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Power of a shared singlet state in comparison to a shared reference frame
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We show that a shared singlet state (SSS) can supersede a shared reference frame (SRF) in certain quantum
communication tasks, i.e., tasks in which two remote players are required to estimate certain parameters of a
two-particle state sent to them. This shows that task-specific values of resources may be somewhat different
from their common values based on their exchange possibilities.
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I. INTRODUCTION

Almost in any protocol of quantum communication a
shared reference frame is indispensable [1–4], otherwise cor-
relations in measurement outcomes do not imply correlations
in physical observables of remote physical systems. In short-
distance experiments done in a single laboratory, some types
of noise like unstable fiber communication link or instability
in the sending and receiving apparatus is equivalent to an
unknown or varying reference frame of the receiver compared
with that of the sender. To remedy this, most quantum key dis-
tribution (QKD) protocols [5,6] are supplemented by an active
alignment of reference frames to eliminate the slow rotation of
reference frames induced by the environment [7–12]. Active
aligning of reference frames usually is a complicated practical
task and causes problems such as lowering the secure key
generation rate. In long distance communication, i.e., between
the earth and satellites [13–17], atmospheric turbulence, and
rotation and revolution of the satellite with respect to the earth,
make it necessary to constantly align reference frames to a
high precision, which is again very difficult and costly.

On the theoretical side, precise alignment of reference
frames raises a basic question: How much quantum resource
is required for aligning a direction between two distant parties
with a given precision? This problem has been studied from
different points of view [18–25]. In particular, it was shown in
Ref. [26] that one party (say Alice) can share a direction with
another party (say Bob) by sending N polarized parallel spins,
where the error vanishes as O(1/N ). However, this scaling
of error is achieved only if Bob uses N-particle entangled
measurements, which is extremely difficult from an experi-
mental point of view. In this sense we can say that establishing
aligned reference frames with arbitrary precision and by using
purely quantum mechanical means needs an exceedingly large
amount of resources.

As an alternative method, the authors of the present article
proposed in Ref. [27] a method which is based on single-
particle measurements on entangled states shared between the
two parties. In this method, which is a converse of the standard
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QKD protocol, the players make measurements on their fixed
directions and use the imperfect correlations in the publicly
announced results to find the angle between their respective
directions and align them accordingly. By repeating this pro-
cedure they can eventually fully align their coordinate systems
with a precision which is as good as the method of [26].

The problem of classical and quantum communication in
the absence of a shared reference frame (SRF) was studied
in a series of works [28–30], where it was shown that, in the
absence of an SRF, it is still possible to communicate classical
and quantum information if one encodes a classical bit into
two and four qubits respectively. In Ref. [29] it was also
shown that certain relative information can be communicated,
albeit with lower fidelity, in the absence of SRF.

In another development originated in Ref. [31] and ex-
panded in Ref. [32], many other resources like the cobit,
qubit, ebit, and refbit were introduced, and various one-way or
two-way interconversion relations were proved among them.
For definitions of these resources see [32]. The basic theme
of the theory of [32] is the interconversion possibility; i.e.,
given a finite or infinite number of resource A, is it possible or
not to convert it to resource B. In this context, resource A is
more valuable than resource B if A can be freely converted
to B, where the meaning of “freely” is determined by the
constraints, i.e., local operations. In the present paper, which
we believe complements [32] in certain sense, or makes the
first steps toward such a goal, we study the problem from an-
other point of view, namely we focus on specific tasks and ask
which resource, A or B, is more effective in performing that
specific task. It may happen that a resource A is weaker than B
or may not be comparable to it in the sense of interconversion,
and yet A can perform a specific class of tasks better than B.

The tasks that we consider are of the estimation or dis-
crimination type, in which two states are sent to two remote
players who do not have a shared reference frame and instead
they share one singlet state. The singlet state has been shared
between them by a third trusted party. We show that in
these tasks the singlet state can perform better than a shared
reference frame, and thus in this task-specific context it is a
more valuable resource than a shared reference frame.

The setup and the structure of the paper is the following:
The two players are named Bob and Charlie who may either
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FIG. 1. Task I: Alice parallel transports two spins to Bob and
Charlie who are supposed to estimate the angle between the two
spins: (a) when they have a shared reference frame (SRF), (b) when
they only have a shared singlet state (SSS); the bulbs represent total
spin measurements with projectors �0 and �1. These measurements
are independent of reference frame.

share a reference frame or a singlet state. Alice sends one
spin-1/2 particle to Bob and another to Charlie who is far
from Bob. When they share a reference frame, they can
do single qubit measurements on the particles they receive,
and when they share a singlet state they can do two-qubit
measurement on the two particles that they hold (their share of
the singlet state and the particle that they receive); see Fig. 1.
In view of the lack of any shared reference frame, the total
spin measurement is the optimal measurement that each of
Bob and Charlie can perform [29]. Three tasks are considered
and compared in the forthcoming sections, as follows:

(I) Estimating the angle between the two spins, where
their angle is uniformly chosen in the Alice frame; Sec. III.

(II) Discriminating between the spins which are parallel or
anti-parallel in the Alice frame; Sec. IV.

