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Many-particle entanglement in multiple quantum nuclear-magnetic-resonance spectroscopy
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We use multiple quantum (MQ) nuclear magnetic resonance dynamics of a gas of spin-carrying molecules in
nanocavities at high and low temperatures for an investigation of many-particle entanglement. A distribution of
MQ NMR intensities is obtained at high and low temperatures in a system of 201 spins 1

2 . The second moment
of the distribution, which provides a lower bound on the quantum Fisher information, sheds light on the many-
particle entanglement in the system. The dependence of the many-particle entanglement on the temperature is
investigated. Almost all spins are entangled at low temperatures.
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I. INTRODUCTION

Multiple quantum (MQ) NMR spectroscopy [1] was in-
troduced for the investigation of nuclear-spin distributions in
various materials (liquid crystals [2], simple organic systems
[1], amorphous hydrogenated silicon [3], etc.). It also turned
out to be useful for probing the decoherence rate in highly
correlated spin clusters [4,5]. The scaling of the decoherence
rate with the number of the correlated spins has also been
demonstrated [4,6]. Essentially, the MQ NMR dynamics is
a suitable method to quantify the development of MQ co-
herences starting from the z polarization and ending with a
collective state of all spins. The method allows us to describe
the spreading of correlations [1,2,7,8] and offers a signature of
localization effects [9,10]. The spreading rate can be described
through out-of-time ordered correlations (OTOCs) which are
connected with the distribution of MQ NMR coherences.

Attempts to quantify entanglement are motivated by the
desire to understand and quantify resources responsible for
advantages of quantum computing over classical computing.
Pair entanglement is the most familiar while many-particle
entanglement is its most general extension. The existing
applications of MQ NMR to quantum information make it
important to understand many-particle entanglement in the
MQ NMR context. The starting point of such investigation
must be the simplest model with nontrivial behavior. This is
the motivation of the present work.

Connections between MQ coherences and entanglement
have been established only for spin pairs [11–13]. The same
is true for the MQ coherences as a witness of entanglement
[14]. The MQ NMR coherence of the second order was used
for the construction of an entanglement witness for a two-spin
system with the dipole-dipole interactions (DDIs) [15,16].
At the same time, MQ NMR dynamics allows us to clarify
deeper connections between MQ coherences and entangle-
ment. Those connections are closely related to the spread of
MQ correlations inside a many-spin system in the evolution
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process. As a result, it is possible to extract information about
many-qubit entanglement and entanglement witnesses from
the second moment of the intensity spectrum of the MQ NMR
coherences [17]. It is also important that there is a relationship
between the second moment of MQ NMR coherences and
the quantum Fisher information [18,19]. In particular, it was
shown that the second moment of the MQ NMR spectrum
provides a lower bound on the quantum Fisher information
[17].

In order to investigate many-spin entanglement it is nec-
essary to work out a model of interacting spins, in which
many-spin dynamics can be studied at low temperatures. It
is also important that the model contains a sufficiently large
number of spins and is applicable at arbitrary temperatures.
Only then it is possible to investigate many-spin entanglement
and its dependence on the temperature.

One would think that MQ NMR in one-dimensional sys-
tems is most suitable for the investigation of many-spin en-
tanglement because a consistent quantum-mechanical theory
of MQ NMR dynamics has been developed only for one-
dimensional systems [20–22]. However, this is not the case.
The point is that the exact solutions for MQ NMR dynamics of
one-dimensional systems demonstrate [20–22] that, starting
from a thermodynamic equilibrium state, only zero and dou-
ble quantum coherences are produced in the approximation
of the nearest-neighbor interactions. As a result, the second
moment (dispersion) of the MQ NMR spectrum is small and
many-qubit entanglement does not appear.

For the investigation of many-qubit entanglement, we build
on the model [23] of a nonspherical nanopore filled with a gas
of spin-carrying atoms (for example, xenon) or molecules in a
strong external magnetic field. It is well known that the dipole-
dipole interactions (DDIs) of spin-carrying atoms (molecules)
in such nanopores do not average out to zero due to molec-
ular diffusion [23,24]. It is very significant that the residual
averaged DDIs are determined by only one coupling constant,
which is the same for all pairs of interacting spins [23,24].
This means that essentially we have a system of equivalent
spins and its MQ NMR dynamics can be investigated ex-
actly [25]. For this model OTOCs allow the investigation of
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FIG. 1. The basic scheme of the MQ NMR experiment.

many-particle entanglement and the extraction of information
about the number of the entangled spins during the system
evolution. The temperature dependence of the number of
the entangled spins can be also investigated. We discover
that the system exhibits k-spin entanglement with k growing
as the temperature decreases. Almost all spins are entangled
at low temperatures despite the absence of entanglement in
the initial state. We expect this behavior to be generic for MQ
NMR.

