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Zero-error quantum hypothesis testing in finite time with quantum error correction
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Under the unitary evolutions it is always possible to distinguish different Hamiltonians with zero-error
probability within a finite time. At the presence of noises, however, the error probability does not always go
to zero within a finite time. In this article, we give a necessary and sufficient condition for Markovian dynamics
to achieve zero-error quantum hypothesis testing in a finite time. We show that when the condition fails, the
maximal fidelity of the output states under two different Hamiltonians, aided with arbitrary control operations, is
always lower bounded by an exponential function, which remains positive at any finite time; zero-error quantum
hypothesis testing thus cannot be achieved within any finite time. However, when the condition holds, quantum
error corrections can be used to correct the noises and partially maintain the coherent evolutions, zero-error
quantum hypothesis testing can then be achieved within a finite time.
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I. INTRODUCTION

Hypothesis testing, which studies the distinguishability
between a set of models, plays a central role in science
and technology. A common scenario of hypothesis testing
is to differentiate between the null hypothesis, h0, and the
alternative hypothesis, h1. In the classical setting, h0 and h1

are typically represented by two distributions, and one needs
to determine the hypothesis by observing the data generated
from the distribution. The error probability of the hypothesis
testing typically decreases with the number of data. In par-
ticular, when the data are generated independently, the error
probability decreases exponentially with the number of data.
This is captured by the Chernoff bound, the Stein bound,
the Hoeffding bound, and various other bounds in classical
hypothesis testing [1–3] and is widely used in classical esti-
mation and communications. Specifically with a finite number
of data, zero-error hypothesis testing is only possible between
orthogonal distributions.

This has been extended to the distinguishing of quantum
states, pioneered by Helstrom, Holevo, and Yuen et al. [4–6].
The quantum versions of the Stein, Chernoff, and Hoeffd-
ing bounds on the error probability of hypothesis testing of
the quantum states have been obtained [7–13]. Specifically
with n identical copies of the states, ρ⊗n

1 and ρ⊗n
2 , the error

probability of distinguishing between ρ1 and ρ2 decreases
exponentially with n in the asymptotical limit. Similarly for
a finite n, zero-error hypothesis testing is only possible when
ρ1 and ρ2 are orthogonal.

A much more complicated case of the hypothesis test-
ing is to distinguish quantum dynamics. This includes the
distinguishability of quantum states as a special case when
one fixes the initial state and the evolution time. How-
ever, many different strategies, such as quantum comb and
continuous measurement [14,15], can be employed to im-
prove the successful probability of the hypothesis testing. In
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general, arbitrary operations are allowed during the evolu-
tion to improve the successful probability. These additional
degrees of freedom lead to many different features in the
hypothesis testing of quantum dynamics. For example, it is
possible to perfectly distinguish between two nonorthogonal
quantum channels with a finite number of queries [16–26].

The hypothesis testing of quantum dynamics can be di-
vided according to discrete and continuous evolutions. For the
distinguishability of discrete quantum channels, it is known
that unitary channels can always be perfectly distinguished
with a finite number of queries [16–19]. The condition for per-
fect distinguishability of two general quantum channels with
a finite number of queries has also been obtained [21]. The
optimal strategy, however, is computationally hard. Chernoff,
Stein, and Hoeffding types of bounds for quantum dynamics
that cannot be perfectly distinguished within a finite number
of queries remain largely unknown. By using identical probe
states repeatedly, one can obtain some upper bounds on the
error probability of distinguishing quantum channels, which
has an exponential form in the asymptotical limit. A general
approach would be trying to get lower bounds, which also
decrease exponentially in the asymptotical limit [27], and then
reducing the gap between the exponents in the upper and
lower bounds to get a tight bound.

In many practical applications we are interested in the dis-
tinguishability of the Hamiltonians that govern the continuous
evolutions. A typical situation is to distinguish between two
Hamiltonians, H0 and H1, which represent the null hypothesis
and the alternative hypothesis. This is a fundamental problem
and has many applications, for example, the detection of a
field can be modeled as the hypothesis testing between H0 and
H1, where H0 is the Hamiltonian without the field and H1 is
the Hamiltonian with the field. Under unitary evolution, the
optimal strategy has been obtained and zero-error hypothesis
testing can always be achieved within a finite time [28,29]. In
the presence of noises, however, little is known. In this article,
we study the distinguishability of the Hamiltonians in the
presence of Markovian noises. We first review previous results
on the distinguishability of the Hamiltonians under unitary
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dynamics, and then we provide a necessary and sufficient
condition on the Markovian noisy dynamics under which
zero-error quantum hypothesis testing can be achieved within
a finite time. Detailed proofs are then presented.

