto five
different bases regardless of the dimension of the system.
Also, the method does not require the use of postprocessing
and can certify whether the data originate from a pure state or
not. As figure of merit for the estimation accuracy we employ
the mean infidelity Ī (|ψ〉), that is, the infidelity averaged over
a large set of estimates for a fixed unknown state |ψ〉. The
5BB-QT method is characterized by a state dependent accu-
racy, where the mean infidelity Ī (|ψ〉) can fluctuate two orders
of magnitude. In fact, average and median of Ī (|ψ〉) over 
d

lead to values that can differ by one order of magnitude, which
reveals the variability of the estimation accuracy provided
by the 5BB-QT method. The average 〈Ī〉 as a function of
ensemble size N exhibits a linear behavior that resembles the
Gill-Massar lower bound I (mixed)

GM .
The 5BB-QT method employs a recursive relation to esti-

mate the absolute value and the phase of the probability ampli-
tudes that define a pure state. This recursion is such that small
probability amplitudes lead to a poor estimation of the abso-
lute values and the phases, which in turn lead to a decrease in
the estimation accuracy of the method. In order to improve the
estimation accuracy of the 5BB-QT method we have proposed
three modifications for the estimation procedure employed
by the 5BB-QT method, each one of them reaching a higher
accuracy. Instead of estimating the absolute value of the prob-
ability amplitudes via the recursive equation system, we can
simply employ the information obtained by the projections
onto the base B0. This allows for an independent estimate
of each absolute value, which increases the accuracy. The
information provided by the base B0 can also be employed
to increase the estimation of the complex phases by ordering
the absolute values of the probability amplitudes in decreasing
order and solving thereafter the recursive equations system.
These two modifications of the estimation procedure lead to
the CI5BB-QT method, which exhibits a significant increase
in the estimation accuracy. The estimation accuracy provided
by the CI5BB-QT method exhibits an average over the set
of pure states that is indistinguishable from the median,
both being central tendency indicators contained in a very
narrow interquartile range. This is an indication of a state
independent accuracy. In fact, the estimation accuracy of the
CI5BB-QT method can be approximated by the expression
Ī (|ψ〉) = αd1.87/N . Thus, the CI5BB-QT method provides an
accuracy that is at least one order of magnitude higher than
the one provided by the 5BB-QT method. Furthermore, the
CI5BB-QT method surpasses the Gill-Massar lower bound
I (mixed)
GM for the estimation accuracy of unknown mixed states,

which behaves asymptotically as O(d3/N ).

We have also studied the accuracy achieved in the process
of estimating pure quantum states in the presence of a small
level of white noise, which transforms pure states into mixed
ones. In this case, the 5BB-QT method exhibits a severe
loss of accuracy and stagnation; that is, after a certain value
of ensemble size the estimation accuracy becomes constant
and cannot be improved by a further increase in N . At a
purity of 0.98, the average 〈Ī〉 generated by the 5BB-QT
method enters into stagnation for an ensemble size of ap-
proximately 107. In this regime, the infidelity stays within the
interval [10−3, 10−2], independently of the dimension. This
represents, for some dimensions, a dramatic increase in the
infidelity by two orders of magnitude, when compared to the
noiseless case. The median also shows signs of stagnation
reaching values in the interval [10−5, 10−4], albeit for a higher
value of N ≈ 109. The gap between the average and the
median of Ī (|ψ〉) also increases in such a way that the average
is several orders of magnitude beyond the interquartile range.
This indicates an increase in the variability of the estimation
accuracy. Thus, a purity of 0.98 severely decreases the estima-
tion accuracy of the 5BB-QT method. The CI5BB-QT method
behaves differently. We have shown that the information pro-
vided by the projections onto the base B0 allows one to correct
the errors introduced by the white noise. This correction
leads to an estimation accuracy for the CI5BB-QT method
that resembles very closely the one achieved in the absence
of white noise. In the presence of white noise generating a
purity of 0.98, the CI5BB-QT method achieves an estimation
accuracy that can be approximated as Ī (|ψ〉) = αd1.86/N0.97.
This also surpasses the Gill-Massar lower bound I (mixed)

GM in the
inspected ranges of dimension and ensemble size.