The existing theoretical approach [25] to the MQ NMR
dynamics of a system of equivalent spins is valid only in
the high-temperature region. In order to investigate the many-
qubit entanglement, we develop a theory of the MQ NMR
dynamics of equivalent spins at low temperatures. We perform
all calculations for a system of 201 spins. Such an investi-
gation of many-spin entanglement is performed. In principle,
analogous calculations can be performed for systems with
several thousand spins.

The present paper investigates the connection of the second
moment of the MQ NMR spectrum of spin-carrying atoms
(molecules) in a nanopore with many-spin entanglement in the
system. The paper is organized as follows. In Sec. II the theory
of MQ NMR dynamics at low temperatures in the system
of equivalent spins coupled by the DDIs is developed. An
analytical solution for the MQ NMR dynamics of a three-spin
system is obtained in Sec. III. The second moment (disper-
sion) of the MQ NMR spectrum of the system of equivalent
spins in a nanopore at arbitrary temperatures is obtained in
Sec. IV. The investigation of the dependence of many-spin
entanglement on the temperature is given in Sec. V. We briefly
summarize our results in the concluding Sec. VI.

II. MQ NMR DYNAMICS OF SPINS-1/2 IN A NANOPORE
AT LOW TEMPERATURES

The standard MQ NMR experiment consists of four dis-
tinct periods of time (Fig. 1): preparation (τ ), evolution (t1),
mixing (τ ), and detection (t2) [1]. MQ coherences are created
by a multipulse sequence irradiating the system on the prepa-
ration period [1]. Since the correlation time of the molecular
diffusion of spin-carrying atoms (molecules) in nanopores is
much shorter than both the dipolar time t ≈ ω−1

loc (ω−1
loc is the

dipolar local field in the frequency units [26]) and the period
of the multipulse sequence on the preparation period of the
MQ NMR experiment [1], one can assume that spin dynamics
is governed by the averaged dipolar coupling constant D,
which is the same for all spin pairs. Then the averaged non-
secular two-spin–two-quantum Hamiltonian, HMQ, describing
MQ dynamics on the preparation period, can be written in the
rotating reference frame [26] as [25]

HMQ = −D

4
{(I+)2 + (I−)2}, (1)

where

I± =
N∑

j=1

I±
j ,

N is the number of the spins in the nanopore, and I±
j are the

raising or lowering operators of spin j.
In order to investigate the MQ NMR dynamics of the

system one should find the density matrix ρ(τ ) on the prepa-
ration period of the MQ NMR experiment [1] by solving the
Liouville evolution equation [16]

i
dρ(τ )

dτ
= [HMQ, ρ(τ )] (2)

with the initial thermodynamic equilibrium density matrix

ρ(0) = ρeq = e(h̄ω0/kT )Iz

Z
, (3)

where Z = Tr{e(h̄ω0/kT )Iz} is the partition function, h̄ and k
are the Plank and Boltzmann constants, ω0 is the Larmor
frequency, T is the temperature, and Iz is the operator of the
projection of the total spin angular momentum on the z axis,
which is directed along the strong external magnetic field. In
the high-temperature approximation [26], when b = h̄ω0

kT � 1,
we can rewrite Eq. (3) as

ρ(0) = ρeq ≈ 1

2N
(1 + bIz ). (4)

Following the preparation, evolution, and mixing periods
of the MQ NMR experiment [1], the resulting signal G(τ, φ)
stored as population information is [27]

G(τ, φ) = Tr{eiHMQτ eiφIz e−iHMQτ ρeqeiHMQτ e−iφIz e−iHMQτ Iz}
= Tr{eiφIzρLT(τ )e−iφIzρHT(τ )}, (5)

where

ρLT(τ ) = e−iHMQτ ρeqeiHMQτ ,

ρHT(τ ) = e−iHMQτ Ize
iHMQτ . (6)

It proves convenient to expand the spin-density matrices,
ρLT(τ ) and ρHT(τ ), in series as