II. QUANTUM HYPOTHESIS UNDER CONTINUOUS
UNITARY DYNAMICS

When there are no noises, the dynamics governed by
H0 and H1 can be described by dρ

dt = −i[Hp, ρ], p = 0 and
1 (where we have taken h̄ = 1). Besides the freedom of
choosing the initial probe state, the evolution time, and the
measurement, one can also add controls during the evolution
such as

dρ

dt
= −i[Hp + Hc, ρ], p = 0 and 1, (1)

where Hc is the added control Hamiltonian. Ancilla systems
and measurements during the evolution can also be used.
Under the unitary dynamics, perfect distinguishability of the
Hamiltonians can always be achieved within a finite time
[28,29]. Specifically the optimal strategy is to choose the
control as Hc = −H0 (or Hc = −H1) and prepare the initial
probe state as |λmax〉+|λmin〉√

2
, where |λmax / min〉 is the eigenstate of

H1 − H0 corresponding to the maximal/minimal eigenvalue.
Under this optimal strategy, the fidelity between the states
changes as | cos λmax−λmin

2 t |, which reaches zero at the time
tmin = π

λmax−λmin
. Thus under the unitary dynamics, zero-error

quantum hypothesis testing can always be achieved within a
finite time.

III. CONDITION ON ZERO-ERROR QUANTUM
HYPOTHESIS TESTING IN A FINITE TIME

In practice, noises are unavoidable. At the presence of
noises, zero-error hypothesis testing of quantum dynamics is
not always achievable within any finite time. For example, if
the two dynamics are given by dρ

dt = −i[Hp, ρ] + γ (σzρσz −
ρ), with H0 = σz and H1 = 2σz, respectively, here σx, σy,
and σz are Pauli matrices. Then with the control Hc = −σz

and the initial state |0〉+|1〉√
2

, the fidelity between the quan-

tum states changes as e−4γ t 2e4γ t +cos 2t−1
2 � ce−4γ t , where c =

mint�0
2e4γ t +cos 2t−1

2 > 0. It is lower bounded by an exponen-
tial function which is always positive at any finite time; the
states thus cannot become orthogonal within any finite time.
This holds even if arbitrary operations are allowed during the
evolution. Intuitively, one can understand this by taking the
dephasing as the fluctuations of the fields with a white noise
spectrum. Due to this fluctuation the fields can overlap with
nonzero probabilities even if they have different mean values;
this then makes the perfect distinguishability of the two fields
impossible within any finite time.

We extend this intuition to the quantum hypothesis test-
ing of the Hamiltonians under general Markovian dynamics
described by the master equations as

dρ

dt
= −i[Hp, ρ]+

m∑
k=1

(
LkρL†

k−
1

2
{L†

k Lk, ρ}
)

,

p = 0 and 1. (2)

FIG. 1. (a) Sequential scheme. General scheme for quantum
hypothesis testing with ancillary systems and arbitrary operations;
here Oi is any physical operation. When Oi is taken as the SWAP gate
between the system and the ith ancilla, the scheme reduces to the
(b) parallel scheme where a large entangled state can be prepared
with each part going through the evolution independently.

And arbitrary control operations can be added during the
evolution. We provide a necessary and sufficient condi-
tion under which the zero-error quantum hypothesis test-
ing can be achieved within a finite time. In particular, we
show that when H1 − H0 ∈ S = span{I, Lk, L†

k , L†
j Lk| j, k =

1, . . . , m} the states under the two hypotheses cannot become
orthogonal within any finite time. More specifically we show
the maximal fidelity of the states is always lower bounded
by an exponential function which remains positive at any
finite time. This marks a step forward to form the quantum
Chernoff type of bounds on continuous quantum evolutions.
On the other hand if H1 − H0 �∈ S, zero-error hypothesis
testing can be achieved within a finite time, and it turns out
that H1 − H0 �∈ S is exactly the condition for the quantum
error correction [30–37]. A quantum error correction code can
thus be constructed to eliminate the noise while (partially)
maintaining the coherent evolutions. The evolutions are then
essentially reduced to the unitary evolutions and the maximal
fidelity of the states changes as a trigonometry function which
can reach zero at a finite time.

A. Necessary

We first show that when H1 − H0 ∈ S zero-error hypoth-
esis testing cannot be achieved within any finite time. We
divide the whole evolution period into small time intervals,
each with a period of dt , and allow the use of ancillas
and arbitrary operations between the intervals, as shown in
Fig. 1. With dt → 0, this can approximate any strategies
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to arbitrary precision. We then show that under the optimal
strategy for the perfect discrimination of discrete quantum
channels with arbitrary dt , the maximal fidelity of the states
is always lower bounded by an exponential function which
remains positive at any finite time. We note that a finite time
is different from a finite number of queries. By letting dt → 0,
an infinite number of queries can be employed in a finite time.
Without loss of generality the optimal strategy for quantum
hypothesis testing in a finite time can always be assumed to
contain an infinite number of queries, i.e., assume dt → 0,
as one can always choose to do nothing between some time
intervals to simulate the strategies with only a finite number of
queries.

We use the maximal fidelity of the quantum states to quan-
tify the orthogonality between the states [21]. The maximal
fidelity between two quantum states, ρ0 and ρ1, is defined
as

F̃ (ρ0, ρ1) = max{|〈ψ |φ〉|, |ψ〉 ∈ supp(ρ0), |φ〉 ∈ supp(ρ1)},
(3)

where supp(ρ) denotes the support of ρ, which is the subspace
spanned by the eigenvectors of ρ with nonzero eigenvalues. A
few important properties of the maximal fidelity will be used.