The 5BB-QT method was experimentally realized in di-
mension d = 8 by means of a single spatial qudit. This is
generated by discretizing the transverse momentum of a single
photon with the help of diffractive optical elements, such as
physical slits [42] or spatial light modulators [9]. The 5BB-
QT and CI5BB-QT methods employ the same number and
type of measurements. Thereby, spatial qudits are a feasible
scenario for the implementation of the CI5BB-QT method in
higher dimensions. Recently, in a comparative study among
various tomographic methods [43], the 5BB-QT method was
implemented in dimension d = 16 by means of the coupled
electron-nuclear spins of individual 133Cs atoms in the elec-
tronic ground state. This is also a feasible test bed for the
CI5BB-QT method.

Finally, we would like to comment on a peculiarity of the
5BB-QT method and of its variations. These allow one to de-
termine whether the experimentally acquire data originate in a
pure state or a mixed one; that is, it is possible to test the purity
assumption. This is done by testing the conditions |�′

k|2 =
4p′

k p′
k+1 for k = 0, . . . , d − 1. This is possible whenever we

have an infinite ensemble size. If this is not the case, it is
possible to conceive the existence of a variety of mixed states
that, within the inaccuracy of the inferred probabilities, exhibit
the same statistics of the estimate provided by the 5BB-QT
method or its variations. This leads naturally to the question
of the existence and characterization of mixed estimates that
are closer to the unknown pure state than the pure estimate
[44]. From the numerical point of view, we can resort to
maximum likelihood estimation on the space of mixed states.
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Since the set of five bases lacks informational completeness at
the level of the full set of density matrices, the solution will
not be unique. Within the set of solutions we can search for
the mixed state which minimizes the infidelity with respect
to the unknown state. An alternative approach is the use of
the the so-called physical imposition operator [45], which
constructs states with predefined statistics. These two methods
might allow us to study the question of the existence of
more accurate mixed estimates that are close to the unknown
state. However, these approaches fail to provide a mixed
estimate, since they require knowledge about the state to be
determined. We can, however, study this problem in a reduced
set of density matrices. As we have shown in the previous
section, the CI5BB-QT method can deliver an estimate |ψ̃〉
for a pure state |ψ〉 that is transformed into the mixed state
ρ = (1 − λ)|ψ〉〈ψ | + (λ/d )I by the action of white noise.
Equivalently, we can construct an estimate for ρ given by
ρ̃ = (1 − λ̃)|ψ̃〉〈ψ̃ | + (λ̃/d )I . The infidelity of ρ̃ with re-
spect to |ψ〉 is given by 〈ψ |̃ρ|ψ〉 = (1 − λ)|〈ψ |ψ̃〉|2 + (λ/d ),
where we have assumed that λ and its estimate λ̃ are very
close. This infidelity will be smaller than the infidelity
of |ψ〉 with respect to |ψ̃〉 whenever 1 − |〈ψ |ψ̃〉|2 > (d −
1)/d . However, for moderate ensemble sizes, the CI5BB-QT

method already delivers infidelities 1 − |〈ψ |ψ̃〉|2 which are
much smaller than (d − 1)/d . Consequently, the estimate ρ̃

can be ruled out in the case of a larger ensemble size. This is
an interesting problem that deserves independent study.

In summary, the estimation procedure of the 5BB-QT
method can be suitably modified to achieve a higher estima-
tion accuracy, which surpasses the estimation accuracy of any
tomographic method designed to estimate unknown mixed
states. This method, the CI5BB-QT method, preserves the
estimation accuracy even in the presence of a small level of
white noise in a wide range of dimensions and ensemble sizes,
with the added benefit of a total number of projective measure-
ments that scales linearly with the dimension. Experimental
realizations of the CI5BB-QT method in high dimensions are
well within reach of today’s experimental setups.
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Karimi, D. Koutný, J. Řeháček, Z. Hradil, G. Leuchs, and L. L.
Sánchez-Soto, Phys. Rev. Lett. 122, 100404 (2019).

