
PHYSICAL REVIEW A 100, 022315 (2019)

Continuous-variable entanglement distillation over a pure
loss channel with multiple quantum scissors

Kaushik P. Seshadreesan,1 Hari Krovi,2 and Saikat Guha1

1College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
2Quantum Engineering and Computing Physical Sciences and Systems, Raytheon BBN Technologies,

Cambridge, Massachusetts 02138, USA

(Received 13 December 2018; revised manuscript received 26 April 2019; published 13 August 2019)

Entanglement distillation is a key primitive for distributing high-quality entanglement between remote loca-
tions. Probabilistic noiseless linear amplification based on the quantum scissors is a candidate for entanglement
distillation from noisy continuous-variable (CV) entangled states. Being a non-Gaussian operation, the quantum
scissors is challenging to analyze. We present a derivation of the non-Gaussian state heralded by multiple
quantum scissors in a pure loss channel with two-mode squeezed vacuum input. We choose the reverse coherent
information (RCI), a proven lower bound on the distillable entanglement of a quantum state under one-way
local operations and classical communication (LOCC), as our figure of merit. We evaluate a Gaussian lower
bound on the RCI of the heralded state. We show that it can exceed the unlimited two-way LOCC-assisted direct
transmission entanglement distillation capacity of the pure loss channel. The optimal heralded Gaussian RCI
with two quantum scissors is found to be significantly more than that with a single quantum scissors, albeit at
the cost of decreased success probability. Our results fortify the possibility of a quantum repeater scheme for CV
quantum states using the quantum scissors.
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I. INTRODUCTION

Entanglement shared across large distances is a key re-
source for quantum information processing tasks such as
distributed quantum computation [1–3], distributed sensing
[4–6], quantum communication protocols such as quantum
key distribution [7], quantum teleportation [8], superdense
coding [9], entanglement-assisted high-rate quantum error-
correcting codes [10], and entanglement-assisted classical
communication over noisy channels [11]. Optical photons
are arguably the best carriers of quantum information to dis-
tribute entanglement between remote locations [12]. Optical
entanglement distribution is largely classified into schemes
based on discrete and continuous variables depending on
the entangled resource state that is transmitted [13,14]. In
discrete variables, the resource states are maximally entangled
states of discrete, finite-dimensional degrees of freedom of
single photons, such as the polarization, while in continuous
variables, they are entangled multimode squeezed states of
the continuous, infinite-dimensional quadrature degrees of
freedom of electromagnetic field modes, which are Gaussian
states, i.e., states completely described by the first two mo-
ments of the quadrature operators associated with the modes.

The primary challenge in distributing optical entanglement
is photon loss and noise in transmission, which degrades
the quality of entanglement. Thus, entanglement distillation,
the process of distilling from several copies of a noisy en-
tangled state fewer copies of a more entangled state using
local operations and classical communication (LOCC), is
key in distributing high-quality entanglement. Entanglement
distillation in discrete variables, e.g., from weakly entangled
mixed states of pairs of single-photon polarization qubits,
typically involves the quantum controlled-NOT gate [15,16], or

more practically, a simple polarizing beam splitter [17], acting
locally on pairs of identical copies of the state, followed by
measurement and classical communication between the two
parties. When applied recursively, they yield highly entangled
and highly pure two-qubit states [18]. In continuous variables,
it is known that entanglement distillation from noisy Gaussian
entangled states cannot be effected by Gaussian operations
alone [19,20], where the latter refer to state transforma-
tions based on Hamiltonians that are at most quadratic in
the quadrature operators and map Gaussian states to other
Gaussian states. Non-Gaussian operations such as photon
counting are required. In this regard, schemes based on Fock
state filtering [21], such as quantum catalysis [22,23], photon
subtraction [24,25], symmetric photon replacement [26–28],
and purifying distillation [29], which degaussify Gaussian
states, have been considered. When applied recursively, these
schemes regaussify the final output while yielding highly en-
tangled [25,26], and in some cases also highly pure, Gaussian
states [28,29].