First, F̃ (ρ0, ρ1) � F (ρ0, ρ1) where F (ρ0, ρ1) = Tr
√

ρ
1
2

0 ρ1ρ
1
2

0

is the fidelity, and if ρ0 and ρ1 are pure states then F̃ (ρ0, ρ1) =
F (ρ0, ρ1). Second, F (ρ0, ρ1) = 0 if and only if F̃ (ρ0, ρ1) =
0; i.e., ρ0 and ρ1 are orthogonal if and only if F̃ (ρ0, ρ1) = 0.
Third, a necessary and sufficient condition for the existence of
a physical operation that can deterministically transfer ρ0 to a
pure state |ψ0〉 and ρ1 to another pure state |ψ1〉 is F̃ (ρ0, ρ1) �
|〈ψ0|ψ1〉| [21,38].

To achieve the zero-error hypothesis testing, the maximal
fidelity needs to reach zero. The optimal procedure is then to
decrease the maximal fidelity as fast as possible [21]. Suppose
after the kth time interval, the two output states under the opti-
mal strategy are ρ0(kdt ) and ρ1(kdt ). We denote the maximal
fidelity of the two states as q(kdt ) = F̃ [ρ0(kdt ), ρ1(kdt )].
The optimal strategy is to transform ρ0(kdt ) and ρ1(kdt ) to
the two states |ψ〉 and |φ〉 with 〈ψ |φ〉 = q(kdt ) and proceed
with the evolution for the next dt [21]. These two states should
be chosen optimally so the maximal fidelity at (k + 1)dt is
minimized, i.e.,

q[(k + 1)dt] = min
〈ψ |φ〉=q(kdt )

F̃
[
Edt

0 (|ψ〉〈ψ |), Edt
1 (|φ〉〈φ|)], (4)

where Edt
i is the dynamics with the ith Hamiltonian which

evolved for the period of dt ,

Edt
0 (|ψ〉〈ψ |) =

m∑
k=0

E0k|ψ〉〈ψ |E†
0k,

Edt
1 (|φ〉〈φ|) =

m∑
k=0

E1k|φ〉〈φ|E†
1k . (5)

Here E00 = I − iH0dt − 1
2

∑m
k=1 L†

k Lkdt , E10 = I − iH1dt −
1
2

∑m
k=1 L†

k Lkdt , and E0k = E1k = Lk

√
dt (k = 1, . . . , m). We

note that additional ancillary systems are allowed, in which
case |ψ〉 and |φ〉 can be entangled states of the system + an-
cilla, and the evolution Ei is understood as Ei ⊗ I with
Ei acting on the system and the identity operator acting

on the ancilla. The optimal strategy typically requires the
use of the ancilla, but the derivation here works for both
cases.

In principle one can follow the procedure and obtain q(t ).
However, in general it is not possible to solve q(t ) analytically.
And due to the numerical precision, numerical simulations
typically cannot be used to decide whether q(t ) has reached
zero (numerical simulation also can only simulate the evolu-
tion for a finite time). Instead we derive an analytical lower
bound of q(t ), which is our main contribution. In particular,
we show that when H1 − H0 ∈ S, q(t ) is lower bounded by
an exponential function which is always positive at any finite
time.

We first note that given a pure state |ψ〉, under a quantum
channel E (|ψ〉〈ψ |) = ∑

k Ek|ψ〉〈ψ |E†
k , any pure state in the

support of E (|ψ〉〈ψ |) can be written as
∑

k αkEk|ψ〉; i.e., the
support of E (|ψ〉〈ψ |) is the space spanned by {Ek|ψ〉}. This
can be seen by choosing an equivalent Kraus operator so that
Ek|ψ〉 and Ej |ψ〉 are orthogonal to each other when k �= j. If
they are not orthogonal initially, we can find an equivalent set
of the Kraus operators by diagonalizing the Hermitian matrix
A whose k jth entry is Ak j = 〈ψ |E†

k E j |ψ〉. Let 
 = U †AU ,
with 
 being a diagonal matrix and U being a unitary matrix,
and define the equivalent Kraus operators as Ẽk = ∑

i uikEi.
Then 〈ψ |Ẽ†

k Ẽ j |ψ〉 = ∑
i,p u∗

ikAipup j = 
kkδk, j , where δk, j =
1 when k = j and δk, j = 0 when k �= j. Thus, E (|ψ〉〈ψ |) =∑

k Ẽk|ψ〉〈ψ |Ẽ†
k are decompositions with orthogonal vectors

Ẽk|ψ〉, which can be viewed as eigenvalue decompositions
with the nonzero Ẽk|ψ〉 as the eigenvectors (some Ẽk|ψ〉 can
be zero vectors which then do not contribute to the decom-
position). Any pure state in the support can then be written
as

∑
k α̃kẼk|ψ〉 = ∑

k,i α̃kuikEi|ψ〉 = ∑
i(
∑

k α̃kuik )Ei|ψ〉 =∑
i αiEi|ψ〉, where αi = ∑

k α̃kuik . The support of E (|ψ〉〈ψ |)
is thus spanned by {Ek|ψ〉} (with ancillas this is under-
stood as {Ek ⊗ I|ψ〉}, with |ψ〉 being a state of system +
ancilla).

