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Generating accessible entanglement in bosons via pair-correlated tunneling
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We consider an extended Bose-Hubbard model that includes pair-correlated tunneling. We demonstrate
that a minimal four-mode implementation of this model exhibits a pair-correlated regime in addition to Mott
insulator and superfluid regimes. We propose a low complexity variational subspace for the ground state of
the system in the pair-correlated regime, which we find to be numerically exact in pure pair-tunneling limit.
Additionally, we propose a parameter-free high-fidelity model wave function that qualitatively captures the
features of the ground state in the pair-correlated regime. Although the operationally accessible entanglement
vanishes deep inside the Mott insulator and superfluid regimes due to particle-number conservation, we find that
in the pure pair-correlated tunneling limit the accessible entanglement entropy grows logarithmically with the
number of particles. Furthermore, we demonstrate that upon application of a unitary beam-splitter operation,
the pair-correlated ground state is transformed into a state with completely accessible entanglement that is not
limited by superselection rules.
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I. INTRODUCTION

A variety of experimental systems of trapped strongly
interacting bosons are accurately described by Bose-Hubbard
(BH) model of itinerant bosons hopping between localized
modes. Such quantum phases of strongly correlated systems
of bosons have been experimentally shown to display such
quantum properties as stable superfluid flow [1–4], quantized
circulation [5,6], and spin squeezing [7–10]. Additionally,
strongly correlated bosonic ground states arising from Bose-
Hubbard dynamics possess quantum entanglement that can
be harvested for quantum circuit-based quantum information
processing protocols [11,12] and quantum metrology [13,14].

The entanglement between two subsystems of a pure
quantum state |ψ〉 may be quantified by the bipartite von
Neummann entanglement entropy

SvN
(|ψ〉) = −TrρA ln ρA,

where ρA is the reduced density matrix under a bipartition
into subsystems A and its complement B: ρA = TrB|ψ〉〈ψ |.
However, superselection rules constrain the entanglement that
is operationally accessible via local operations in the presence
of particle-number conservation in systems of nonrelativistic
bosons [15,16]. Wiseman and Vaccaro defined the accessible
entanglement entropy:

Sacc(|ψ〉) =
N∑

n=0

pnSvN(Pn|ψ〉/√pn), (1)

where Pn is the projection onto the subspace where n par-
ticles are in the A subsystem, and pn = 〈ψ |Pn|ψ〉. Accord-
ingly, the total entanglement entropy may be decomposed
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into contributions from particle-number fluctuations between
subsystems Sfluct(|ψ〉) = −∑N

n=0 pn ln pn and the accessible
entanglement: SvN = Sfluct + Sacc [17].

In the minimal BH system with two modes, under a mode
bipartition there is only a single mode in each subsystem,
and thus all entanglement is due to fluctuations of particles
between subsystems; correspondingly, there is no entangle-
ment that is accessible via local operations. In fact, at least
four single-particle modes are required to allow for nonzero
accessible entanglement necessary for meaningful entangle-
ment distribution and concentration [15,18]. However, in both
the noninteracting and strongly interacting limits of the BH
model with at least four single-particle modes, the accessible
entanglement vanishes; specifically, the ground state in the
Mott insulator regime limits to an unentangled product state,
whereas in the noninteracting limit, the ground state is a
Bose-Einstein condensate where all entanglement is due to
fluctuations.

In this paper we demonstrate how pair-correlated dynam-
ics can generate accessible entanglement in itinerant boson
systems described by an extended BH model. We consider a
minimal four-mode model of N spinless bosons defined by
the Hamiltonian H = HBH + Hpair, where HBH is the Bose-
Hubbard Hamiltonian for four single-particle modes that rep-
resent, e.g., the sites of an optical ring lattice, and Hpair

describes pair-correlated hopping dynamics of the particles.
Explicitly,

H =
3∑

j=0

[
U

2
n j (n j − 1) − J (a†

j+1a j + H.c.)

− T2
(
a†2

j+1a2
j + H.c.