In Ref. [30], Ralph and Lund proposed the concept of
probabilistic noiseless linear amplification (NLA), which can
be realized using the non-Gaussian operation, the quantum
scissors [31], as a candidate for continuous-variable (CV)
entanglement distillation. In the limit of a large number of
scissors, NLA can probabilistically distill highly entangled
and highly pure Gaussian states from weakly entangled mixed
Gaussian states [30]. Approximate NLA based on a single
quantum scissors was further investigated in [32,33] for quan-
tum error correction [34] of CV entangled states, towards
designing quantum repeaters [35–37]. Continuous-variable
entanglement distillation with a single quantum scissors was
experimentally demonstrated in [38].
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In this paper, we analyze entanglement distillation with
approximate NLA effected by multiple but a finite number
of quantum scissors over a pure loss channel with two-mode
squeezed vacuum (TMSV) state input. We show that the
entanglement content of the heralded output of the NLA,
quantified by the reverse coherent information (RCI) [39–42],
is higher than

Cdirect (η) = − log2(1 − η), (1)

the recently proven maximum entanglement generation rate
in ebits (maximally entangled qubits) per mode achievable
through a pure loss channel of transmissivity η [40,43] (see
also [44] for a strong converse theorem). The RCI is an
information-theoretic lower bound on the distillable entangle-
ment per copy of a shared state that is achievable using one-
way LOCC when many copies of the shared state are available
[43,45]. Although NLA has been proposed in the past for CV
entanglement distillation, here the optimal trade-off between
the RCI of the heralded state and the probability of success
of the NLA as a function of the scissors-based NLA’s internal
parameters, a gain (transmissivity of a beam splitter), and the
number of scissors is quantified. Clearly, RCI times the NLA
success probability must be less than Cdirect (η) [43]. However,
being able to herald entanglement over a lossy channel, even if
probabilistically, of RCI higher than Cdirect (η), i.e., heralding
a state of distillable entanglement higher than Cdirect (η), is
significant towards realizing CV quantum repeaters since
the latter is a prerequisite to building a second-generation
quantum repeater that can outperform Cdirect (η) [46].

More technically, the contributions of this paper include a
calculation of the non-Gaussian state heralded by the approx-
imate NLA based on multiple but a finite number of quantum
scissors and the corresponding heralding success probability,
based on characteristic functions and the Husimi-Q function.
The calculation also applies to the teleportation-based CV
error-correction scheme with approximate NLA [34] and is
computationally efficient. This is in contrast to the Fock basis
calculations presented in [32,33], which do not scale well with
increasing number of quantum scissors. Our choice of the
RCI as the figure of merit is operationally more relevant than
those considered before, such as the logarithmic negativity
[47,48] and the entanglement of formation (EOF) [49]. We
numerically evaluate a Gaussian lower bound on the RCI of
the state heralded by approximate NLA. We show that there
exist TMSV input mean photon numbers and scissors gain
parameter values where the lower bound exceeds Cdirect (η).
Further, we find that the Gaussian RCI heralded by two
quantum scissors is significantly higher compared to that
heralded by a single quantum scissors, and in some cases
the addition of the second quantum scissors even helps boost
it above Cdirect (η), which could not be achieved with just a
single quantum scissors. In addition to the analyses based on
the RCI, we also evaluate a Gaussian lower bound on the
EOF of the state heralded by a single quantum scissors. We
qualitatively validate the findings presented in [33] and extend
the analysis to two quantum scissors.

The paper is organized as follows. In Sec. II we review
the basic concept of NLA with quantum scissors, outlining
its relevance to CV entanglement distillation. In Sec. III we
describe in detail the methods we employ to analyze CV

(a)

(b)

FIG. 1. (a) Noiseless linear amplification implemented using
linear optics and (b) the quantum scissors operation based on photon
injection and detection. The green machines in (a) refer to an n-mode
input n-mode device that performs an n-way splitting or its inverse
(recombining) unitary operation. When all but one of the input modes
are in the vacuum state, the green machine splits the mean photon
number in the first input mode uniformly across all the output modes.

entanglement distillation using multiple but a finite number
of quantum scissors, including our figure of merit, the RCI.
Section IV contains the results. We summarize our findings in
Sec. V.