(III) Discriminating between the case where the two spins
are parallel and the case where they form a singlet in the Alice
frame; Sec. V.

In any case we use an appropriate measure (average infor-
mation gain or probability of conclusive result) to compare the
results and show that a shared singlet state is more powerful
than a shared reference frame. To compare our shared singlet
state with a refbit, introduced in Ref. [32], we use refbits
for performing one of the tasks, namely task II, and again
show the superiority of a singlet state over a refbit. We
also compare the performance of singlets for various spin- j
singlets. Interestingly we find that when the shared singlet
state is a spin- j singlet, and the task is the second one, the
effectiveness of this singlet state decreases with j, and in the
limit of j → ∞ it equals that of the shared reference frame.

II. PRELIMINARIES

We assume that Alice prepares the state ρα of two spin-1/2
particles, with a prior probability distribution P(α) which can
be discrete or continuous (usually uniform). This state may or
may not be a product state. She then sends one of the particles
to Bob and the other particle to Charlie who perform positive
operator valued measurements (POVMs) with elements {Eλ}
and {E ′

λ′ } and respectively obtain the results λ and λ′ (for
brevity λλ′) with probabilities

P(λλ′|α) := Tr[(Eλ ⊗ E ′
λ′ )ρα]. (1)

They then update their knowledge of the probability distribu-
tion by using the Bayesian rule [33]

p(α|λλ′) = Tr[(Eλ ⊗ E ′
λ′ )ρα]p(α)

p(λλ′)
, (2)

where

p(λλ′) =
∫

Tr[(Eλ ⊗ E ′
λ′ )ρα]p(α)dα. (3)

The information gain of Bob and Charlie, when they obtain
the results λ and λ′, is given by

Iλλ′ =
∫

p(α|λλ′) log2

[
p(α|λλ′)

p(α)

]
dα. (4)

The average information gain for all measurement results will
then be

Iavg = �λ,λ′ p(λλ′)Iλλ′ . (5)

This is the quantity which is used for comparison of the
resources in Secs. III and IV. For the optimum measurements
we use the basic result of [29], according to which in the
absence of reference frames the optimal measurements are
projective measurements of the total spin for the particles of
each party. Needless to say, in all cases Bob and Charlie have
to communicate classical messages to convey to each other
the results of their measurements.

Remark 1. We have to carefully explain the bases in which
we expand the states. This is especially important when Bob
and Charlie do not share a reference frame, i.e., |z+〉B is not
parallel to |z+〉C . Throughout the calculations we expand all
the states in reference frame of Alice and we use the rotational
invariance of the singlet state to facilitate the calculations
when appropriate. We also assume that the states sent by
Alice to Bob and Charlie are transported through a noiseless
channel, i.e., are parallel transported to Bob and Charlie. The
important point is that the singlet state can be written as
|ψ−〉 = 1√

2
(|n, n⊥〉A,A − |n⊥, n〉A,A ) for any direction n. Thus

we always write this state in the basis of Alice, namely

|ψ−〉 = 1√
2

(|z+, z−〉A,A − |z−, z+〉A,A ),

where |z−〉A and |z+〉A are the two basis states in the +z and
−z directions of Alice’s frame. It is important to note that by
rotational symmetry of the singlet we mean (UA ⊗ UA)|ψ−〉 =
|ψ−〉. We never use an invalid relation like (UB ⊗ UC )|ψ−〉 =
|ψ−〉.

Thus all the states of this singlet and those which are sent
are written in the bases |z+〉A and |z−〉A; however, for simplic-
ity we do not write the subscripts in the following calculations
unless there is an ambiguity which we will resolve.

III. TASK I: ESTIMATING THE ANGLE BETWEEN
TWO SPINS

Alice prepares a product state of two spin- 1
2 particles, say

|n1〉 ⊗ |n2〉, where n1 · n2 = cos α and |ni〉 is the eigenstate
of 	σ · ni with positive eigenvalue. She then sends one qubit to
Bob and the other to Charlie. The task of Bob and Charlie is
to gain the maximum possible information about the angle α.
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TABLE I. The performance of two resources for estimating the
angle between two spins (quantified with the average information
gain), when the spins are chosen at random on the Bloch sphere.

Resource

Task SRF SSS

angle estimation 0.0270 0.0284

A. Shared reference frame

This problem has been studied in Ref. [29], where it was
shown that measuring each qubit along the same (arbitrary)
axis and registering whether the outcomes are the same or
not is the optimal measurement for Bob and Charlie. More
precisely, the implicit result of [29] is that, for this specific
task, the performance of one common shared direction is the
same as that of a full shared coordinate system. The maximum
average information gain is then obtained to be 0.027 when
the two spins are chosen at random on the Bloch sphere [29];
see Table I.

B. Shared singlet state

In this case Bob and Charlie do not share a reference
frame; instead they share a singlet state |ψ−〉 = 1√

2
(|z+, z−〉 −

|z−, z+〉) which has been sent to them by Alice. This state is
known to be rotationally invariant. Note that, as we remarked
above, this state has been written in the frame of Alice. All
our calculations are done in Alice’s frame and we never need
to expand any state in the frame of Bob or Charlie which
are not aligned, either with each other or with that of Alice.
The point is that both Bob and Charlie make total spin mea-
surements which are independent of reference frames. These
measurements are denoted by POVMs �0 and �1, where
the numerical subscript describes the total spin of the two
particles. The four-qubit state provided for Bob and Charlie
is

|χ〉 = |n1〉|ψ−〉|n2〉, (6)

in which the first two qubits are with Bob and the third and
forth ones are with Charlie.