[22] Z. Hradil, Phys. Rev. A 55, R1561 (1997).
[23] S. M. Tan, J. Mod. Opt. 44, 2233 (1997).
[24] M. S. Kaznady and D. F. V. James, Phys. Rev. A 79, 022109

(2009).
[25] R. Blume-Kohout, New J. Phys. 12, 043034 (2010).
[26] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-kar,

M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt,
C. Becher, O. Gühne, W. Dür, and R. Blatt, Nature (London)
438, 643 (2005).

[27] S. T. Flammia, A. Silberfarb, and C. Caves, Found. Phys. 35,
1985 (2005).

[28] D. Goyeneche, G. Cañas, S. Etcheverry, E. S. Gómez, G. B.
Xavier, G. Lima, and A. Delgado, Phys. Rev. Lett. 115, 090401
(2015).

[29] D. Gross, Y. K. Liu, S. T. Flammia, S. Becker, and J. Eisert,
Phys. Rev. Lett. 105, 150401 (2010).

[30] C. H. Baldwin, I. H. Deutsch, and A. Kalev, Phys. Rev. A 93,
052105 (2016).

[31] N. Li, C. Ferrie, J. A. Gross, A. Kalev, and C. M. Caves, Phys.
Rev. Lett. 116, 180402 (2016).