)]
, (2)
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where a j is the bosonic annihilation operator in mode j, nj =
a†

j a j , and the first two terms correspond to HBH and the third
term to Hpair. All parameters U , T2, J are taken to be non-
negative.

Coherent pair tunneling in the presence of single-particle
tunneling suppression has been observed in strongly coupled,
optical double-well systems of ultracold 87Rb [19]. For spin-
less bosons, pair tunneling is analogous to the superexchange
phenomenon in magnetic systems [20,21]. In ultracold spinor
gases of 87Rb, both pair-tunneling processes and photon-
assisted hyperfine superexchange can be controlled by modu-
lation of an optical superlattice [22–24]. Singlet pair tunneling
in spinor Bose gases can be treated in the same way as the
analysis of pair tunneling in this work because, e.g., a2 and
a↑,ia↓, j are both SU(1, 1) ladder operators. Quantum coher-
ence due to pair-correlated tunneling in many-body, two-mode
bosonic systems has previously been shown to be useful for
near-optimal quantum estimation of single-particle tunneling
amplitudes [25]. In this paper, we address how pair-correlated
tunneling can generate accessible entanglement and, when
combined with an implementation of a matter-wave beam
splitter, allows the conversion of fluctuation entropy into
accessible entanglement.

The regime of H defined by T2 � U, J , which we call the
PC (pair-correlated) regime, corresponds to an “untwisting”
of the twisted superfluid phase, the latter defined by U , J > 0,
T2 < 0, and so named due to the alternating sign of the
argument of the correlation function 〈a†

j+1a j〉 [26,27]. For
J = 0, the untwisting operation that changes the sign of T2

is implemented by an onsite, alternating phase shift given in
Eq. (3). However, for J �= 0, there is no local U(1) rotation,
i.e., generated by

∑3
j=0 θ jn j , that changes the sign of T2

while keeping the sign of J fixed. Therefore, the twisted
superfluid and PC regimes are not generically connected by
local operations.

To analyze the PC regime, we first identify a low-
complexity subspace where the ground state in the pure
pair-tunneling (J = U = 0) limit resides. Additionally, we
introduce a parameter-free high-fidelity model wave function
that quantitatively describes the ground state in the PC regime.
Unlike deep in the Mott insulator and superfluid regimes,
in the pure pair-tunneling limit deep inside the PC regime,
we show that the ground state has nonvanishing accessible
entanglement that scales as Sacc ∼ ln N . By exploiting an
experimentally realizable nonlocal unitary operation, viz., a
50:50 matter wave beam splitter that hybridizes the single-
particle modes, we demonstrate an “entanglement switch”
that increases the coefficient of the logarithmic scaling of
accessible entanglement in the ground state of the PC regime,
resulting in a many-boson state with completely accessible
entanglement. By demonstrating that the PC regime exhibits
useful and manipulable entanglement, we establish few-mode
coherent pair hopping as an elementary module for bosonic
quantum information processing.

Deep in the PC regime, the ground state is well approxi-
mated by the ground state of the interaction Hpair. Unlike the
Mott insulating regime (U � T2, U � J) or the superfluid
regime (J � T2, J � U ), for which the ground states are
easily obtained from perturbation theory (in fact, for T2 = 0
the system is solvable by algebraic Bethe Ansatz [28–31]),

the PC regime does not admit a clear method to obtain an
analytical ground state. In fact, Hpair can be written as

Hpair = HR − a†2
0 a2

2 − a†2
2 a2

0 − a†2
1 a2

3 − a†2
3 a2

1,

where HR = ∑
j, j′ a†2

j a2
j′ is an exactly solvable Richardson

model [32]. Therefore, Hpair can be considered as a large,
nonlinear perturbation of an exactly solvable model, although
the two-axis countertwisting Hamiltonian, which is the two-
mode analog of Hpair, is exactly solvable [33,34].