II. NOISELESS LINEAR AMPLIFICATION
WITH QUANTUM SCISSORS

Noiseless linear amplification [30] refers to probabilistic
amplification that, e.g., transforms coherent states as |α〉 →
|gα〉, where g ∈ R is the gain. Noiseless linear amplification
can be implemented in a heralded fashion using linear optics,
photon injection, and detection [30]. The scheme involves
splitting the input signal into N parts of equal intensity and
recombining them following the quantum scissors operation
on each part as shown in Fig. 1(a). Quantum scissors, as
the name suggests, refers to an operation that truncates a
quantum state in Fock space [31]. In addition to truncation,
it can be used to amplify certain Fock state components of
the state relative to others [30]. Consider the scheme shown in
Fig. 1(b) comprising single-photon injection and detection. A
single photon (in mode c) is mixed with vacuum (in mode b)
on a beam splitter of transmissivity κ = 1/(1 + g2) (g being
the intended gain of NLA), creating an entangled state in
the {|0〉b ⊗ |1〉c, |1〉c ⊗ |0〉b} subspace. When the signal in
mode a is mixed with mode c on a 50:50 beam splitter and
either one of the two projections {|0〉a ⊗ |1〉c, |1〉a ⊗ |0〉c} is
applied (i.e., when detector Da clicks and Dc does not, or
vice versa), the {|0〉, |1〉} support of the quantum state of
the signal is teleported to mode b. Further, the teleported
state is such that its |1〉 component is amplified relative to
the vacuum component depending on the choice of κ . In
summary, the quantum scissors scheme of Fig. 1 on any input
signal state |ψ〉 ∝ α0|0〉 + α1|1〉 + · · · heralds the truncated
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TMSV NLA

FIG. 2. Pure loss channel of transmissivity η with TMSV state
input appended by N-quantum scissors of gain g = √

(1 − κ )/κ at
the output.

and amplified output

�(g)(α0|0〉 + α1|1〉 + · · · ) =
√

1

1 + g2
(α0|0〉 + gα1|1〉).

(2)

When the signal to the modified quantum scissors is suffi-
ciently weak such that its quantum state resides primarily in
the {|0〉, |1〉} subspace, the operation effects NLA, whereas if
the state has significant support on higher photon components,
then the amplification is not noiseless anymore owing to the
excess noise originating from the truncation of the teleported
state in Fock space. Thus, in the scheme of Fig. 1(a), for a
given input signal intensity, N needs to be sufficiently large so
that the subsignals that are inputs to the quantum scissors op-
erations are weak. When all the quantum scissors operations
succeed and all but one of the outputs of the N combiner are
measured in the vacuum state, the device approaches NLA.

As mentioned earlier, NLA is probabilistic. The success
probability of NLA with N-quantum scissors is input state
dependent and decreases exponentially with N . For an input
coherent state |α〉, the success probability of an N-scissors
NLA drops with N and the NLA gain g as Ps = 1/(1 +
g2)N e−(1−g2 )|α|2 [30].

Noiseless linear amplification is particularly relevant to CV
entanglement distillation. Consider a TMSV state of mean
photon number μ = sinh2 r,

|�〉AA′ =
√

1 − χ2
∞∑

n=0

χn|n〉A ⊗ |n〉A′ , χ = tanh r, (3)

where r is the squeezing parameter. Let one mode of the
TMSV state be transmitted through a pure loss channel of
transmissivity η, followed by N-quantum scissors, as shown
in Fig. 2, where N is sufficiently large so that it implements
NLA of gain g = √

(1 − κ )/κ . The NLA results in a heralded
state that is equivalent to the state obtained by transmitting one
mode of a TMSV state of higher mean photon number μ′ =
sinh2{tanh−1[χ

√
1 + (g2 − 1)η]} through a pure loss chan-

nel of improved transmissivity given by η′ = g2η/[1 + (g2 −
1)η], as shown in [30], which implies improved entanglement
shared across the channel.