022340-12

https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.66.012303
https://doi.org/10.1103/PhysRevA.66.012303
https://doi.org/10.1103/PhysRevA.66.012303
https://doi.org/10.1103/PhysRevA.66.012303
https://doi.org/10.1073/pnas.46.4.570
https://doi.org/10.1073/pnas.46.4.570
https://doi.org/10.1073/pnas.46.4.570
https://doi.org/10.1073/pnas.46.4.570
https://doi.org/10.1088/0305-4470/14/12/019
https://doi.org/10.1088/0305-4470/14/12/019
https://doi.org/10.1088/0305-4470/14/12/019
https://doi.org/10.1088/0305-4470/14/12/019
https://doi.org/10.1016/0003-4916(89)90322-9
https://doi.org/10.1016/0003-4916(89)90322-9
https://doi.org/10.1016/0003-4916(89)90322-9
https://doi.org/10.1016/0003-4916(89)90322-9
https://doi.org/10.1103/PhysRevA.77.060303
https://doi.org/10.1103/PhysRevA.77.060303
https://doi.org/10.1103/PhysRevA.77.060303
https://doi.org/10.1103/PhysRevA.77.060303
https://doi.org/10.1088/0031-8949/2011/T143/014010
https://doi.org/10.1088/0031-8949/2011/T143/014010
https://doi.org/10.1088/0031-8949/2011/T143/014010
https://doi.org/10.1088/0031-8949/2011/T143/014010
https://doi.org/10.1103/PhysRevLett.105.030406
https://doi.org/10.1103/PhysRevLett.105.030406
https://doi.org/10.1103/PhysRevLett.105.030406
https://doi.org/10.1103/PhysRevLett.105.030406
https://doi.org/10.1364/OE.19.003542
https://doi.org/10.1364/OE.19.003542
https://doi.org/10.1364/OE.19.003542
https://doi.org/10.1364/OE.19.003542
https://doi.org/10.1007/BF01807146
https://doi.org/10.1007/BF01807146
https://doi.org/10.1007/BF01807146
https://doi.org/10.1007/BF01807146
https://doi.org/10.1063/1.1737053
https://doi.org/10.1063/1.1737053
https://doi.org/10.1063/1.1737053
https://doi.org/10.1063/1.1737053
https://doi.org/10.1103/PhysRevA.78.042338
https://doi.org/10.1103/PhysRevA.78.042338
https://doi.org/10.1103/PhysRevA.78.042338
https://doi.org/10.1103/PhysRevA.78.042338
https://doi.org/10.1103/PhysRevA.83.051801
https://doi.org/10.1103/PhysRevA.83.051801
https://doi.org/10.1103/PhysRevA.83.051801
https://doi.org/10.1103/PhysRevA.83.051801
https://doi.org/10.1103/PhysRevX.5.041006
https://doi.org/10.1103/PhysRevX.5.041006
https://doi.org/10.1103/PhysRevX.5.041006
https://doi.org/10.1103/PhysRevX.5.041006
https://doi.org/10.1103/PhysRevA.88.012112
https://doi.org/10.1103/PhysRevA.88.012112
https://doi.org/10.1103/PhysRevA.88.012112
https://doi.org/10.1103/PhysRevA.88.012112
https://doi.org/10.1103/PhysRevA.86.012118
https://doi.org/10.1103/PhysRevA.86.012118
https://doi.org/10.1103/PhysRevA.86.012118
https://doi.org/10.1103/PhysRevA.86.012118
https://doi.org/10.1103/PhysRevA.82.032115
https://doi.org/10.1103/PhysRevA.82.032115
https://doi.org/10.1103/PhysRevA.82.032115
https://doi.org/10.1103/PhysRevA.82.032115
https://doi.org/10.1103/PhysRevA.99.012336
https://doi.org/10.1103/PhysRevA.99.012336
https://doi.org/10.1103/PhysRevA.99.012336
https://doi.org/10.1103/PhysRevA.99.012336
https://doi.org/10.1103/PhysRevA.96.062328
https://doi.org/10.1103/PhysRevA.96.062328
https://doi.org/10.1103/PhysRevA.96.062328
https://doi.org/10.1103/PhysRevA.96.062328
https://doi.org/10.1364/OL.44.002558
https://doi.org/10.1364/OL.44.002558
https://doi.org/10.1364/OL.44.002558
https://doi.org/10.1364/OL.44.002558
https://doi.org/10.1103/PhysRevLett.122.100404
https://doi.org/10.1103/PhysRevLett.122.100404
https://doi.org/10.1103/PhysRevLett.122.100404
https://doi.org/10.1103/PhysRevLett.122.100404
https://doi.org/10.1103/PhysRevA.55.R1561
https://doi.org/10.1103/PhysRevA.55.R1561
https://doi.org/10.1103/PhysRevA.55.R1561
https://doi.org/10.1103/PhysRevA.55.R1561
https://doi.org/10.1080/09500349708231881
https://doi.org/10.1080/09500349708231881
https://doi.org/10.1080/09500349708231881
https://doi.org/10.1080/09500349708231881
https://doi.org/10.1103/PhysRevA.79.022109
https://doi.org/10.1103/PhysRevA.79.022109
https://doi.org/10.1103/PhysRevA.79.022109
https://doi.org/10.1103/PhysRevA.79.022109
https://doi.org/10.1088/1367-2630/12/4/043034
https://doi.org/10.1088/1367-2630/12/4/043034
https://doi.org/10.1088/1367-2630/12/4/043034
https://doi.org/10.1088/1367-2630/12/4/043034
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1007/s10701-005-8658-z
https://doi.org/10.1007/s10701-005-8658-z
https://doi.org/10.1007/s10701-005-8658-z
https://doi.org/10.1007/s10701-005-8658-z
https://doi.org/10.1103/PhysRevLett.115.090401
https://doi.org/10.1103/PhysRevLett.115.090401
https://doi.org/10.1103/PhysRevLett.115.090401
https://doi.org/10.1103/PhysRevLett.115.090401
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1103/PhysRevA.93.052105
https://doi.org/10.1103/PhysRevA.93.052105
https://doi.org/10.1103/PhysRevA.93.052105
https://doi.org/10.1103/PhysRevA.93.052105
https://doi.org/10.1103/PhysRevLett.116.180402
https://doi.org/10.1103/PhysRevLett.116.180402
https://doi.org/10.1103/PhysRevLett.116.180402
https://doi.org/10.1103/PhysRevLett.116.180402


IMPROVED ESTIMATION ACCURACY OF THE 5-BASES- … PHYSICAL REVIEW A 100, 022340 (2019)

[32] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross,
S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu,
Nat. Commun. 1, 149 (2010).