A pure state in the support of Edt
0 (|ψ〉〈ψ |) can then be

written as

|ψ (dt )〉 = 1

N0

m∑
k=0

akE0k|ψ〉, (6)

where N0 is the normalization factor. Similarly we can write
any pure state in the support of Edt

1 (|φ〉〈φ|) as

|φ(dt )〉 = 1

N1

m∑
k=0

bkE1k|φ〉. (7)

Assume |ψ〉 and |φ〉 have been chosen optimally
under the constraint 〈ψ |φ〉 = q(t ) to achieve the
min F̃ [Edt

1 (|ψ〉〈ψ |), Edt
2 (|φ〉〈φ|)], then up to the order of

dt we have

q(t + dt ) = F̃
[
Edt

1 (|ψ〉〈ψ |), Edt
2 (|φ〉〈φ|)]

= max
{|ψ (dt )〉,|φ(dt )〉}

|〈ψ (dt )|φ(dt )〉|

� 1

N0N1
|〈ψ |a∗

0b0

[
I− i(H1 − H0)dt −

m∑
k=1

L†
k Lkdt

]
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+
m∑

k=1

(a∗
k b0

√
dtL†

k + a∗
0bk

√
dtLk )

+
m∑

k, j=1

a∗
k b jL

†
k L jdt |φ〉| + O

(
dt

3
2
)
. (8)

We can find useful lower bounds for q(t + dt ) by choosing
{ak} and {bk} properly. Intuitively, if H1 − H0 ∈ S, the
contribution of H1 − H0 can be canceled by the noisy terms,
which then limits the speed of decay for q(t ). We refer the
interested readers to Appendix A for the detailed procedure
of how this is achieved; here we just state the result. If
H1 − H0 ∈ S, we can write i(H1 − H0) + ∑m

k=1 L†
k Lk =∑m

k, j=0 Bk jL
†
k L j , where we denote L0 = I and Bk j are the

coefficients of the expansion. Then there exists a constant
Q, which is determined by {Bk j} and the Lindblad operators
{Lk}, such that q(t + dt ) � q(t )(1 − Qdt ). Specifically, we
have Q = max{(m + 1)2|B00|, (m + 1)2|Bl0|‖Ll‖, (m + 1)2

|B0l |‖Ll‖, (m+1)2|Bl p|(‖L†
l Ll ‖+‖L†

pLp‖+4‖Ll ‖‖Lp‖)
2 |l, p = 1, . . . , m},

here ‖·‖ denote the operator norm which equals the maximal
singular value (see Appendix A for detailed derivation). This
then gives a lower bound on q(t ) as q(t ) � e−Qt q(0) = e−Qt .
Thus, at any finite time, q(t ) is always lower bounded by a
positive value of ε = e−Qt . Zero-error quantum hypothesis
testing is then not possible within any finite time.

B. Sufficiency

We then show that when H1 − H0 �∈ S, quantum error
correction can be employed to render the dynamics to unitary
evolution; zero-error hypothesis testing can thus be achieved
at a finite time. The condition H1 − H0 ∈ S can thus be used
to define the “nonorthogonal” evolutions.

We first consider the condition for the quantum error
correction that can correct the noises described by

dρ

dt
=

m∑
k=1

(
LkρL†

k − 1

2
{L†

k Lk, ρ}
)

. (9)

We assume the quantum error correction can be executed
much faster than the evolution. The noisy effect within a small
time period dt can be described by the Kraus operators as

ρ(t + dt ) =
m∑

k=0

E0ρ(t )E†
0 , (10)

where E0 = I − 1
2

∑m
j=1 L†

j L jdt and Ej = Lj

√
dt ( j =

1, . . . , m). If PC is the projection onto the error-correcting
code space, it needs to satisfy the condition of the quantum
error correction as PCE†

k E jPC = αk jPC , ∀k, j ∈ {0, 1, . . . , m},
where αk j are some constants [30–35]. Up to the order of
dt , this condition can be expressed in terms of the Lindblad
operators as

PCL†
k L jPC = βk jPC, ∀k, j ∈ {0, 1, . . . , m}, (11)

where L0 = I . Under the quantum error correction, the ef-
fective Hamiltonian on the code subspace is PCHpPC (p = 0
and 1). In order to be able to distinguish H0 and H1 in the
code space, their effective Hamiltonians should be different
on the code space, which requires PC (H1 − H0)PC �∝ PC ; i.e.,

the effective evolution on the code space cannot differ just
by a global phase. This requires H1 − H0 �∈ S, and when
H1 − H0 �∈ S an error correction code can also be explicitly
constructed. For completeness, we provide the construction
of the quantum error-correcting code in Appendix B, which
follows Ref. [36].