III. CV ENTANGLEMENT DISTILLATION WITH
MULTIPLE QUANTUM SCISSORS: METHODS

Our analysis of CV entanglement distillation across a pure
loss bosonic channel using multiple but finite N-quantum
scissors with TMSV input as shown in Fig. 2 involves the

FIG. 3. Modified quantum scissors implemented with a weak
TMSV source and on-off projections, appended to a pure loss chan-
nel of transmissivity η with TMSV state input. When the idler mode
of the weak TMSV state is projected on I − |0〉〈0| a single photon is
heralded in the signal mode and injected into the quantum scissors.

following steps: (a) determining the heralded non-Gaussian
quantum state, (b) determining the heralding success proba-
bility, and (c) evaluating a figure of merit for the task.

A. Quantum scissors based on heralded single-photon injection
and on-off photodetection

The calculation of the non-Gaussian state heralded by
N-quantum scissors of the form shown in Fig. 1(b) quickly
becomes cumbersome with increasing (but finite) N (cf.
[32,33]). In order to make the calculation more tractable, we
emulate the quantum scissors by replacing the photon-number
detectors with on-off photodetection {|0〉〈0|, I − |0〉〈0|} and
the single photon by one mode of a weak TMSV state (of
mean photon number μaux). Figure 3 shows such an emulation
of a single-quantum scissors NLA (denoted by N = 1 NLA
hereafter) acting on a pure loss channel with TMSV input. The
weak TMSV state heralds a single-photon state for injection
into the quantum scissors when the idler mode is projected
onto I − |0〉〈0|. Note that in all the calculations presented in
this paper, we choose μaux = 0.01. The success probability
of the quantum scissors operation is expected to be enhanced
having replaced the {|0〉, |1〉} projection with {|0〉〈0|, I −
|0〉〈0|} detection, whereas the quality of the amplification is
expected to be marginally degraded. However, the qualitative
behavior of the scheme still remains preserved as is shown in
subsequent analyses.

B. Heralded state and heralding success probability

We now describe the calculation of the heralded non-
Gaussian quantum state and heralding success probability for
the scheme shown in Fig. 3. The scheme involves a bosonic
system of five modes, whose premeasurement state is Gaus-
sian, meaning the quantum state is completely described by its
first two moments. See Appendix A for the system description
and the initial and premeasurement covariance matrices. See
[50,51] for a detailed account of CV quantum information
including entanglement in CV Gaussian states.

The quantum scissors operation is successful when, in
Fig. 3, either one (but not both) of the modes C and Y , along
with mode D, is measured in the on projection I − |0〉〈0|.
The heralded state clearly is non-Gaussian since the I −
|0〉〈0| projection is non-Gaussian. We capture the heralded
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non-Gaussian state in modes A and B by its Husimi-Q func-
tion, defined as

Qρ (α, β ) = 〈α, β|ρ|α, β〉
π2

, α, β ∈ C. (4)

It can be determined as an overlap integral between the five
mode Gaussian state ρ in modes ABCDY and the projections
|α〉〈α|A ⊗ |β〉〈β|B ⊗ (I − |0〉〈0|)⊗2

CD ⊗ |0〉〈0|Y or |α〉〈α|A ⊗
|β〉〈β|B ⊗ |0〉〈0|C ⊗ (I − |0〉〈0|)⊗2

DY , normalized by the prob-
ability of the projections π1 = (I − |0〉〈0|)⊗2

CD ⊗ |0〉〈0|Y and
π2 = |0〉〈0|C ⊗ (I − |0〉〈0|)⊗2

DY , respectively, which constitute
the success probability of the quantum scissors operation. The
heralded states corresponding to the two possible successful
projections turn out to be the same up to local phases.