When the two spins are randomly chosen from the Bloch
sphere, without loss of generality we can assume that Alice
selects one of them to be in a fixed direction, say z (unknown
to Bob and Charlie), and the other spin randomly froms a
uniform distribution over the sphere. Thus α = cos−1(z · n2)
and the prior probability distribution of the angle α is given
by p(α) = 1

2 sin(α). Then the initial state of Bob and Charlie
reads

|χα〉 = |z+〉
(

1√
2
|z+, z−〉 − 1√

2
|z−, z+〉

)(
cos

(
α

2

)
|z+〉

+ sin

(
α

2

)
exp(iφ)|z−〉

)
. (7)

where |ψ−〉 has the same form in all bases due to its rotational
invariance.

The elements of projective measurements of Bob and
Charlie on the four qubits can be written as follows, where

the first �i projects the first two particles of Bob to total spin i
and the second � j projects the last two particles with Charlie
to total spin j:

�0,0 = �0 ⊗ �0, �0,1 = �0 ⊗ �1,

�1,0 = �1 ⊗ �0, �1,1 = �1 ⊗ �1. (8)

Note that each of the above simple projectors, like �0, is a
two qubit measurement.

Remark 2. Note that neither Bob nor Charlie have any
common reference frame with Alice or with each other. By
rotationally invariant measurements of Bob and Charlie, we
mean measurements on the two particles that each of them
may have: one received from Alice and the other from the
share of their singlet state. The projective measurements on
total spins of their two particles do not require any shared
frame of reference, either with Alice or with each other.

The conditional probabilities of different outcomes can
be calculated from p(�i, j |α) = 〈χα|�i, j |χα〉. One directly
calculates the matrix elements to obtain

p(�0,0|α) = 1

8
sin2

(
α

2

)
,

p(�1,0|α) = p(�1,0|α) = 1

4
− 1

8
sin2

(
α

2

)
, (9)

p(�1,1|α) = 1

2
+ 1

8
sin2

(
α

2

)
.

The posterior distribution and average information gain de-
pend on Bob and Charlie’s prior knowledge of α. Inserting
the prior distribution p(α) = 1

2 sin(α) in Eq. (2) will yield the
posterior probabilities

P(α|�0,0) = sin2 α

2
sin α,

P(α|�0,1) = P(α|�1,0) =
(

2

3
− 1

3
sin2 α

2

)
sin α, (10)

P(α|�1,1) =
(

4

9
− 1

9
sin2 α

2

)
sin α.

By inserting these probabilities in Eq. (5) and performing
numerical integration, the average information gain will be
Iavg = 0.0284, which is slightly higher than the value 0.0270
obtained with an SRF [29]; these results are summarized in
Table I. Hence for estimating the relative parameter of two
qubits, one shared singlet state is a better resource than a
shared reference frame. In the next two sections we will see
this superiority of SSS over SRF in two other tasks.

IV. TASK II: DISCRIMINATING BETWEEN PARALLEL
AND ANTI-PARALLEL SPINS

Now consider the case where Alice prepares two parallel or
antiparallel spins. She then transports one spin to Bob and the
other to Charlie, who want to discriminate which pair is sent to
them (they want to gain information about the relative angle of
their received spins); see Fig. 2. In the following subsections,
we compare their performance, when they share one of the
following resources: (1) a shared reference frame, (2) a spin-
1/2 singlet state, and (3) a higher-spin singlet state.

022329-3



F. REZAZADEH, A. MANI, AND V. KARIMIPOUR PHYSICAL REVIEW A 100, 022329 (2019)

Alice

CharlieBob

|m,m

Alice

CharlieBob

FIG. 2. Task II: Alice sends a pair of parallel or anti-parallel
spins to Bob and Charlie who are to determine which pair has been
sent to them. They may have a shared reference frame, a spin-1/2
shared singlet state, or a spin- j singlet state.

A. Shared reference frame

Again this problem has been studied in Ref. [29] and it
was shown that the maximum average information gain is
acquired by using the same optimal measurements explained
in Sec. III A. More explicitly, Bob and Charlie can at most
gain 0.0817 bits of information about the angle between two
parallel or antiparallel spins when they share a reference
frame.

B. Shared spin-1/2 singlet state

In this case, by inserting p(α = 0) = p(α = π ) = 1
2 into

(3) we will get

p(�0,0) = 1
16 , p(�0,1) = p(�1,0) = 3

16 , p(�1,1) = 9
16 .