II. PAIR-CORRELATED GROUND STATE

To gain insight into the structure of the ground state of
Hpair, we first note that W †HpairW = −Hpair, where W is the
unitary transformation

W = exp
[
−i

π

4
(n0 − n1 + n2 − n3)

]
. (3)

Note that for any quantum state ρ of N bosons in four
modes, W ρW † = V ρV †, where V can be taken to be
exp [i π

2 (n1 + n3)] or exp [−i π
2 (n0 + n2)]. Due to this dis-

crete antisymmetry of Hpair, we expect the ground state to
obey W 2|�0〉 = |�0〉. Furthermore, Hpair is invariant under
the dihedral group D8 generated by cyclic permutation of
the modes a0 → a1 → a2 → a3 → a0 and the transposition
a0 ↔ a2. Notice that, by considering the action of these sym-
metry operations on the vector of pair annihilation operators
(a2

0, . . . , a2
3), the full symmetry group is found to be given

by the semidirect product D8 � Z2. In postulating variational
Ansätze for the ground state of Hpair, we are motivated by the
fact that quantum states that exhibit pair correlations have
been used to analyze interacting bosonic systems since the
early days of the quantum theory of superfluidity [35,36], and
have recently been utilized to rigorously formulate a number-
conserving version of the Bogoliubov theory [37,38].

We expect that the N-particle ground state of Hpair is in a
variational subspace that is invariant under all symmetry op-
erations of D8 � Z2. By defining M = N/2 and k� = 2π�/M,
we propose the following Ansatz |ψ (c)〉 as a variational
ground state of Hpair:

|ψ (c)〉 =

 M

2 �∑
�=0

c�|ϕ�〉,

|ϕ�〉 = 1

N�

[(
a†2

0 + eik�a†2
1 + a†2

2 + eik�a†2
3

)M + (
a†2

0

+ e−ik�a†2
1 + a†2

2 + e−ik�a†2
3

)M]|0, 0, 0, 0〉, (4)

where c� are real variational parameters, and |ϕ�〉 are nor-
malized, but nonorthogonal states (refer to Appendix A for
calculation of the normalization constants N�). For N = 2,
|ϕ0〉 is the exact ground state of Hpair corresponding to energy
eigenvalue E0 = −4. Similarly, for N = 4, the exact ground
state (up to normalization) corresponds to c0 = 1 and c1 =
−3 + 2

√
2 with energy eigenvalue E0 = −8

√
2. Although

we have not proven that the ground state of Hpair takes the
form of Eq. (4) for all N , we do not find any physically
meaningful deviation of the optimal analytical state (4) from
the numerically calculated ground state; Fig. 1 shows that the
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FIG. 1. Optimized fidelity F of the variational state |ψ (c)〉 given
in Eq. (4), and fidelity of the model ground state |	〉 given in Eq. (9)
to the exact ground state for pure pair tunneling |�0〉, as computed by
numerical diagonalization of Eq. (2), with U = J = 0. Inset: fidelity
of |	〉 vs 1/N . The line is a linear (in 1/N) fit, that provides an
estimate of the N = ∞ fidelity F∞ � 0.992 56.

optimal variational state |ψ (c)〉 has numerically perfect (up to
machine precision) optimal fidelity F = maxc |〈ψ (c)|�0〉| to
the pure pair-tunneling (U = J = 0) ground state |�0〉 up
to N = O(102).

To provide additional insight into the PC regime, we ana-
lyze a unitary transformation VHpairV† = H̃pair that allows one
to construct an approximate linear quantum dynamics for this
regime. For even N , the construction involves identifying the
ground-state subspace of H̃pair with a spin-N/4 representation
of SU(2). To see this, consider the unitary operator

V = e
iπ
4 (a†

0a2+H.c.)e
iπ
4 (a†

1a3+H.c.) (5)

which performs a mode transformation into the modes c†
j̃
=

Va†
jV† = (a†

j + ia†
j+2)/

√
2, where j + 2 is understood mod-

ulo 4. In terms of the c j̃ operators, H̃pair takes the form

H̃pair = VHpairV† = −4T2(c†
0̃
c†

2̃
c1̃c3̃ + H.c.). (6)