The above overlap integrals are sums of Gaussian integrals
that can be evaluated efficiently (Appendix C). For example,
the success probability for the projection π1 on modes CDY
involves evaluating the overlap integral P1 = Tr(π1ρABCDY ),

P1 =
∫

dξ χρABCDY (ξ )[1 − χ0(−ξc)]

× [1 − χ0(−ξD)][χ0(−ξY )]Y , ξ ∈ R, (5)

where χρABCDY and χ0 = χ|0〉〈0| are the characteristic functions
of the heralded non-Gaussian state and the vacuum state,
respectively. The success probability associated with the other
projection, namely, π2, also turns out to be the same as (5) due
to symmetry between modes C and Y , so the total success
probability is P′

succ = Tr[(π1 + π2)ρ] = P1 + P2 = 2P1. The
success probability of a quantum scissors operation with a
deterministic single-photon injection into mode C can be
deduced from the above success probability by renormalizing
it with the probability of detecting a single photon in the idler
mode D. That is,

Psucc = P′
succ/

(
μaux

μaux + 1

)
, (6)

where the scaling factor is the probability of observing the
|1〉〈1| projection on the idler mode of the TMSV state of mean
photon number μaux.

The heralded state and heralding success probability cal-
culations for NLA with a higher number of quantum scissors
follow similarly to the N = 1 NLA case described above. For
N-quantum scissors, the success probability Psucc is obtained
by renormalizing P′

succ by a factor [μaux/(μaux + 1)]N .

C. Reverse coherent information

The RCI of a state ρAB is defined as [39–42]

IR(ρAB) := H (A)ρ − H (AB)ρ, (7)

where H (A)ρ is the von Neumann entropy of ρA =
TrB(ρAB) defined as H (A)ρ = − Tr(ρA log2 ρA) [and likewise
H (AB)ρAB ]. For the CV entanglement distillation scheme of
Fig. 3, we determine the optimal RCI that can be heralded by
numerically optimizing over the mean photon number of the
input TMSV state and the NLA gain [52].

D. Lower bound on the heralded reverse coherent information

Evaluating the RCI of the state heralded upon successful
operation of quantum scissors-based NLA following the pure
loss channel is perceived to be nontrivial. As an interim
remedy, we resort to calculating the RCI of the covariance
matrix of the heralded state, which by the Gaussian extremal-
ity theorem [53] amounts to a lower bound on the RCI of the
heralded non-Gaussian state.

The covariance matrix V (ρ) can be determined from the Q
function as

Vi, j (ρ) = 2
∫

dr rir jQρ (α, β ) − δi, j

− 2
∫

dr riQρ (α, β )
∫

dr r jQρ (α, β ), (8)

where r = (x1, x2, p1, p2)T ∈ R4, α = (x1 + ip1)/
√

2,
β = (x2 + ip2)/

√
2, and the Q function in real coordinates

is Qρ (x1, x2, p1, p2) = 〈x1, x2, p1, p2|ρ|x1, x2, p1, p2〉/4π2.
Given the covariance matrix V (ρAB) of a bipartite state ρAB,
the RCI of V (ρAB) follows from (7) as

IR(A′〈B)ρAB = H (A)ρAB − H (AB)ρAB

= g(�νA) − g(�νAB), (9)

where g(x) := ( x+1
2 ) log2( x+1

2 ) − ( x−1
2 ) log2( x−1

2 ) is the en-
tropy of a thermal state of mean photon number (x − 1)/2 and
�νA and �νAB are the symplectic eigenvalues of the covariance
matrices corresponding to mode A and modes AB, respectively
(Appendix A). We call this the Gaussian RCI of the state ρAB.