[33] D. H. Mahler, L. A. Rozema, A. Darabi, C. Ferrie, R. Blume-
Kohout, and A. M. Steinberg, Phys. Rev. Lett. 111, 183601
(2013).

[34] L. Pereira, L. Zambrano, J. Cortés-Vega, S. Niklitschek, and A.
Delgado, Phys. Rev. A 98, 012339 (2018).

[35] G. I. Struchalin, E. V. Kovlakov, S. S. Straupe, and S. P. Kulik,
Phys. Rev. A 98, 032330 (2018).

[36] Z. Hou, H. Zhu, G. Xiang, C.-F. Li, and G.-C. Guo, Npj
Quantum Inf. 2, 16001 (2016).

[37] M. G. A. Paris, Int. J. Quantum. Inform. 07, 125 (2009).

[38] R. D. Gill and S. Massar, Phys. Rev. A 61, 042312 (2000).
[39] H. Zhu and M. Hayashi, Phys. Rev. Lett. 120, 030404 (2018).
[40] R. Jozsa, J. Mod. Opt. 41, 2315 (1994).
[41] M. Hübner, Phys. Lett. A 163, 239 (1992).
[42] L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C.

Saavedra, and S. Padua, Phys. Rev. Lett. 94, 100501 (2005).
[43] H. Sosa-Martinez, N. K. Lysne, C. H. Baldwin, A. Kalev,

I. H. Deutsch, and P. S. Jessen, Phys. Rev. Lett. 119, 150401
(2017).

[44] We would like to acknowledge the anonymous referee for
pointing out this problem.

[45] D. M. Goyeneche and A. C. de la Torre, Phys. Rev. A 77,
042116 (2008).

022340-13

https://doi.org/10.1038/ncomms1147
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1103/PhysRevLett.111.183601
https://doi.org/10.1103/PhysRevLett.111.183601
https://doi.org/10.1103/PhysRevLett.111.183601
https://doi.org/10.1103/PhysRevLett.111.183601
https://doi.org/10.1103/PhysRevA.98.012339
https://doi.org/10.1103/PhysRevA.98.012339
https://doi.org/10.1103/PhysRevA.98.012339
https://doi.org/10.1103/PhysRevA.98.012339
https://doi.org/10.1103/PhysRevA.98.032330
https://doi.org/10.1103/PhysRevA.98.032330
https://doi.org/10.1103/PhysRevA.98.032330
https://doi.org/10.1103/PhysRevA.98.032330
https://doi.org/10.1038/npjqi.2016.1
https://doi.org/10.1038/npjqi.2016.1
https://doi.org/10.1038/npjqi.2016.1
https://doi.org/10.1038/npjqi.2016.1
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1103/PhysRevA.61.042312
https://doi.org/10.1103/PhysRevA.61.042312
https://doi.org/10.1103/PhysRevA.61.042312
https://doi.org/10.1103/PhysRevA.61.042312
https://doi.org/10.1103/PhysRevLett.120.030404
https://doi.org/10.1103/PhysRevLett.120.030404
https://doi.org/10.1103/PhysRevLett.120.030404
https://doi.org/10.1103/PhysRevLett.120.030404
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1016/0375-9601(92)91004-B
https://doi.org/10.1016/0375-9601(92)91004-B
https://doi.org/10.1016/0375-9601(92)91004-B
https://doi.org/10.1016/0375-9601(92)91004-B
https://doi.org/10.1103/PhysRevLett.94.100501
https://doi.org/10.1103/PhysRevLett.94.100501
https://doi.org/10.1103/PhysRevLett.94.100501
https://doi.org/10.1103/PhysRevLett.94.100501
https://doi.org/10.1103/PhysRevLett.119.150401
https://doi.org/10.1103/PhysRevLett.119.150401
https://doi.org/10.1103/PhysRevLett.119.150401
https://doi.org/10.1103/PhysRevLett.119.150401
https://doi.org/10.1103/PhysRevA.77.042116
https://doi.org/10.1103/PhysRevA.77.042116
https://doi.org/10.1103/PhysRevA.77.042116
https://doi.org/10.1103/PhysRevA.77.042116