Note that with

T (0,1) = ei π
2 (n0̃−n1̃ ),

it follows that T (0,1)H̃pairT (0,1)† = −H̃pair, which implies that
a local rotation (with respect to the mode bipartition {0̃, 1̃} �
{2̃, 3̃}) in the c j̃ basis can change the sign of H̃pair. By express-
ing H̃pair as in Eq. (6), it is clear that the algebra generated by
the observables (n0̃ + n1̃ ) and (n2̃ + n3̃ ) [or, equivalently, by
(n0̃ + n1̃ ) and the identity] consists of conserved quantities.
Because of the permutation symmetry of H̃pair, the ground
state of H̃pair lies in the (M + 1)2-dimensional subspace
spanned by

{|r, M − r, s, M − s〉}r,s∈{0,...,M}.

However, the algebra generated by (n0̃ − n2̃ ) and (n1̃ −
n3̃ ) also consists of observables that commute with H̃pair.
Therefore, the ground state lies in the (M + 1)-dimensional
subspace

V = {|s, M − s, s, M − s〉}r,s∈{0,...,M}.

From the action of c j̃ and c†
j̃

on the symmetric Fock space,

it follows that c†
0̃
c†

2̃
c1̃c3̃|V is equal, as a linear operator, to the

spin observable √
M

2
+ JzJ+

√
M

2
− Jz

acting on a spin-M/2 representation of SU(2) and that
c†

1̃
c†

3̃
c0̃c2̃|V is equal, as a linear operator, to the spin observable√

M

2
− JzJ−

√
M

2
+ Jz

acting on the spin-M/2 representation. Therefore, H̃pair is
proportional, as a linear operator, to√

M

2
+ JzJ+

√
M

2
− Jz +

√
M

2
− JzJ−

√
M

2
+ Jz (7)

acting in a spin-N/4 representation of SU(2). As a result, one
finds that the Hamiltonian −H̃pair is equivalent to the operator
4MJx + F , where F is a self-adjoint, bounded operator which
is a nonlinear function of the SU(2) generators Jx, Jy, and Jz.
If F is neglected, one obtains an unparametrized approximate
ground state |	̃〉 of H̃pair from the SU(2) coherent state ground
state of Jx. Because the state |	̃〉 allows to gain insight into
several properties of the PC regime by analytical methods, we
now show how to obtain it.

The unparametrized state |	̃〉 is derived by considering an
eigenvector of Jx with eigenvalue N/2, i.e., proportional to

(b†
0 + b†

1)N |0, 0〉,
in some spin-N/2 representation of SU(2). By noting that,
e.g.,

b†
1|s, M − s〉 = √

M − s + 1|s, M − s + 1〉
and(

n1̃ + n3̃

2

)− 1
2

c†
1̃
c†

3̃
|s, M − s, s, M − s〉

= √
M − s + 1|s, M − s + 1, s, M − s + 1〉,

we see that b†
1 and [(n1̃ + n3̃ )/2]−

1
2 c†

1̃
c†

3̃
are equivalent as

linear operators and we can consider the state

|	̃〉 = 1

2M/2
√

M!

[(
n0̃ + n2̃

2

)− 1
2

c†
0̃
c†

2̃

+
(

n1̃ + n3̃

2

)− 1
2

c†
1̃
c†

3̃

]M

|0, 0, 0, 0〉 (8)

as an unparametrized approximate ground state of H̃pair.
Transforming back to the original {a j} j=0,...,3 modes by V†

produces a normalized model ground state |	〉 for Hpair

given by

|	〉 = 1

2M
√

M!

[(
1√

n0 + n2

)(
a†2

0 + a†2
2

)

+
(

1√
n1 + n3

)(
a†2

1 + a†2
3

)]M

|0, 0, 0, 0〉. (9)
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FIG. 2. Onsite particle-number variance 〈
n2
i 〉 in the ground

state of Eq. (2) with U = 0 as a function of single-particle tunneling
strength J for different numbers of particles N . In the pair-correlated
regime, 〈
n2

i 〉 ∼ N2, whereas in the superfluid regime 〈
n2
i 〉 ∼ N .

This suggests that PC regime is stable up to T2 ∼ NJ .