(11)

Using Eqs. (2) and (3), the posterior probabilities are found to
be

p(α = 0|�0,0) = 0, p(α = π |�0,0) = 1,

p(α = 0|�1,0) = 2
3 , p(α = π |�1,0) = 1

3 ,

p(α = 0|�0,1) = 2
3 , p(α = π |�0,1) = 1

3 ,

p(α = 0|�0,1) = 4
9 , p(α = π |�0,1) = 5

9 . (12)

Inserting all quantities in Eq. (4), and doing the integration,
we find

I�0,0 = 1, I�1,0 = I�0,1 = 0.08, I�1,1 = 0.008. (13)

In the case of obtaining �0,0, Bob and Charlie gain 1
bit of information about the angle between the spins (since
only an antiparallel pair of spins can combine with the singlet
state to produce spin 0 for both Bob and Charlie) and in the
other cases much less information is acquired. The average
information gained about the relative angle is found to be

Iavg =
∑
i, j

P(i, j)Ii, j = 0.0981.

This result suggests that the shared entangled state has played
a role and the average information gain has increased from
0.0817 (for SRF) [29] to 0.0981 [for shared singlet state
(SSS)].

FIG. 3. The power of a shared singlet state in performing task II
decreases with spin j and becomes identical to a shared reference
frame for large spins.

C. The performance of higher-spin singlet states

The rotational invariance of the singlet state and its higher
performance compared with a shared reference frame raises a
natural question: What happens if we use a higher spin singlet
state, say a spin- j singlet? It is intriguing to know that the
performance drops with increasing j, and in the limit j → ∞
it becomes equal to that of the shared reference frame. A spin-
j singlet is given by

|�−
j 〉 = 1√

2 j + 1

j∑
m=− j

(−1)m| j, m〉B| j,−m〉C, (14)

where we have used the familiar angular momentum represen-
tation of states. Bob and Charlie share such a state, and their
task is to get the maximum possible information about the
angle between two parallel or antiparallel spin- 1

2 states which
are sent to them by Alice. Again the optimal measurement
is the total spin measurement on each side, which is now
restricted to � j+ 1

2
and � j− 1

2
. We can use the rotational

invariance of the singlet state and assume that the two spins
have been sent in the z basis, i.e., the parallel spins are in
the state |z+, z+〉 and the antiparallel spins are in the state
|z+, z−〉. The total state which is to be locally measured by
Bob and Charlie is now given by (for parallel and antiparallel
spins depending on the + or − sign of the last spin)

|�〉 = 1√
2 j + 1

j∑
m=− j

(−1)m|z+〉1 | j, m〉B ⊗ | j,−m〉C |z±〉2 ,

(15)

where the states with Bob have been denoted by 1 and B and
those with Charlie by 2 and C. A lengthy but straightforward
calculation, detailed in Appendix A, leads to the average in-
formation gain shown in Fig. 3. It is seen that the information
gain drops with increasing spin, i.e., as the singlet becomes
more and more classical and in the limit of j → ∞ it becomes
identical with a shared reference frame.

The numerical results of this section are summarized in
Table II. This table shows the advantage of using a shared
singlet state over a shared reference frame. In the next section
we will consider another even more decisive example which
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TABLE II. The performance of different resources for discriminating parallel and antiparallel spin states (quantified with the average
information gain). The information gain drops with increasing spin and in the limit of j → ∞ it becomes identical with a shared reference
frame.

Resource

Task SRF SSS j = 1
2 SSS j = 1 SSS j → ∞

Discriminating parallel 0.0817 0.0981 0.0841 0.0817
and antiparallel spins

shows this superiority of shared singlet state over shared frame
of reference and also over a refbit [32].

V. TASK III: DISCRIMINATION BETWEEN PARALLEL
SPINS AND A SINGLET

We now consider a discrimination task. In such tasks
[34–36] a quantum system is selected from a known ensemble
of states and sent to the participants, who are supposed to dis-
criminate the states with minimal probability of inconclusive
results. The ensemble is

{|ψ−〉, |m, m〉},
where |ψ−〉 is the antisymmetric state and m is an arbitrary
direction unknown to the receivers. The task of Bob and
Charlie is to determine which state has been sent to them
(see Fig. 4). In the following subsections, we compare their
performance when they have a shared reference frame, a
shared singlet state, or a refbit [32].

A. Shared reference frame

While the singlet state has the standard antisymmetric
and rotationally invariant expression, the state |m, m〉 can be
written as

|m, m〉 =
[

cos

(
θ

2

)
|zx+〉 + exp(iφ) sin

(
θ

2

)
|z−〉

]⊗2

,

(16)

where θ and φ designate the angular coordinates of the
unit vector m. In view of the symmetry of both states with
respect to exchange of particles, it is obvious that Bob and
Charlie should have the same measurement elements to obtain
maximum information. So both of them measure their qubits

Alice

CharlieBob

|ψ− |m,m

Alice

CharlieBob

FIG. 4. Task III: Alice randomly sends one of the two states
|ψ−〉 (left) or |m, m〉 (right) to Bob and Charlie, who are supposed
to discriminate between the two states. They may have a shared
reference frame, a shared singlet state, or a refbit.

along the same (arbitrary) axis, say ẑ. This is also in accord
with the result of [29] on optimal measurements.