IV. RESULTS

A. Gaussian reverse coherent information for N = 1, 2
NLA-assisted pure loss channel

In Figs. 4 and 5, we plot the Gaussian RCI and the
heralding success probability for a pure loss channel appended
with N = 1 NLA and N = 2 NLA. The quantity is plotted
as a function of the mean photon number μ of the TMSV
input and the transmissivity κ = 1/(1 + g2) of the asymmetric
beam splitter in the quantum scissors (g being the NLA gain).
We choose a channel of transmissivity η = 0.01. The choice
of a small transmissivity η for illustration is such that the
amplification due to quantum scissors remains noiseless. The
mean photon number of the input TMSV state is optimized
to determine the best possible heralded Gaussian RCI. We
make the following observations from these figures. (a) The
heralded Gaussian RCI exceeds the direct transmission ca-
pacity Cdirect (η) of Eq. (1) (denoted by the floor of both
three-dimensional plots in Fig. 4) for a certain regime of the
parameters μ and κ for both N = 1, 2. (b) The Gaussian RCI
of N = 2 NLA is about four times that of N = 1 NLA. (c)
The increase in the Gaussian RCI is accompanied by a steep
decrease in the heralding success probability of the NLA,
which drops exponentially going from N = 1 to N = 2 NLA
as shown in Fig. 5.

For a different choice of η, namely, η = 0.1, the opti-
mal heralded Gaussian RCI with N = 1 NLA never exceeds
Cdirect (η), whereas with N = 2 NLA it exceeds the bound, as
shown in Fig. 6. In other words, in such a parameter regime
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FIG. 4. Gaussian RCI heralded across a pure loss channel of
transmissivity η = 0.01 appended with (a) N = 1 NLA and (b) N =
2 NLA as a function of the input TMSV state mean photon number
and the gain of the NLA. The parameter κ is related to the NLA gain
by κ = 1/(1 + g2). The floors of the plots correspond to Cdirect (η).
The roughness in the surface in (b) is due to the finiteness of precision
in our numerics.

one quantum scissors is not enough, and a second quantum
scissors is required to “activate” a heralded entanglement of
higher quality than direct transmission.

Since the increase in the heralded Gaussian RCI happens
at the expense of the decreased heralding success probability,
it is important to characterize this tradeoff so that the values
of the parameters (TMSV input mean photon number μ and
NLA gain g) can be chosen optimally. In Fig. 7, we plot the
Gaussian RCI as a function of the success probability for the
N = 1, 2 NLA-appended channel of transmissivity η = 0.01,
when μ and g are optimized. The outer envelope of this scatter
plot thus represents the best possible pairs of heralded RCI
and heralding success probability attainable using N = 1, 2
NLA. The oscillations in the outer envelope are a result of
focusing on the Gaussian part (covariance matrix) of the
heralded state, whose Q function is a sum of many Gaussian
distributions and thus non-Gaussian. The envelope and the
accompanying set of optimal parameters thus may be of use in
designing quantum repeater schemes with quantum-scissors-
based NLA.

B. Entanglement of formation and reverse coherent information
lower bounds for teleportation through a

NLA-assisted pure loss channel

In [34], a variant of the scheme in Fig. 2 was studied
as quantum error correction for the transmission of quantum
continuous variable states over a lossy channel. The scheme
is as shown in Fig. 8. Here direct transmission through the
lossy channel is replaced by continuous-variable quantum
teleportation over a lossy entangled resource established by

FIG. 5. Heralding success probability with N = 1, 2 NLA de-
ployed on a pure loss channel of transmissivity η = 0.01, as a
function of the input TMSV state mean photon number and the
gain of the NLA. The parameter κ is related to the NLA gain by
κ = 1/(1 + g2).

sending one mode of a finite-energy TMSV state through
the channel followed by NLA. The resource is referred to
as an error-correction (EC) box and is characterized by the
mean photon number of the teleportation resource TMSV
state μres, the number of quantum scissors N , and the NLA
gain g. Using a meticulous Fock basis calculation, Dias and
Ralph [33] recently showed that this scheme with N = 1
NLA, when NLA is successful, can herald states with higher
entanglement than the state shared via direct transmission over
the lossy channel. They considered the EOF (Appendix D)
of the heralded covariance matrix (Gaussian part of the
heralded non-Gaussian state) as the figure of merit, which
constitutes a lower bound on the entanglement of formation of
the heralded non-Gaussian state by the Gaussian extremality
theorem [53].