We refer to |	〉 as a model ground state for Hpair. Although
the model ground state in Eq. (9) can be considered as a con-
densate of M pairs of particles, it is in stark contrast with pure
Bose-Einstein condensate of N = 2M particles. In particular,
a pure Bose-Einstein condensate has the form of |ω〉⊗N where
|ω〉 is a single-particle state, and thus is a separable state
under a particle partition; in contrast, Eq. (9) is nonseparable
under a particle partitioning. The high-fidelity nature of |	〉 is
demonstrated in Fig. 1 where we find the fidelity |〈	|�0〉| to
the numerical ground state of Hpair to be better than 0.99 for
up to N = O(103). Furthermore, the inset of Fig. 1 shows that
the fidelity of |	〉 can be reliably extrapolated to large N ; for
N = ∞ we find the fidelity F∞ � 0.992 56. We demonstrate
below that the entanglement properties of |	〉 approximate
those of the true ground state of Hpair and use (9) as a model
state to semiquantitatively analyze accessible entanglement in
the PC regime without the need for performing a variational
optimization.

In order to distinguish the three dynamical regimes of
Eq. (2), the one-site occupation-number variance 〈(
nj )2〉
can be used as a local order parameter. Deep inside the
Mott insulating regime, the variance vanishes, whereas in
the superfluid regime the variance scales linearly with N ,
approaching 3N/16 in the U = T2 = 0 limit. In contrast, in
Fig. 2, we see that 〈(
n j )2〉 scales as O(N2) in the PC regime.
We can understand this by considering the model ground state
|	〉 for which

〈	|(
nj )
2|	〉 = 1

16

(
N2

2
− N

)
.

Because Hpair is quartic in the bosonic annihilation and cre-
ation operators, one expects that the ground-state energy
|E0(N )| scales as O(N2) and that a transition between su-
perfluid and PC regime occurs in the regime T2/NJ ∈ O(1).
The numerical values of the local particle-number variance in
Fig. 2 are in agreement with a transition in this regime. To
verify the ground-state energy scaling of Hpair, we show in
Appendix B that in the N → ∞ limit, E0(N )/N2 � −1/2.
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S

SvN(|Ψ0 )
SvN(|Φ )
Sacc(|Ψ0 )
Sacc(|Φ )
SvN(V|Ψ0 ) = Sacc(V|Ψ0 )
SvN(V|Φ ) = Sacc(V|Φ )

FIG. 3. Scaling of von Neumann entanglement entropy SvN and
accessible entanglement entropy Sacc with number of particles in
the system N for the ground state |�0〉 of Eq. (2) in the pure pair-
tunneling limit (U = J = 0) as well as the model ground state |	〉
[Eq. (9)], as well as both states after application of the beam-splitter
operator V . Note that SvN = Sacc for both states V|�0〉 and V|	〉. The
solid (dashed) lines represent fits to S = a ln N + b + c/N for |�0〉
(|	〉).

III. ACCESSIBLE ENTANGLEMENT GENERATION

We now consider the entanglement properties of the
ground state |�0〉 of Eq. (2) in the pure pair-tunneling limit.
We bipartition the system into neighboring pairs of modes
({0, 1} � {2, 3}) and quantify the entanglement between these
pairs of modes with the entanglement entropy SvN and acces-
sible entanglement entropy Sacc. Figure 3 shows the scaling
of SvN and Sacc with N for both |�0〉 and the model ground
state |	〉 in Eq. (9). For both the model ground state and the
exact ground state, we find that both SvN and Sacc scale as
ln N ; the lines in Fig. 3 represent three parameter fits to S =
a ln N + b + c/N ; for |�0〉 we find avN � 1.36 and aacc �
0.37, and for |	〉, avN � 1.37 and aacc � 0.38. We see that
|	〉 quantitatively captures the entanglement in the pure pair-
tunneling limit. Although the majority of the entanglement is
due to fluctuations between subsystems and thus inaccessible
via local operations, a finite fraction of entanglement remains
accessible in the large-N limit.