When we average over all the directions m, we find that
the probability of conclusive results is given by 1

3 . That is,
with a shared reference frame, on average in 1 out of 3 cases
Bob and Charlie can definitely say which of the two states
|ψ−〉 or |m, m〉 has been sent to them. The probabilities of
each outcome P(i, j|ψ ) := Tr(�i, j |ψ〉〈ψ |) for |ψ〉 = |ψ−〉
or |m, m〉 can be obtained by straightforward calculations.
These probabilities are shown in Table III.

As can be seen from this table, by obtaining the results
+,+ or −,−, Bob and Charlie will be sure that Alice has sent
the state |m, m〉, while they will fail to identify the state when
they obtain +,− or −,+. We use the probability of getting
an ambiguous outcome as a figure of failure for comparing
different resources and we call it the inconclusive probability.
Hence the inconclusive probability in this case is

Pinconclusive = 1
2 [P(+ − |ψ−) + P(− + |ψ−)]

+ 1
2 [P(+ − |m, m) + P(− + |m, m)]

= 1
2 + 1

4 sin2 θ. (17)

We consider the situation that the direction m has been chosen
completely random, i.e., from a uniform distribution. The
average probability of uncertainty is then found to be

P̄inconclusive = 1

4π

∫ (
1

2
+ 1

4
sin2 θ

)
sin θ dθ dφ = 2

3
. (18)

Let us now compare this with the case where Bob and Charlie
share a singlet state |ψ−〉.

B. Shared singlet state

When Alice sends the state |ψ−〉1,2 (when the particle 1
goes to Bob and the particle 2 goes to Charlie), the total
state of the four particles is |�〉tot = |ψ−〉B,C ⊗ |ψ−〉1,2. Bob
measures the total spin of the pair (B, 1) and Charlie measures

TABLE III. The conditional probabilities of each outcome for
different states sent by Alice when Bob and Charlie have a shared
reference frame.

State

Probability |ψ−〉 |m, m〉
P(+, +|ψ ) 0 cos4 θ/2
P(+, −|ψ ) 1/2 cos2 θ/2 sin2 θ/2
P(−, +|ψ ) 1/2 cos2 θ/2 sin2 θ/2
P(−, −|ψ ) 0 sin4 θ/2
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the total spin of the pair (C, 2). It is obvious that the total spin
of the four particles is zero and hence the outcomes (0,1) and
(1,0) are impossible.

To find the probabilities of the other two outcomes, we
write the total state as (note that all states are written in the
Alice frame, but measured in Bob and Charlie frames, as we
will describe)

|�〉tot = 1
2 (|z+, z−〉 − |z−, z+〉)B,C ⊗ (|z+, z−〉 − |z−, z+〉)1,2,

(19)

which upon rearranging is given by

|�〉tot = 1
2 [|z+, z+〉|z−, z−〉 − |z−, z+〉|z+, z−〉
− |z+, z−〉|z−, z+〉 + |z−, z−〉|z+, z+〉]B,1;C,2. (20)

Using the notation for the spin-1 triplet (t) and spin-0 singlet
(s) and using

|z+, z+〉 = |t1〉,
|z+, z−〉 = 1√

2
(|t0〉 + |s0〉),

|z−, z+〉 = 1√
2

(|t0〉 − |s0〉),

|z−, z−〉 = |t−1〉, (21)

we find

|�〉tot = 1
2 [|t1〉|t−1〉 − |t0〉|t0〉 + |s0〉|s0〉 + |t−1〉|t0〉]B,1;C,2.

(22)

Since the two parties are measuring only their total spins, this
leads to P(0, 0|ψ−) = 1

4 and P(1, 1|ψ−) = 3
4 .

Now suppose that Alice sends the state |m, m〉1,2, so the
total state of Bob and Charlie is |ψ−〉B,C ⊗ |m, m〉1,2. Bob
and Charlie are going to perform the total spin measurement;
due to the rotational invariance of both the singlet state and
the measurements of Bob and Charlie, the results for the
state |ψ−〉B,C ⊗ |m, m〉1,2 should be the same as that for
|ψ−〉B,C ⊗ |z+, z+〉1,2. Therefore we start with

|�〉tot = |ψ−〉BC ⊗ |z+, z+〉1,2

= 1√
2

(|z+, z−〉 − |z−, z+〉)B,C ⊗ |z+, z+〉1,2. (23)

Upon rearranging the labels this is written as

|�tot〉B,1;C,2 = 1√
2

(|z+, z+〉B,1|z−, z+〉C,2

− |z+, z−〉B,1|z+, z+〉C,2). (24)

Using (21) we find

|�tot〉B,1;C,2 = 1
2 [|t1; t0〉 − |t0; t1〉 − |t1; s0〉 − |s0; t1〉]B1,C2.

(25)

This equation will then lead to the probabilities shown in
Table IV. The zero probabilities in the first three rows of
Table IV show that for these outcomes the two recipients can
unambiguously discriminate the states. Only for the forth row
they cannot reach a conclusion. Therefore we find

Pconclusive = 1 − [
1
2 P(11|ψ−) + 1

2 P(11|m, m)
] = 3

8 , (26)

TABLE IV. The conditional probabilities of each outcome for
different states sent by Alice, when Bob and Charlie have a shared
singlet state.