ρLT(τ ) =
∑

n

ρLT,n(τ ); ρHT(τ ) =
∑

n

ρHT,n(τ ), (7)

where ρLT,n(τ ) and ρHT,n(τ ) are the contributions to ρLT(τ )
and ρHT(τ ) from the MQ coherence of the nth order. Then the
resulting signal G(τ, φ) of the MQ NMR [1] can be rewritten
as

G(τ, φ) =
∑

n

einφTr{ρLT,n(τ )ρHT,−n(τ )}, (8)

where we took into account that

[Iz, ρLT,n(τ )] = nρLT,n(τ ); [Iz, ρHT,n(τ )] = nρHT,n(τ ). (9)

The normalized intensities of the MQ NMR coherences can
be expressed as follows:

Jn(τ ) = Tr{ρLT,n(τ )ρHT,−n(τ )}
Tr{ρeqIz} . (10)
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A simple calculation using Eq. (3) yields [27]

Tr{ρeqIz} = N

2
tanh

b

2
. (11)

The normalized intensity J0(0) of the MQ NMR coherence of
the zeroth order at τ = 0 equals 1 and all the other intensities
are zero. Using Eqs. (3) and (6) one can find that

ρLT(τ ) = 1

Z
exp(be−iHMQτ Ize

iHMQτ ) = 1

Z
ebρHT(τ ). (12)

Further,

∑
n

Jn(τ ) =
∑

n,m Tr{ρLT,n(τ )ρHT,m(τ )}
Tr{ρeqIz}

= Tr{ρLT(τ )ρHT(τ )}
Tr{ρeqIz} = Tr{ρHT(τ )ebρHT(τ )}

ZTr{ρeqIz}

=
d
db ln Tr{ebIz}

Tr{ρeqIz} =
1
2 N tanh

(
b
2

)
1
2 N tanh

(
b
2

) = 1. (13)

Equation (13) means that the sum of the MQ NMR coherences
is conserved on the preparation period of the MQ NMR
experiment [1].

The Hamiltonian HMQ of Eq. (1) commutes with the square
of the total spin angular momentum Î2 and we will use the
basis consisting of the common eigenstates of (Î )2 and Iz

to study MQ NMR dynamics as done in Ref. [25] at high
temperatures. In this basis, the Hamiltonian HMQ consists of
blocks HS

MQ, corresponding to different values of the total
spin angular momentum S [Î2 = S(S + 1), S = N/2, N/2 −
1, N/2 − 2, . . . , N/2 − [N/2], [i] is the integer part of i].
Since both the Hamiltonian HMQ and the initial density matrix
of Eq. (3) exhibit block structure, one can conclude that the
density matrices ρLT(τ ) and ρHT(τ ) consist of blocks ρS

LT(τ )
and ρS

HT(τ ) (S = N
2 , N

2 − 1, . . . , N
2 − [ N

2 ]) as well. We will
denote as ρS

LT,n(τ ) and ρS
HT,n(τ ) the contributions to ρS

LT(τ )
and ρS

HT(τ ) from the MQ coherence of order n. Then the
contribution Jn,S (τ ) to the intensity of the nth-order MQ NMR
coherence is determined as

Jn,S (τ ) = Tr
{
ρS

LT,n(τ )ρS
HT,−n(τ )

}
Tr{ρeqIz} . (14)

Thus, the problem is reduced to a set of analogous problems
for each block HS

MQ. The number of the states nN (S) of the
total angular momentum S in an N-spin system is [28]

nN (S) = N!(2S + 1)(
N
2 + S + 1

)
!
(

N
2 − S

)
!
, 0 � S � N

2
, (15)

which is also the multiplicity of the intensities Jn,S (τ ).
Then the observable intensities of the MQ NMR coherences
Jn(τ ) (−N � n � N ) are

Jn(τ ) =
∑

S

nN (S)Jn,S (τ ). (16)

The matrix representations of (I±)2, which are necessary
in order to find the Hamiltonian HMQ of (1) and to calculate
Jn(τ ), are given in [25].

The dimension of the block HS
MQ is 2S + 1. One can verify

[25] that the total dimension of the Hamiltonian HMQ is∑
N

nN (S)(2S + 1) = 2N . (17)

Since the Hamiltonian HMQ of Eq. (1) commutes with the
operator eiπIz , the 2N × 2N Hamiltonian matrix is reduced
to two 2N−1 × 2N−1 submatrices [25]. The same is valid for
all blocks HS

MQ and H−S
MQ. This reduction is valid both for

even and odd N . For odd N , both submatrices give the same
contribution to the MQ NMR coherences, and one should
solve the problem using only one 2N−1 × 2N−1 submatrix and
double the obtained intensities. In our calculations we take
N = 201.