To increase the accessible entanglement, consider again
the unitary operator V from Sec. II. With respect to the
mode bipartition {0, 1} � {2, 3}, V is a nonlocal operation.
Such a nonlocal mode transformation can be implemented
experimentally via, e.g., a matter-wave beam splitter [39]. If
the four modes are arranged in a tetrahedral configuration in a
three-dimensional (3D) optical lattice [40] with tunable tunnel
couplings so as to generate the ring topology, the beam splitter
V can be implemented via dynamical potential splitting [39]
or a coherent Y-junction splitter [41], either method could
implement a matter-wave beam splitter between any chosen
pair of modes due to the tetrahedral symmetry.

We proceed to consider the entanglement of V|�0〉 under
the bipartition {0̃, 1̃} � {2̃, 3̃} of the new modes. After the
implementation of V , it is observed that Sacc = SvN and cor-
respondingly all entanglement is operationally accessible by
local operations. Physically, this entanglement conversion is
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due to the absence of particle-number fluctuations between
the {0̃, 1̃} and {2̃, 3̃} modes; in particular, Sfluct = 0 for both
V|	〉 and V|�0〉 since V maps |	〉 and |�0〉 to states with
exactly N/2 particles in each subset of modes. Additionally,
the coefficient of the ln N scaling of Sacc exhibits a switchlike
increase (Fig. 3) upon the operation of V on the ground state
|�0〉. In particular, we find that Sacc(V|�0〉) is best fit with
coefficient aacc � 0.50 of the leading logarithmic scaling. In
Appendix C, we derive an upper bound on Sacc(V|ψ (c)〉),
the accessible entanglement of the variational ground state
of H̃pair, from which the observed logarithmic scaling of
Sacc(V|�0〉) in Fig. 3 can also be bounded due to the exactness
of the variational subspace.

As in the case of |	〉 and |�0〉, it is clear from Fig. 3 that
the transformed model ground state |	̃〉 = V|	〉 faithfully
approximates the entanglement scaling of the exact ground
state V|�0〉 of H̃pair. The O(ln N ) scaling of Sacc(V|�0〉),
the accessible entanglement of the transformed ground state
deep in the PC regime, can be understood by an analytical
calculation of Sacc(V|	〉). Consider the expression for V|	〉
in the Fock basis [see Eq. (8)]:

V|	〉 = 1

2M/2

M∑
j=0

√(
M

j

)
| j, M − j, j, M − j〉.

Since for V|	〉 the number of particles in each subset of
modes under this bipartition are the same, Sfluct = 0 and SvN =
Sacc. From the above expression, it is clear that SvN(V|	〉) is
equal to the Shannon entropy of a random variable that obeys
the B(M = N/2, p = 1/2) binomial distribution:

SvN(V|	〉) = −
M∑

j=0

(M
j

)
2M

ln

(M
j

)
2M

.

It then follows from the central limit theorem that as N →
∞, Sacc(V|	〉) = 1

2 ln N + O(1), which is consistent with the
scaling of Sacc(V|�0〉) stated above. From this analysis, it
follows that the unitary beam-splitter operation V converts
|�0〉 into a state with completely accessible entanglement,
and furthermore results in an increase of the ln N scaling of
the accessible entanglement Sacc deep in the PC regime. This
increase in the coefficient of the ln N scaling of Sacc brought
about by V occurs for both the exact ground state and model
ground state.

IV. CONCLUSION

Through analyses of high-fidelity variational states and
parameter-free approximate ground states, we have shown
that accessible entanglement can be generated via pair-
correlated tunneling in an extended Bose-Hubbard model.
We have thus demonstrated that pair-correlated tunneling can
drive many-boson systems into states with entanglement that
can be locally accessed for quantum information processing
protocols. Additionally, by implementing a matter-wave beam
splitter, the ground state of the PC regime is transformed into
a state with fully accessible entanglement, i.e., a state in which
all entanglement has been concentrated into a single-particle
number sector. The accessible entanglement switching

behavior in the four-mode system considered in this work,
which is the minimal mode number for which Sacc > 0,
complements recent results on using three- and four-mode
bosonic models to analyze matter-wave entanglement dynam-
ics [42–46]. We expect that the existence of a low-complexity
variational ground-state subspace and high-fidelity model
wave functions for the PC regime will stimulate further anal-
yses of the quantum information processing capabilities of
the PC regime, including the interplay with other quantum
phenomena such as superfluidity [47].
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APPENDIX A: NORMALIZATION AND INNER PRODUCTS
OF THE VARIATIONAL BASIS STATES

Here, we will consider the normalization of the basis states
|ϕ�〉 of the variational ground-state subspace of Hpair.