IV. EXAMPLES

With the obtained condition one can immediately tell that
zero-error quantum hypothesis testing is not possible if the
noises are full rank, i.e., when S is the whole space. For exam-
ple, in the presence of depolarizing noise where the evolutions
are given by dρ

dt = −i[Hp, ρ] + ∑
k=x,y,z γ (σkρσ

†
k − ρ), with

p = 0 and 1. In this case, S = span{I, σx, σy, σz} contains all
2 × 2 matrices, perfect distinguishing of H0 and H1 within any
finite time is thus not possible. This includes the cases with
ancillary systems, as S ⊗ I contains H1 ⊗ I − H0 ⊗ I . It also
includes the parallel strategy where N qubits can be prepared
in an entangled state and each qubit evolves according to the
master equation, as the parallel strategy can be taken as a
suboptimal strategy which can be realized by taking SWAP op-
erations between the system qubit and N − 1 ancillary qubits,
as shown in Fig. 1. Perfect distinguishability thus cannot be
achieved within any finite time under the parallel strategy.
This can also be checked directly by taking the space spanned
by the Lindblad operators for the independent evolution of N
qubits under the depolarizing noise; it is easy to check that
S contains the differences of the Hamiltonian that acts on the
N qubits independently, perfect distinguishability is thus not
possible. When H1 − H0 �∈ S, quantum error correction can be
employed to achieve zero-error quantum hypothesis testing.
For example, under the dephasing noise, the evolutions are
dρ

dt = −i[Hp, ρ] + γ (σzρσ †
z − ρ). If H0 = σz and H1 = σx,

we can use an ancillary qubit to construct the error-correcting
code as {| + +〉, | − −〉}, where |±〉 are the eigenvectors of σx.
In this case, PC = | + +〉〈+ + | + | − −〉〈− − |, we then have
PCσzPC = 0 and PCσxPC = | + +〉〈+ + | − | − −〉〈− − |. If
we prepare the initial state as |++〉+|−−〉√

2
, then the output states

under the evolutions with the quantum error correction are
|ψ0(t )〉 = |++〉+|−−〉√

2
and |ψ1(t )〉 = eit |++〉+e−it |−−〉√

2
, which are

orthogonal to each other at t = π
2 . However, if H0 = σz + σx

and H1 = σx, then under the dephasing noise it is not possible
to achieve perfect distinguishability within a finite time. This
implies that under the parallel strategy where N qubits can be
prepared in any entangled state and each qubit evolves under
the evolution, the zero-error quantum hypothesis testing is not
possible within a finite time, as the parallel strategy can be
taken as a suboptimal strategy, as shown in Fig. 1. Without
the derived condition this will be hard to see.

V. DISCUSSION

Quantum error correction has been widely used in many
applications. The closest application to quantum hypothesis
testing is quantum metrology [36,37,39–46], which can be
regarded as a special case of quantum hypothesis testing
when H0 and H1 are taken as two neighboring Hamilto-
nians as H (x) and H (x + dx), with x as the parameter to
be estimated and dx as a small shift of the parameter. If
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∂xH (x) = limdx→0
H (x+dx)−H (x)

dx �∈ S, quantum error correc-
tion can be applied to render the dynamics to unitary evolu-
tions, and the Heisenberg scaling can be achieved where the
quantum Fisher information (QFI) scales quadratically with
time as ct2 [36,37].

The Hamiltonians in quantum hypothesis testing can be
more general and do not need to be of neighboring Hamil-
tonians. Even for neighboring Hamiltonians, the scaling of
the QFI has no distinguishing power on zero-error hypothesis
testing. The QFI, J (t ), is related to the output states of the two
evolutions as 2 − 2F [ρx(t ), ρx+dx(t )] ≈ 1

4 J (t )dx2 [47], from
which we have F [ρx(t ), ρx+dx(t )] ≈ 1 − 1

8 J (t )dx2. Different
from quantum metrology where dx can be varied and taken as
arbitrarily small, in quantum hypothesis testing we have two
fixed Hamiltonians; dx is thus also fixed. Even the QFI can
only scale linearly as ct ; this does not exclude the possibility
that the two states become orthogonal when t � 8

cdx2 . In fact,
as long as J (t ) is unbounded, the no go of zero-error quantum
hypothesis testing can not be obtained from the QFI.

VI. SUMMARY

We showed that, for the hypothesis testing of the Hamilto-
nians under the same Markovian noises, zero-error hypothesis
testing can be achieved within a finite time if and only if H1 −
H0 �∈ S = span{I, L†

k , Lk, L†
j Lk|k, j = 1, · · · m}, which coin-

cides with the condition for quantum error correction. When
H1 − H0 ∈ S, the evolutions are in some sense nonorthogo-
nal, which resembles the hypothesis testing of nonorthogonal
distributions and nonorthogonal quantum states. In particular
when H1 − H0 ∈ S the maximal fidelity of the output states is
lower bounded by an exponential function which remains pos-
itive at any finite time. The condition can thus be used to char-
acterize the “orthogonality” of quantum evolutions, which
also builds a bridge between the quantum error correction
and the quantum hypothesis testing. As the first exponential
lower bound on the quantum hypothesis under the continuous
evolution, this initiates the efforts on the identification of the
exact exponents for the nonorthogonal continuous evolutions,
for both the maximal fidelity and other possible measures of
distinguishability.
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APPENDIX A: DERIVATION OF THE LOWER BOUND

We show that if H1 − H0 ∈ span{Lk, L†
k , L†

k L j, I}, then at
any finite time T there exists ε > 0 such that the maximal
fidelity of the output states of the two channels, aided with the
optimal operations, is at least ε. We prove this by deriving a
lower bound on the evolution of the maximal fidelity q(t ) =
F̃ [ρ0(t ), ρ1(t )], where ρi(t ) is the state that evolves under the
ith evolution, which can be aided with ancillary systems and
controls.