State

Probability |ψ−〉 |m, m〉
P(0, 0|ψ ) 1/4 0
P(0, 1|ψ ) 0 1/4
P(1, 0|ψ ) 0 1/4
P(1, 1|ψ ) 3/4 1/2

which is definitely larger than the value of 1
3 when Bob and

Charlie shared a reference frame. The results for this task are
summarized in Table V.

C. Comparison with refbit

One of the resources which has been introduced in the
literature is called a “refbit” [32], which can be considered
as one unit of sharing a reference frame. A refbit is defined as
a pair of parallel spins pointing in a specific direction |↑n,↑n〉,
shared between the parties who are unaware of the direction
n but are assured of them being parallel. It is obvious that an
SSS can easily be transformed to a refbit by local operations.
Bob simply measures his qubit in a direction of his choice n
which collapses the state to a product of two antiparallel spins,
say |↑n,↓n〉. Since the direction of n is known to Bob due
to his own measurement, this state can then be transformed
into |↓n,↓n〉 by a NOT operation. Therefore an SSS is easily
transformed to pair of parallel or antiparallel spins (i.e., a
refbit). This means that it can supersede a refbit in any type
of discrimination or estimation task. To make this explicit, we
compare the performance of these two resources in this task.

Without loss of generality we can take the refbit to be
|z+, z+〉 in the frame of Alice. The four-qubit states of Bob
and Charlie, when Alice sends two parallel spins |m, m〉 and
a singlet, are respectively given by

|φ1〉 = |z+〉|m〉|m〉|z+〉, (27)

|φ2〉 = |z+〉
(

1√
2

(|z+, z−〉 − |z−, z+〉)

)
|z+〉. (28)

Bob and Charlie should perform a suitable two-qubit mea-
surement on their own qubits and communicate their results to
determine with certainty which state has been sent to them. In
Appendix B we show that, even when they share a refbit, the

TABLE V. The performance of three different resources for
discrimination between a singlet state |ψ−〉 = 1√

2
(|↑m, ↓m〉 −

|↓m, ↑m〉) and two parallel spins |↑m, ↑m〉. The performance is mea-
sured by the probability of unambiguous discrimination averaged
over all input states.

Resource

SRF SSS refbit

probability of conclusive result 1
3

3
8

1
24
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TABLE VI. The conditional probabilities of each outcome for
different states sent by Alice, when Bob and Charlie have a refbit.

State

Probability |ψ−〉 |m, m〉
P(0, 0|ψ ) 0 1/4 sin4 ( θ

2 )

P(0, 1|ψ ) 1/4 1/4 sin4 ( θ

2 ) + 1/2 sin2 ( θ

2 ) cos2 ( θ

2 )

P(1, 0|ψ ) 1/4 1/4 sin4 ( θ

2 ) + 1/2 sin2 ( θ

2 ) cos2 ( θ

2 )

P(1, 1|ψ ) 1/2 1/4 sin4 ( θ

2 ) + sin2 ( θ

2 ) cos2 ( θ

2 ) + cos4 ( θ

2 )

optimal measurement that minimizes the inconclusive prob-
ability is still the total spin measurement. The probabilities
of each measurement outcome P(i, j|φk ) := Tr(�i, j |φk〉〈φk|)
for i = 0, 1 and k = 1, 2 can be obtained straightforwardly by
writing |φ1〉 and |φ2〉 in terms of the total spin eigenvectors.
The results are shown in Table VI.

According to Table VI, Bob and Charlie can discriminate
the state unambiguously only if their measurement results is
(0,0). Hence the inconclusive probability is

Pinconclusive = 1 −
[

1

2
P(0, 0|ψ−) + 1

2
P(0, 0|m, m)

]

= 1 − 1

8
sin4

(
θ

2

)
. (29)

The average probability of uncertainty is obtained by integrat-
ing over θ :

P̄inconclusive = 1

4π

∫ (
1 − 1

8
sin4

(
θ

2

))
sin θ dθ dφ = 23

24
,

(30)

which is definitely larger than 5
8 and shows the superiority of

SSS over refbit.
It is valuable to note here that one could also use the

probability of conclusive result as a figure of merit to compare
the performance of SRF and SSS in task II, i.e., discrimination
between parallel and antiparallel spins. For this task, the
probability of conclusive result is 1

8 when the parties share
a singlet state, while it is zero when they share a reference
frame. This again shows the superiority of SSS over SRF for
performing task II. To avoid lengthening the paper, we have
presented the detailed calculations in Appendix C.