Proposition. If k� ∈ {0, π}, then

N� = 2M+1M!
√

M + 1.

If k� /∈ {0, π}, then

N� = 2MM!
√

2M + 4.

Proof. Let

|β�〉 = [(
a†2

0 + eik�a†2
1 + a†2

2 + eik�a†2
3

)M

+ (
a†2

0 + e−ik�a†2
1 + a†2

2 + e−ik�a†2
3

)M]|0, 0, 0, 0〉

be an unnormalized superposition of paired states. Under the
action of V in Eq. (6) of the main text, the state(

a†2
0 + eik�a†2

1 + a†2
2 + eik�a†2

3

)M |0, 0, 0, 0〉
is transformed isometrically to

2M (c†
0̃
c†

2̃
+ eik�c†

1̃
c†

3̃
)M |0, 0, 0, 0〉.

Using the binomial theorem, one finds that the states

|ξ±�〉 = 1

M!
√

M + 1
(c†

0̃
c†

2̃
+ e±ik�c†

1̃
c†

3̃
)M |0, 0, 0, 0〉

are normalized, where � ∈ {0, 1, . . . , 
M/2�}. If k� ∈ {0, π},
then

|β�〉 = 2
(
a†2

0 + eik�a†2
1 + a†2

2 + eik�a†2
3

)M |0, 0, 0, 0〉
gets mapped to

2M+1(c†
0̃
c†

2̃
+ eik�c†

1̃
c†

3̃
)M |0, 0, 0, 0〉 = 2M+1M!

√
M + 1|ξ�〉
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and, therefore,

|ϕ�〉 = 1

2M+1M!
√

M + 1
|β�〉

is normalized.
To calculate N� for k� /∈ {0, π}, it is necessary to calculate

the inner product 〈ξq|ξ�〉 by using the binomial theorem. For
any q �= � the result is

〈ξq|ξ�〉 = 1

M + 1

M∑
j=0

M∑
s=0

[(e−ikq )M− j (eik� )M−s

×〈 j, M − j, j, M − j|s, M − s, s, M − s〉]

= 1

M + 1

M∑
j=0

(ei(k�−kq ) )M− j

= 1

M + 1
, (A1)

where |n0, n1, n2, n3〉 are Fock states in the c†
j̃

basis.
Now, we normalize |β�〉 for k� /∈ {0, π}. Note that |β�〉 is

transformed isometrically to

2MM!
√

M + 1(|ξ�〉 + |ξ−�〉)

under the rotation V , and that
√

M + 1√
2M + 4

(|ξ�〉 + |ξ−�〉)

is a normalized state. Therefore,

|ϕ�〉 = 1

2MM!
√

2M + 4
|β�〉

is normalized. �
The inner products of the normalized states |ϕ�〉 or, equiv-

alently, their Gram matrix, are the subject of the following
proposition.

Proposition. If k� ∈ {0, π} and kr ∈ {0, π} and � �= r, then

〈ϕ�|ϕr〉 = 1

M + 1
.

If k� ∈ {0, π} and kr /∈ {0, π}, then

〈ϕ�|ϕr〉 =
√

2

(M + 1)(M + 2)
. (A2)

If kr /∈ {0, π} and k� /∈ {0, π} and � �= r, then

〈ϕ�|ϕr〉 = 2

M + 2
.