III. EXACT SOLUTION FOR MQ NMR DYNAMICS FOR A
THREE-SPIN SYSTEM IN A NANOPORE AT

LOW TEMPERATURES

We consider a system of N = 3 spins coupled through the
Hamiltonian HMQ of Eq. (1). The possible values S of the total
spin angular momentum are 3

2 and 1
2 . One can find that the

matrix representation of H3/2
MQ is

H3/2
MQ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −
√

3D
2 0

0 0 0 −
√

3D
2

−
√

3D
2 0 0 0

0 −
√

3D
2 0 0

⎞
⎟⎟⎟⎟⎟⎠. (18)

The eigenvalues λ
(i)
3/2(i = 1, 2, 3, 4) of H3/2

MQ are the following:

λ
(1)
3/2 = −

√
3D

2
, λ

(2)
3/2 = −

√
3D

2
,

λ
(3)
3/2 =

√
3D

2
, λ

(4)
3/2 =

√
3D

2
. (19)

The appropriate set of eigenvectors reads as follows:

u(1)
3/2 =

(
1√
2
, 0,

1√
2
, 0

)
,

u(2)
3/2 =

(
0,

1√
2
, 0,

1√
2

)
,

u(3)
3/2 =

(
− 1√

2
, 0,

1√
2
, 0

)
,

u(4)
3/2 =

(
0,− 1√

2
, 0,

1√
2

)
. (20)

The block H1/2
MQ is a scalar,

H1/2
MQ = 0. (21)

The solution of Eq. (2), ρn/2
α (τ ) (n = 1, 3; α = LT, HT),

where the Hamiltonian HMQ is replaced by the Hamiltonian
Hn/2

MQ, is

ρn/2
α (τ ) = Un/2e−i	n/2τU +

n/2ρ
n/2
α (0)Un/2ei	n/2τU +

n/2, (22)
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where 	n/2 is the diagonal matrix of the eigenvalues and Un/2 is the matrix of the eigenvectors of the block Hn/2
MQ (n = 1, 3),

and the initial density matrices ρ
n/2
LT (0)(α = LT) and ρ

n/2
HT (0) (α = HT) are the following:

ρ
3/2
LT (0) = 1

Z

⎛
⎜⎜⎜⎝

e3b/2 0 0 0

0 eb/2 0 0

0 0 e−b/2 0

0 0 0 e−3b/2

⎞
⎟⎟⎟⎠, ρ

1/2
LT (0) = 1

Z

(
eb/2 0

0 e−b/2

)
, (23)

ρ
3/2
HT (0) =

⎛
⎜⎜⎜⎝

3
2 0 0 0

0 1
2 0 0

0 0 − 1
2 0

0 0 0 − 3
2

⎞
⎟⎟⎟⎠, ρ

1/2
HT (0) =

(
1
2 0

0 − 1
2

)
. (24)

After a calculation using Eqs. (19), (20), (22), (23), and (24) with n = 3, one obtains

ρ
3/2
HT (τ ) =

⎛
⎜⎜⎝

ξ + 1
2 0 −iη 0

0 ξ − 1
2 0 −iη

iη 0 −ξ + 1
2 0

0 iη 0 −ξ − 1
2

⎞
⎟⎟⎠, (25)

where

ξ = cos(
√

3Dτ ), η = sin(
√

3Dτ ), (26)

and

ρ
3/2
LT (τ ) = 1

Z

⎛
⎜⎜⎜⎝

ue−b/2 + ve3b/2 0 −ieb/2w 0

0 ue−3b/2 + veb/2 0 −ie−b/2w

ieb/2w 0 ue3b/2 + ve−b/2 0

0 ie−b/2w 0 ueb/2 + ve−3b/2

⎞
⎟⎟⎟⎠, (27)

where

u = sin2

(√
3

2
Dτ

)
,

v = cos2

(√
3

2
Dτ

)
,

w = sin(b) sin
(√

3Dτ
)
. (28)

An analogous calculation for the matrices ρ
1/2
HT (τ ) and

ρ
1/2
LT (τ ) using Eqs. (22)–(24) yields

ρ
1/2
HT (τ ) =

(
1
2 0
0 − 1

2

)
, (29)

ρ
1/2
LT (τ ) = 1

Z

(
eb/2 0

0 e−b/2

)
. (30)

Only the MQ NMR coherences of the zeroth and plus or
minus second orders appear in the considered systems. These
intensities can be calculated with Eqs. (14) and (25)–(30):

J0(τ ) = 2 cos2(
√

3Dτ ) + 1

3
,

J±2(τ ) = sin2(
√

3Dτ )

3
. (31)

One can check that the sum of the intensities of Eq. (31)
equals 1 independently of τ in accordance with Eq. (13). The

profiles of the calculated intensities Jn(τ ), n = 0, 2 are shown
in Fig. 2.