VI. DISCUSSION

Usually resources are ordered according to their convert-
ibility under the relevant constraints, i.e., local operations in
entanglement theory, coherent operations in coherence theory,
and so on. In this sense, a resource which can be freely
converted to another resource (either for finite numbers or
asymptotically) is considered a stronger resource. For refer-
ence frames, such a theory was formulated in Refs. [37,38].
There are situations in which one cannot set such ordering
between different resources, i.e., some resources cannot be
converted to each other freely. This is exactly the case that
occurs for SRF and SSS. While SSS can lead to an SRF

asymptotically [27], an SRF can never lead to an SSS, unless it
is supplied with other resources. In such cases if we consider
specific tasks and ask which resource is more powerful for
accomplishing that specific task, we can set an ordering. It is
true that this task-specific ordering is of limited use; however,
in certain situations it can lead to practical advantages of
a resource normallyconsidered weak over a strong resource.
The advantage comes from the high cost of preparing the
strong resource, where many of its functionalities may not
be utilized for that particular task. What we have shown in
this paper is an example of this kind of task-specific ordering.
The ordering comes from a figure of merit which measures
performance of different resources in doing specific tasks and
not from convertibility of resources. Hence the constraints
for different resources need not be the same, i.e., a shared
singlet state is compared with a shared reference frame, more
precisely a shared direction. We have also considered a refbit
(a pair of parallel spins whose direction is not known to the
holders) and as an example have shown that an SSS can
do the discrimination task III better than a refbit. This is of
course expected since as we have shown an SSS can be freely
converted to a refbit in a single shot. Finally, although we
have not presented it in detail here for the sake of brevity, we
have shown that not all tasks can be done better by SSS rather
than an SRF. For example estimation of the angle between a
spin- j coherent state and a spin-1/2 state (for j > 1/2) is an
example. It is of interest to find quantum information tasks,
other than the ones considered in this paper, for which a shared
singlet state (SSS) is superior to a shared reference frame
(SRF). It remains to be seen whether these considerations
can be taken beyond a few examples and shaped into a
more general scheme for looking into a resource theory of
reference frames which complements the theory developed in
Refs. [37,38]. In this paper we have restricted ourselves to
one use of an SRF or SSS. For this last goal we have to make
a more general study when we have multiple uses of these two
resources [39].
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APPENDIX A

In this Appendix, we briefly explain the calculations lead-
ing to Fig. 3. Using the Clebsh-Gordon coefficients (we have
used ± instead of z±),

〈
j, m − 1

2
; +

∣∣∣∣
(

j ± 1

2

)
, m

〉
= ±

√√√√1

2

(
1 ± m

j + 1
2

)
,

〈
j, m + 1

2
; −

∣∣∣∣
(

j ± 1

2

)
, m

〉
=

√√√√1

2

(
1 ± m

j + 1
2

)
, (A1)
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we rewrite (15) in the form

|�〉 = 1√
2 j + 1

j∑
m=− j

(−1)m|+〉| j, m〉 ⊗ | j,−m〉|±〉. (A2)

For parallel (↑↑) and antiparallel (↑↓) spins of Bob and Charlie, the state (A2) can be rewritten in the forms

|�↑↑〉 = 1

2 j + 1

j∑
m=− j

(−1)m

[√
j + m + 1

∣∣∣∣ j + 1

2
, m + 1

2

〉
−

√
j − m

∣∣∣∣ j − 1

2
, m + 1

2

〉]

⊗
[√

j + m + 1

∣∣∣∣ j + 1

2
, m + 1

2

〉
−

√
j − m

∣∣∣∣ j − 1

2
, m + 1

2

〉]
(A3)

and

|�↑↓〉 = 1

2 j + 1

j∑
m=− j

(−1)m

[√
j + m + 1

∣∣∣∣ j + 1

2
, m + 1

2

〉
−

√
j − m

∣∣∣∣ j − 1

2
, m + 1

2

〉]

⊗
[√

j + m

∣∣∣∣ j + 1

2
, m − 1

2

〉
+

√
j − m + 1

∣∣∣∣ j − 1

2
, m − 1

2

〉]
. (A4)

It is now easy to determine the probabilities of various outcomes. As an example, one finds

P

(
j + 1

2
, j + 1

2

∣∣∣∣ ↑,↑
)

= 1

(2 j + 1)2

j∑
m=− j

( j + m + 1)2 = (1 + j)(3 + 2 j)

3(1 + 2 j)2
. (A5)

The other probabilities are also obtained in a similar manner
and we have for parallel spins

P

(
j + 1

2
, j + 1

2

∣∣∣∣ ↑,↑
)

= (1 + j)(3 + 2 j)

3(1 + 2 j)2
,

P

(
j + 1

2
, j − 1

2

∣∣∣∣ ↑,↑
)

= 4 j(1 + j)

3(1 + 2 j)2
,

P

(
j − 1

2
, j + 1

2

∣∣∣∣ ↑,↑
)

= 4 j(1 + j)

3(1 + 2 j)2
,

P

(
j − 1

2
, j − 1

2

∣∣∣∣ ↑,↑
)

= j(2 j − 1)

3(1 + 2 j)2
, (A6)

and for antiparallel spins

P

(
j + 1

2
⊗ j + 1

2

∣∣∣∣ ↑,↓
)

= (1 + j)(3 + 4 j)

3(1 + 2 j)2
,

P

(
j + 1

2
⊗ j − 1

2

∣∣∣∣ ↑,↓
)

= 2 j(1 + j)

3(1 + 2 j)2
,

P

(
j − 1

2
⊗ j + 1

2

∣∣∣∣ ↑,↓
)

= 2 j(1 + j)

3(1 + 2 j)2
,

P

(
j − 1

2
⊗ j − 1

2

∣∣∣∣ ↑,↓
)

= j(1 + 4 j)

3(1 + 2 j)2
. (A7)

By using these probabilities one can obtain the conditional
probabilities for guessing the spins to be parallel or antipar-
allel and hence determine the average information gain, as
in previous sections. The results are shown in Fig. 3, which
shows the average information gain versus j. It is seen that,
as j increases, the average information gain decreases, and in
the limit of j → ∞ it becomes identical with the one obtained
with shared reference frame.