The calculation of Dias and Ralph, however, is tedious and
difficult to extend to NLA with multiple quantum scissors.
The method based on characteristic functions described in
Sec. III B offers an efficient alternative means to determine the
heralded non-Gaussian state in this case. Using this method
along with general ideas from Gaussian conditional dynam-
ics [50,54] to deal with the teleportation elements such as
dual homodyne detection (CV Bell state measurement) and
displacement (unitary correction) (Appendix B), we analyzed
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FIG. 6. Gaussian RCI heralded across a pure loss channel of
transmissivity η = 0.1 appended with N = 1, 2 NLA, as a function
of the input TMSV state mean photon number and the gain of
the NLA. The parameter κ is related to the gain of the NLA by
κ = 1/(1 + g2). The planes in the plots correspond to Cdirect (η).

(a)

(b)

FIG. 7. Gaussian RCI heralded across N = 1, 2 NLA vs herald-
ing success probability for a pure loss channel of transmissivity
η = 0.01.

FIG. 8. One mode of a TMSV state teleported through a resource
state consisting of a lossy TMSV state aided by an N = 1 NLA.

the effect of NLA with N = 1, 2 quantum scissors in Fig. 8.
We calculated a lower bound on the EOF of the heralded state
by evaluating the EOF of its Gaussian part, which equals the
Gaussian entanglement of formation (GEOF) of the latter (see
Appendix D for details).

In this scheme, the non-Gaussian state heralded upon suc-
cessful NLA operation for a TMSV input is a function of the
dual homodyne detection outcome. In particular, both its first
and second moments are dependent on the outcome. There are
two ways to quantify the performance of the scheme: (a) by
evaluating the figure of merit on the covariance matrix of the
average heralded state or (b) by evaluating the average of the
figure of merit applied on the conditional heralded covariance
matrices, where in both cases the averaging is with respect to
the dual homodyne measurement outcomes. We will call these
q1 and q2, respectively. Operationally, the former captures the
entanglement content of the average state heralded by the
scheme, while the latter captures the entanglement content
on a per copy basis, averaged over the copies. Convexity of
the EOF implies that q2 � q1. It should be noted that while
the displacement correction associated with the teleportation
impacts the average heralded state and in turn its EOF, it does
not affect the EOF of the conditional heralded states, since the
measure is independent of the first moments.

In Fig. 9, we plot q1 and q2 for a TMSV input of mean
photon number μ as a function of the effective transmission
parameter defined as ηeffec = g2ηχ2, where g is related to the
gain of the NLA and χ = tanh[sinh−1(

√
μres)]. The channel

transmissivity is chosen to be η = 0.01, the mean photon
number of the TMSV state at the input as well as in the EC box
(teleportation resource state) is chosen to be μres = μ = 0.33
(which corresponds to χ = 1), and the NLA amplitude gain
g is scanned over. In Fig. 9(a), the quantity q1 is plotted,
where it has been optimized over a classical gain tuning
parameter that scales the dual homodyne outcome prior to
the displacement correction operation. We find that our curve
for the N = 1 NLA is qualitatively similar, but below what
was reported in [33] for the same. This is as expected, since
we have considered on-off heralding photodetection instead
of perfect photon-number-resolving single-photon detection
in the quantum scissors. In addition, we now have calculated
the same figure of merit also for N = 2 NLA. We observe
that the Gaussian lower bound on the EOF of the heralded
state increases significantly in going from N = 1 to N = 2.
In Fig. 9(b), the quantity q2 is plotted, and as is expected
due to convexity of the EOF, the curves are higher than the
corresponding ones in Fig. 9(a). In the remainder of this
discussion, we will consider the quantity q2 as the sole figure
of merit for the scheme.
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FIG. 9. Entanglement of formation of the covariance matrix her-
alded across the EC box of [34] for a TMSV input, as a function of
the heralded effective transmission. The bare channel transmissivity
is chosen to be η = 0.01, the mean photon number of the input
TMSV and the teleportation resource TMSV are chosen to be equal
μres = μ = 0.33 and N = 1, 2, respectively, and the NLA gain g is
varied. (a) The EOF of the covariance matrix of the average state
heralded across the error-corrected channel. (b) The average of EOF
of the conditional heralded covariance matrices (conditioned on and
averaged over the outcome of the dual homodyne detection). The
black bold line corresponds to the EOF for transmission across the
bare lossy channel.