The whole evolution can be divided into small intervals,
each with a duration dt , and optimal operations can be added

in between. With the optimal procedure described in the main
text, we have

q(t + dt ) = min
〈ψ |φ〉=q(t )

F̃
[
Edt

0 (|ψ〉〈ψ |), Edt
1 (|φ〉〈φ|)], (A1)

where Edt
i is the ith dynamics evolved for the time dt :

Edt
0 (|ψ〉〈ψ |) =

m∑
k=0

E0k|ψ〉〈ψ |E†
0k,

Edt
1 (|φ〉〈φ|) =

m∑
k=0

E1k|φ〉〈φ|E†
1k, (A2)

where E00 = I − iH0dt − 1
2

∑m
k=1 L†

k Lkdt , E10 =
I − iH1dt − 1

2

∑m
k=1 L†

k Lkdt , and E0k = E1k = Lk

√
dt

(k = 1, . . . , m). As the support of Edt
0 (|ψ〉〈ψ |) is the span of

{E0i|ψ〉|i = 0, ·, m}, any pure state in the support of Edt
0 (|ψ〉)

can thus be written as

|ψ (dt )〉 = 1

N0

m∑
k=0

akE0k|ψ〉, (A3)

where N1 is a normalization factor. Similarly we can write any
pure state in the support of Edt

1 (|φ〉) as

|φ(dt )〉 = 1

N1

m∑
k=0

bkE1k|φ〉. (A4)

Then, up to the order of dt , we have

q(t + dt ) = F̃
[
Edt

0 (|ψ〉), Edt
1 (|φ〉)

]
= max

{|ψ (dt )〉,|φ(dt )〉}
|〈ψ (dt )|φ(dt )〉|

� 1

N0N1

∣∣∣∣∣〈ψ |a∗
0b0

[
I− i(H1 − H0)dt−

m∑
k=1

L†
k Lkdt

]

+
m∑

k=1

(a∗
k b0

√
dtL†

k + a∗
0bk

√
dtLk )

+
m∑

k, j=1

a∗
k b jL

†
k L jdt |φ〉

∣∣∣∣∣∣, (A5)

where we assume |ψ〉 and |φ〉 are optimal states under the
constraint 〈ψ |φ〉 = q(t ).

If H1 − H0 ∈ span{L†
k L j |k, j = 0, 1, . . . , m}, we have

i(H1 − H0) + ∑m
k=1 L†

k Lk = ∑
k, j=0 Bk jL

†
k L j , where L0 = I.

Then, ∣∣∣∣∣〈ψ |i(H1 − H0) +
m∑

k=1

L†
k Lk|φ〉

∣∣∣∣∣
=

∣∣∣∣∣∣
m∑

k, j=0

Bk j〈ψ |L†
k L j |φ〉

∣∣∣∣∣∣
�

m∑
k, j=0

|Bk j ||〈ψ |L†
k L j |φ〉|

� (m + 1)2 max
k, j

{|Bk j ||〈ψ |L†
k L j |φ〉|}. (A6)

We discuss different cases.
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First with the optimal choice of |ψ〉 and |φ〉, if we have
|〈ψ |i(H1 − H0) + ∑m

k=1 L†
k Lk|φ〉| = 0, we can choose a0 =

b0 = 1 and ak = bk = 0 for k = 1, . . . , m. Up to the order of
dt , we have

q(t + dt ) � 1

N0N1
q(t ). (A7)

In this case, N2
0 = N2

1 = |1 − 〈ψ |∑m
k=1 L†

k Lk|ψ〉|dt | � 1;
thus

q(t + dt ) � q(t ), (A8)

dq

dt
� 0 = −Q1q(t ), (A9)

where we take Q1 = 0.
If |〈ψ |i(H1 − H0) + ∑m

k=1 L†
k Lk|φ〉| �= 0, we denote

|Bl p||〈ψ |L†
l Lp|φ〉| = maxk, j{|Bk j ||〈ψ |L†

k L j |φ〉|}. Since |〈ψ |i
(H1 − H0) + ∑m

k=1 L†
k Lk|φ〉| �= 0, |〈ψ |L†

l Lp|φ〉| also cannot
be zero. From Eq. (A6) we then have

|〈ψ |i(H1 − H0) + ∑m
k=1 L†

k Lk|φ〉|
|〈ψ |L†

l Lp|φ〉| � (m + 1)2|Bl p|. (A10)

We discuss different cases according to different l and p.

1. l = p = 0

In this case we can choose a0 = 1 + αdt , b0 = 1 + βdt ,
and ak = bk = 0 for k = 1, . . . , m. From Eq. (A5), up to the
order of dt we get

q(t + dt ) � 1

N0N1

∣∣∣∣∣q(t ) + (α∗ + β )〈ψ |φ〉dt

−〈ψ |i(H1 − H0) +
m∑

k=1

L†
k Lk|φ〉dt

∣∣∣∣∣. (A11)

Let α∗ = β = 1
2

〈ψ |i(H1−H0 )+∑m
k=1 L†

k Lk |φ〉
〈ψ |φ〉 , then

|α| = |β| = 1

2

|〈ψ |i(H1 − H0) + ∑m
k=1 L†

k Lk|φ〉|
|〈ψ |φ〉|

� 1

2
(m + 1)2|B00| (A12)

and

q(t + dt ) � 1

N0N1
q(t ). (A13)