IV. SECOND MOMENT OF THE MQ NMR SPECTRUM
OF THE SYSTEM OF EQUIVALENT SPINS IN

THE NANOPORE

Generally speaking, the MQ NMR signal G(τ, φ) of
Eq. (5) is not an out-of-time-ordered correlator (OTOC) [17]
because it contains different matrices ρLT(τ ) and ρHT(τ ). The
signal is an OTOC only in the high-temperature approxima-
tion when G(τ, φ) can be represented as

G(τ, φ) = b

Z
Tr{eiφIzρHT(τ )e−iφIzρHT(τ )}. (32)

At the same time, we can generalize the signal G(τ, φ) of
Eq. (5) that it reduces to OTOC at arbitrary temperatures. For
this end, one should average the signal after three periods of
the MQ NMR experiment [1] over the initial low-temperature
density matrix of Eq. (3).

Then

GLT(τ, φ) = Tr{eiHMQτ eiφIz e−iHMQτ ρeqeiHMQτ e−iφIz e−iHMQτ ρeq}
= Tr{eiφIz e−iHMQτ ρeqeiHMQτ e−iφIz e−iHMQτ ρeqeiHMQτ }
= Tr{eiφIzρLT(τ )e−iφIzρLT(τ )}. (33)

It is evident from Eq. (33) that GLT(τ, φ) is OTOC at arbitrary
temperatures.
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FIG. 2. Intensities of MQ NMR coherences Jn, n = 0, 2 in a
nanopore with N = 3.

The normalized intensities of the MQ NMR coherences for
the correlator of Eq. (33) can be written as

JLT,n(τ ) = Tr{ρLT,n(τ )ρLT,−n(τ )}
Tr

{
ρ2

eq

} , (34)

and a simple calculation yields

Tr
{
ρ2

eq

} = 2N coshN (b)

Z2
. (35)

We call the coherences of Eq. (34) the reduced multiple
coherences.

In particular, the intensities of the reduced MQ NMR
coherences for a system of N = 3 spins are

JLT,0(τ ) = 1 − 1
2 tanh2(b) sin2(

√
3Dτ ),

JLT,±2(τ ) = 1
4 tanh2(b) sin2(

√
3Dτ ). (36)

The sum of the intensities of Eq. (36) is again 1, as in the
previous section (Sec. III). However, the normalized intensi-
ties of Eq. (36) depend now on the temperature, although the
intensities of Eq. (31) do not manifest such dependence. This
is very important for the further analysis.

The second moment (dispersion) M2(τ ) of the distribu-
tion of the reduced MQ NMR coherences JLT,n(τ ) can be
expressed [29] as

M2(τ ) =
∑

n

n2JLT,n(τ ). (37)

It was shown [17] that 2M2(τ ) of Eq. (37) determines a
lower bound on the quantum Fisher information FQ [18,19]
and 2M2(τ ) � N2 [30]. The numerical calculations presented
in the following section confirm this inequality.

We give now a definition of many-particle entanglement
[30]. A pure state is k-particle entangled, if it can be written
as a product |�k−ent〉 = ⊗M

l=1|�l〉, where |�l〉 is a state of Nl

FIG. 3. The dependence of the lower bound for the quantum
Fisher information FQ = 2M2(τ ) on the dimensionless time Dτ at
T = 2.4 × 10−1 K (b = 0.1). The inequality (38) yields the region
of pair entanglement (k + 1 = 2). The region is above the horizontal
line.

particles,

M∑
l=1

Nl = N,

each |�l〉 does not factorize, and the maximal Nl � k. A
generalization for mixed states is straightforward [30]. It was
also ascertained [18,19] that, if

FQ > mk2 + (N − mk)2, (38)

where m is the integer part of N/k, then we have a (k + 1)-
particle entangled state in the system [18,19].