APPENDIX B

Consider task III. Here we show that when Bob and Charlie
are equipped with a refbit, the optimal measurement is the
total spin measurement. Due to the lack of a complete refer-
ence frame, they can only perform rotationally invariant mea-
surements [29]. It was shown in Ref. [29] that the elements
of a rotationally invariant measurement can be expressed as
a positive-weighted sum of projectors onto the total spin
subspaces, i.e.,

E0 = α�0 + β�1,

E1 = (1 − α)�0 + (1 − β )�1, (B1)

where 0 � α, β � 1.
The aim is to find the best values of α and β which

minimize the inconclusive probability when Bob and Charlie
share a refbit. In task III Alice sends one of the states |ψ−〉
or |m, m〉 to Bob and Charlie. After performing measure-
ments (B1) they have a conclusive discrimination when some
of the probabilities P(Ei, Ej |ψ−) or P(Ei, Ej |m, m) vanish
and they fail to identify the state when all the probabilities
are nonzero. To minimize the inconclusive probability, one
should maximize the probability of conclusive discrimination.
Straightforward calculations show that none of the probabili-
ties P(Ei, Ej |m, m) are zero and hence Bob and Charlie can
have a conclusive decision if P(Ei, Ej |ψ−) vanishes for some
i and j. The values of P(Ei, Ej |ψ−) can be calculated easily:

P(E0, E0|ψ−) = 1
2αβ + 1

2β2,

P(E0, E1|ψ−) = 1
2β(1 − β ) + 1

4β(1 − α) + 1
4α(1 − β ),

P(E1, E0|ψ−) = 1
2β(1 − β ) + 1

4β(1 − α) + 1
4α(1 − β ),

P(E1, E1|ψ−) = 1
2 (1 − β )(1 − α) + 1

2 (1 − β )2. (B2)
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Since 0 � α, β � 1, it is obvious that the above probabilities
can be zero only if β = 0 or β = 1, which proves the asser-
tion.

APPENDIX C

In this Appendix, by considering the probability of conclu-
sive result as the figure of merit, we again show the superiority
of SSS to SRF for performing task II [the results which we
briefly explained after Eq. (30)]. The ensemble of Alice is a
pair of parallel or antiparallel spins. Alice has sent one spin to
Bob and the other to Charlie. Bob and Charlie are to determine
which pair has been sent to them; see Fig. 2. It is now better to
first consider the case where Bob and Charlie share a singlet.

1. Shared singlet state

The probabilities for the parallel spins were already cal-
culated in Sec. V B and are presented in Table IV. The same
type of analysis as in Eqs. (23)–(25) can be done for the pair
of antiparallel spins. One can rotate the reference frame of
Alice so that it is aligned with the direction of this pair and so
the state of the pair is given by |z+, z−〉. The calculations are
straightforward, and instead of (23) we now have

|�tot〉B,1;C,2 = 1√
2

(|z+, z−〉 − |z−, z+〉)B,C ⊗ |z+, z−〉1,2,

(C1)

which, after rearranging, in terms of total spins will be written
as

|�tot〉B,1;C,2 = 1

2
√

2
[2|t1〉|t−1〉 − |t0〉|t0〉 − |t0〉|s0〉

− |s0〉|t0〉 + |s0〉|s0〉]B1;C2. (C2)

TABLE VII. The conditional probabilities of each outcome for
two parallel or antiparallel pairs of spins sent by Alice, when Bob
and Charlie share a singlet state.

State

Probability Parallel spins Antiparallel spins

P(0, 0|ψ ) 0 1/8
P(0, 1|ψ ) 1/4 1/8
P(1, 0|ψ ) 1/4 1/8
P(1, 1|ψ ) 1/2 5/8

This will then easily lead to the probabilities shown in
Table VII. Since Alice sends her states with equal probability,
it is obvious that 1 out of 16 times Bob and Charlie obtain the
values (0,0) which definitely lead to unambiguous discrimina-
tion. We will now see that when they have a shared reference
frame, they can never reach a conclusive result.

2. Shared reference frame

In this case, due to the arbitrariness of the direction of
m and rotational invariance, the projectors of Bob can be
P+ := |z+〉〈z+| and P− = |z−〉〈z−|, and those of Charlie can
be P+ = |n+〉〈n+| and P− = |n−〉〈n−|. To prove the inclu-
siveness of all measurements, it is enough to prove that
none of the probabilities P(α, β|m, m) or P(α, β|m, m⊥)
(α, β = ±) can be zero for all choices of m. But this is an
obvious fact, once we note the factorized form of the above
probabilities, i.e., P(α, β|m, m) = |〈z±|m〉|2|〈n±|m〉|2. Once
again we have provided that a shared singlet state is a more ef-
fective resource than a shared reference frame for performing
task II.
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