In this case,

N2
0 = |〈ψ (dt )|ψ (dt )〉|

=
∣∣∣∣∣1 − 〈ψ |

m∑
k=1

L†
k Lk|ψ〉dt + (α∗ + α)dt

∣∣∣∣∣
�

∣∣∣∣∣1 − 〈ψ |
m∑

k=1

L†
k Lk|ψ〉dt

∣∣∣∣∣ + (m + 1)2|B00|dt

� 1 + (m + 1)2|B00|dt = 1 + Q2dt, (A14)

where Q2 = (m + 1)2|B00|. Similarly we can get N2
1 � 1 +

Q2dt . Thus

q(t + dt ) � 1

N0N1
q(t ) � q(t )

1 + Q2dt
≈ q(t )(1 − Q2dt )

(A15)

and
dq

dt
� −Q2q(t ). (A16)

2. l �= 0, p = 0

In this case, we choose a0 = b0 = 1, al = α
√

dt , ak = 0
for k �= l , and bj = 0 for j = 1, . . . , m. Then from Eq. (A5),
up to the order of dt , we get

q(t + dt ) � 1

N0N1

∣∣∣∣∣q(t ) + α∗〈ψ |L†
l |φ〉dt − 〈ψ |i(H1 − H0)

+
m∑

k=1

L†
k Lk|φ〉dt

∣∣∣∣∣. (A17)

We choose α∗ = 〈ψ |i(H1−H0 )+∑m
k=1 L†

k Lk |φ〉
〈ψ |L†

l |φ〉 . From Eq. (A10), we
get

|α| = |〈ψ |i(H1 − H0) + ∑m
k=1 L†

k Lk|φ〉|
|〈ψ |φ〉| � (m + 1)2|Bl0|.

(A18)
With this choice we have

q(t + dt ) � 1

N0N1
q(t ), (A19)

where

N2
0 =

∣∣∣∣∣1 − 〈ψ |
m∑

k=1

L†
k Lk|ψ〉dt + 〈ψ |α∗L†

l + αLl |ψ〉dt

∣∣∣∣∣
�

∣∣∣∣∣1 − 〈ψ |
m∑

k=1

L†
k Lk|ψ〉dt

∣∣∣∣∣ + 2|α|‖Ll‖dt

� 1 + 2|α|‖Ll‖dt

� 1 + 2(m + 1)2|Bl0|‖Ll‖dt (A20)

and

N2
1 =

∣∣∣∣∣1 − 〈φ|
m∑

k=1

L†
k Lk|φ〉dt

∣∣∣∣∣
� 1. (A21)

Thus,

q(t + dt ) � 1

N0N1
q(t )

� q(t )(1 − Q3dt ), (A22)

where Q3 = (m + 1)2|Bl0|‖Ll‖. We then have dq
dt � −Q3q.

3. l = 0, p �= 0

This is symmetric to case 2 and we can similarly obtain
dq
dt � −Q4q, where Q4 = (m + 1)2|B0p|‖Lp‖.
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4. l �= 0, p �= 0

In this case, we choose a0 = b0 = 1, ak = 0 when k �= l , and b j = 0 when j �= p, where k, j ∈ {1, 2, . . . , m}. Then from
Eq. (A5) we get

q(t + dt ) � 1

N0N1

∣∣∣∣∣q(t ) + a∗
l bp〈ψ |L†

l Lp|φ〉dt − 〈ψ |i(H1 − H0) +
m∑

k=1

L†
k Lk|φ〉dt + (

a∗
l 〈ψ |L†

l |φ〉 + bp〈ψ |Lp|φ〉)√dt

∣∣∣∣∣. (A23)

Denote 〈ψ |i(H1−H0 )+∑m
k=1 L†

k Lk |φ〉
〈ψ |L†

l Lp|φ〉 = r0eiθ0 , 〈ψ |L†
l |φ〉 = r1eiθ1 , and 〈ψ |Lp|φ〉 = r2eiθ2 , and we get r0 � (m + 1)2|Bl p|, r1 � ‖Ll‖, and

r2 � ‖Lp‖.
Let al = √

r0ei(θ1+γ and bp = √
r0eiθ0+θ1+γ , and we get

q(t + dt ) � 1

N0N1

∣∣q(t ) + (
a∗

l r1eiθ1 + bpr2eiθ2
)√

dt
∣∣

= 1

N0N1

∣∣q(t ) + √
r0

(
r1e−iγ + r2ei(θ0+θ1+θ2+γ )

)√
dt

∣∣
= 1

N0N1

∣∣q(t ) + √
r0{r1 cos γ + r2 cos(θ0 + θ1 + θ2 + γ ) + i[−r1 sin γ + r2 sin(θ0 + θ1 + θ2 + γ )]}

√
dt

∣∣
= 1

N0N1

∣∣q(t ) + √
r0{[r1 + r2 cos(θ0 + θ1 + θ2)] cos γ − r2 sin(θ0 + θ1 + θ2) sin γ }

+ i(−r1 sin γ + r2 sin(θ0 + θ1 + θ2 + γ )]
√

dt
∣∣. (A24)