Proof. We prove Eq. (A2) explicitly and note that the other
inner products are proved in the same way. If k� ∈ {0, π}, then

|ϕ�〉 = 1

2M+1M!
√

M + 1
|ψ�〉

gets mapped isometrically to |ξ�〉 under the action of V . If
kr /∈ {0, π}, then

|ϕr〉 = 1

2MM!
√

2M + 4
|ψr〉

gets mapped isometrically to

√
M + 1√

2M + 4
(|ξr〉 + |ξ−r〉)

under the action of V . Therefore, by Eq. (A1),

〈ϕ�|ϕr〉 =
√

M + 1√
2M + 4

(〈ξ�|ξr〉 + 〈ξ�|ξ−r〉)

=
√

2

(M + 1)(M + 2)
.

�

APPENDIX B: GROUND-STATE ENERGY OF PC REGIME

To obtain a lower bound for the particle-number-dependent
ground-state energy E0(N ) in the PC regime, one can consider
the expectation of the operator given in Eq. (7) in the state
|Jx = −M/2〉, which defines the eigenvector of Jx with eigen-
value −M/2. One finds that

〈H̃pair〉|Jx=−M/2〉 = −2M2 + O(M ).

Therefore,

E0(N ) � 〈H̃pair〉|Jx=−M/2〉 = − 1
2 N2 + p(N ),

where p(N ) is a polynomial which is linear in N . It follows
that

lim
N→∞

E0(N )

N2
� lim

N→∞
〈H̃pair〉|Jx=−M/2〉

N2
= −1

2
.

APPENDIX C: UPPER BOUND ON Sacc(V|ψ(c)〉)

The analytical expression for Sacc(|ψ (c)〉) and Sacc(|	〉),
i.e., the accessible of the variational ground state and model
ground state, respectively, in the PC regime, with respect
to the {0, 1} ∪ {2, 3} bipartition is cumbersome and will not
be shown here. However, an upper bound for the accessible
entanglement of the variational ground state V|ψ (c)〉 can be
computed by utilizing the inequality for a state |ψ〉,

Sacc(|ψ〉) � −
N∑

n = 0
pn �= 0

pn ln Tr

(
1

pn
TrBPn|ψ〉〈ψ |Pn

)2

,

(C1)

where the right-hand side involves an average of second Rényi
entropies in for |ψ〉 projected onto states with definite number
sector in each subsystem.
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For the transformed variational ground state V|ψ (c)〉, the right-hand side of Eq. (C1) can be easily calculated for either of the
partitions {0̃, 1̃} ∪ {2̃, 3̃} or {0̃, 2̃} ∪ {1̃, 3̃}. In particular, for {0̃, 1̃} ∪ {2̃, 3̃}, making use of the relation

V|ψ (c)〉 = c0|ξ0〉 + cM/2|ξM/2〉 +

M/2�−1∑

�=1

c�

√
M + 1

2M + 4
(|ξ�〉 + |ξ−�〉)

and the fact that

tr2̃,3̃Pn|ξ�〉〈ξ�′ |Pn = δn,M

M + 1

M∑
j=0

ei(k�′ −k� ) j | j, M − j〉〈 j, M − j|

gives the result

Sacc(V|ψ (c)〉) � − ln
M∑

j=0

(
[c0 + (−1) jcM/2]2

M + 1
+


M/2�−1∑
�=1

4c� cos(k� j)[c0 + (−1) jcM/2]√
(2M + 4)(M + 1)

+

M/2�−1∑
�,�′=1

c�c�′2 cos(k� j) cos(k�′ j)

M + 2

)2

,

(C2)

where cM/2 = 0 if N �= 0 mod 4. The same method can be
used to show that Sacc(V|ψ (c)〉) = 0 for the {0̃, 2̃} ∪ {1̃, 3̃}
partition. Furthermore, because V is a tensor product of
beam splitters taking {0, 2} → {0̃, 2̃} and {1, 3} → {1̃, 3̃},

Sacc(|ψ (c)〉) also vanishes for the {0, 2} ∪ {1, 3} bipartition.
Thus, we conclude that the accessible entanglement of the
ground state of Hpair in the pure pair-tunneling limit vanishes
when the {0, 2} ∪ {1, 3} bipartition is considered.
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