Thus, we obtain a possibility to study the many-particle
entanglement in a system of spin-carrying molecules (atoms)
coupled with the DDIs in a nanopore. The temperature depen-
dence of the many-particle entanglement can also be investi-
gated. At high temperatures, the intensities of the MQ NMR
coherences can be investigated experimentally with usual MQ
NMR experiments [1]. The results of the numerical analysis of
the many-particle entanglement in the system of spin-carrying
molecules (atoms) are presented in the following section.

V. TEMPERATURE DEPENDENCE OF THE
MANY-PARTICLE ENTANGLEMENT

We use the second moment M2 of Eq. (37) for the investiga-
tion of the many-particle entanglement in a spin system of 201
spins. The intensities of the reduced MQ NMR coherences
are determined by Eqs. (34) and (35) both at high (b < 1)
and low (b > 1) temperatures. We start from b = 0.1, which
corresponds to the temperature T = 2.4 × 10−1 K at the Lar-
mor frequency ω0 = 2π500 × 106 s−1 (Fig. 3). The inequality
(38) can be satisfied only when k = 1 (the horizontal line
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FIG. 4. The dependence of the lower bound for the quan-
tum Fisher information on the dimensionless time Dτ at
T = 4.8 × 10−2 K (b = 0.5). The region of the many-spin entan-
glement is a strip bounded by the horizontal lines with k = 14 and
k = 27.

on Fig. 3). This means pair entanglement is possible in the
high-temperature case [16].

At the temperature 4.8 × 10−2 K (b = 0.5) one can see
a strip (Fig. 4), in which the inequality (38) can be satisfied
when 14 � k � 27. Thus, there is many-spin entanglement
in spin clusters consisting of 15–28 spins at the temperature
4.8 × 10−2 K. When the temperature decreases, the width of

FIG. 5. The dependence of the lower bound for the quan-
tum Fisher information on the dimensionless time Dτ at
T = 2.4 × 10−2 K (b = 1). The horizontal lines bound the strip with
the many-spin entanglement.

FIG. 6. The dependence of the lower bound for the quan-
tum Fisher information on the dimensionless time Dτ at
T = 6.856 × 10−3 K (b = 3.5). Almost all spins (up to 179 of 201)
can be a part of the entangled cluster.

the strip, where many-spin entanglement exists, increases. At
the temperature 2.4 × 10−2 K (b = 1) (Fig. 5), in such a strip,
the number of the entangled spins can range from 36 to 92.

Finally, at the temperature T = 6.856 × 10−3 K (b = 3.5)
(Fig. 6), almost all spins (up to 179 of 201) are entangled.
Entanglement exists during the evolution process except a
short initial period of time.

Figure 7 demonstrates that the number of the entangled
spins increases when the temperature decreases.

Thus, the suggested model of a nanocavity filled with spin-
carrying atoms (molecules) allows us to investigate many-spin
entanglement and its dependence on the temperature.

FIG. 7. The dependence of the number of the entangled spins on
the parameter b = h̄ω0

kT .
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VI. CONCLUSION

We investigated many-particle entanglement in MQ NMR
spectroscopy using a nanocavity filled with spin-carrying
atoms (molecules). We developed a theory of MQ NMR in
a nanocavity at low temperatures. The theory is based on the
idea that molecular diffusion is substantially faster than the
time of the spin flip-flop processes. As a result, the problem
is reduced to a system of equivalent spins [23,25], which
can be analyzed in the basis of the common eigenstates of
the total spin angular momentum and its projection on the
external magnetic field. Since there is a connection between
the second moment (dispersion) of the distribution of the
MQ NMR intensities and many-spin entanglement [17], we
extracted information about many-spin entanglement from the
MQ NMR spectrum. The temperature dependence of many-
spin entanglement was also investigated.

The main lesson consists in significant growth of many-
particle entanglement at low temperatures. All or almost all
spins are entangled at the dimensionless temperature 1

b of the

order of 1. This suggests that k-entangled states with large k
emerge in a typical MQ NMR system at low temperatures.
This is particularly interesting given the absence of entangle-
ment in the initial state. We expect such behavior to be typical
for MQ NMR.

We can conclude that MQ NMR spectroscopy is an ef-
fective method for the investigation of many-spin entangle-
ment and the spreading of MQ correlations inside many-spin
systems. It can be used for experimental investigations of
quantum information processing in solids (note a related study
of decoherence in liquids [31]).
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