If r2 sin(θ0 + θ1 + θ2) = 0, we choose γ = π
2 , otherwise we let tan γ = r1+r2 cos(θ0+θ1+θ2 )

r2 sin(θ0+θ1+θ2 ) . With this choice, we have [r1 +
r2 cos(θ0 + θ1 + θ2)] cos γ − r2 sin(θ0 + θ1 + θ2) sin γ = 0, then

q(t + dt ) = 1

N0N1

∣∣q(t ) + i
√

r0[−r1 sin γ + r2 sin(θ0 + θ1 + θ2 + γ )]
√

dt
∣∣

= 1

N0N1

√
q2(t ) + r0[−r1 sin γ + r2 sin(θ0 + θ1 + θ2 + γ )]2dt

� 1

N0N1
q(t ). (A25)

Here

N0 =
√√√√1 − 〈ψ |

m∑
k=1

L†
k Lk|ψ〉dt + 〈ψ |a∗

l alL
†
l Ll |ψ〉dt + 〈ψ |a∗

l L†
l + al Ll |ψ〉

√
dt,

N1 =
√√√√1 − 〈φ|

m∑
k=1

L†
k Lk|φ〉dt + 〈φ|b∗

pbpL†
pLp|φ〉dt + 〈φ|b∗

pL†
p + bpLp|φ〉

√
dt, (A26)

N0N1 =
√

1 + C
√

dt + Ddt, (A27)

where C = 〈ψ |a∗
l L†

l + alLl |ψ〉 + 〈φ|b∗
pL†

p + bpLp|φ〉 and

D = 〈ψ |a∗
l alL

†
l Ll |ψ〉 − 〈ψ |

m∑
k=1

L†
k Lk|ψ〉 + 〈φ|b∗

pbpL†
pLp|φ〉 − 〈φ|

m∑
k=1

L†
k Lk|φ〉 + 〈ψ |a∗

l L†
l + alLl |ψ〉〈φ|b∗

pL†
p + bpLp|φ〉

� |al |2‖L†
l Ll‖ + |bp|2‖L†

pLp‖ + 4|al bp|‖Ll‖|Lp‖ = r0(‖L†
l Ll‖ + ‖L†

pLp‖ + 4‖Ll‖‖Lp‖)

� (m + 1)2|Bl p|(‖L†
l Ll‖ + ‖L†

pLp‖ + 4‖Ll‖‖Lp‖). (A28)

Note that we can always choose al and bp to make C � 0. As if C > 0, we can just change γ to γ̃ = γ + π , then
ãl = −al , b̃p = −bp, which flips the sign of C. This also flip the sign of the imaginary part in Eq. (A24) but it does
not change the result of Eq. (A24). Thus we can assume C � 0, then up to the order of dt, N0N1 � 1 + Q5dt , where

Q5 = (m+1)2|Bl p|(‖L†
l Ll ‖+‖L†

pLp‖+4‖Ll ‖‖Lp‖)
2 . We then have q(t + dt ) � q(t )(1 − Q5dt ), dq

dt � −Q5q.

Let Q = max{(m + 1)2|B00|, (m + 1)2|Bl0|‖Ll‖, (m + 1)2|B0l |‖Ll‖, (m+1)2|Bl p|(‖L†
l Ll ‖+‖L†

pLp‖+4‖Ll ‖‖Lp‖)
2 , l, p = 1, . . . , m}, we

then have dq
dt � −Qq. Thus q(T ) � e−QT q(0) = e−QT > 0; i.e., at any finite time T , q(T ) is always lower bounded by a positive

value of ε = e−QT .
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APPENDIX B: CONSTRUCTION OF THE QUANTUM ERROR-CORRECTION CODE

For completeness, we provide the construction of the quantum error-correcting code when H1 − H0 �∈ S, which follows
Ref. [36].

When H1 − H0 �∈ S, H1 − H0 can be decomposed as H1 − H0 = H|| + H⊥, where H|| ∈ S and Tr(H⊥O) = 0 ∀O ∈ S. Since
I ∈ S thus Tr(H⊥) = 0, H⊥ can then be written as H⊥ = Tr|H⊥|

2 (ρ1 − ρ0), where ρ1 and ρ0 are two density matrices, which are
positive semidefinite with trace equal to 1. Let |C0〉 and |C1〉 be the purified states of ρ0 and ρ1, respectively; then, with an
additional qubit, we can construct an error-correcting code as {|C0〉|0〉, |C1〉|1〉}. It is straightforward to check that this code
satisfies the conditions of quantum error correction as 〈C0|〈0|L†

k L j |C1〉|1〉 = 0 and 〈C0|〈0|L†
k L j |C0〉|0〉 = 〈C1|〈1|L†

k L j |C1〉|1〉.
Also 〈C0|〈0|H1 − H0|C0〉|0〉 − 〈C1|〈1|H1 − H0|C1〉|1〉 = 2Tr(H2

⊥ )
Tr|H⊥| > 0; H1 − H0 thus acts nontrivially on the code space. With

this error-correcting code, if the initial state is taken as |C0〉|0〉+|C1〉|1〉√
2

, then the zero-error hypothesis testing can be achieved at

t = Tr|H⊥|π
2Tr(H2

⊥ )
.
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