In Fig. 10, the heralding success probability of the scheme
is plotted as a function of the effective transmission for the
same set of parameter values as chosen in Fig. 9. We observe
that our curve for the N = 1 case is qualitatively similar, but
slightly above the one reported in [33]. This is again consistent
with our choice of on-off photodetection in place of single-
photon detection in the quantum scissors.

In Fig. 11, the quantity q2 and the heralding success
probability of NLA are plotted as a function of the NLA
intensity gain g2. The EOF of direct transmission through
the lossy channel forms the benchmark. This is exceeded by
teleportation of the input through the EC box with N = 1, 2
NLA. The figure also shows the performance of ideal NLA
(corresponding to N → ∞) for comparison, which is calcu-
lated as the EOF of a TMSV state whose one mode undergoes
a pure loss channel of effective transmissivity ηeffec = g2ηχ2,
g being the NLA gain and χ = tanh[sinh−1(

√
μres)] [34].

The EOF, though a valid entanglement measure, is an upper
bound on the distillable entanglement, whereas the RCI is a
lower bound on the distillable entanglement, and hence more

FIG. 10. Success probability of the EC box from [34] for N =
1, 2 NLA as a function of the heralded effective transmission. The
bare channel transmissivity is chosen to be η = 0.01, the mean pho-
ton number of the input TMSV and the teleportation resource TMSV
are chosen to be equal μres = μ = 0.33 and N = 1, 2, respectively,
and the NLA gain g is varied.

operationally relevant to entanglement distillation. We ana-
lyze the average RCI of the heralded conditional covariance
matrices across the EC box. One key mathematical difference
between the measures is that while the EOF is non-negative
by definition, the RCI can take on negative values for sepa-
rable states. We find that averaging over the dual homodyne
outcomes is severely detrimental to the RCI and leaves the
average RCI negative for nearly all choice of parameters.
Postselecting on the dual homodyne outcome over a small

(a)

(b)

FIG. 11. The EOF and success probability of the covariance
matrix heralded by the EC box for N = 1, 2 NLA as a function of
the NLA intensity gain g2.
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FIG. 12. Reverse coherent information of the covariance matrix
heralded across the scheme in Fig. 8 with N = 1, 2 NLA and η =
0.01. The parameter κ is related to the gain of the NLA by κ =
1/(1 + g2).

range of values around zero (whose probability of occurrence
is maximal among all possible outcomes of the measurement),
we plot the average of the RCI of the heralded conditional
covariance matrices in Fig. 12 for the EC box with N = 1, 2
NLA. These curves are identical to the ones in Fig. 4, but are
attained with higher values of mean photon number μ. This is
consistent with the fact that the teleportation of two TMSV
heralds a new TMSV of a different mean photon number,
and hence the teleportation through the EC box converges to
transmission of a different TMSV through the NLA-assisted
lossy channel.

V. CONCLUSION

To summarize, we studied continuous-variable entangle-
ment distillation with quantum scissors-based NLA from a
noisy two-mode squeezed state shared across a pure loss
channel, as shown in Figs. 2 and 3. We presented a calculation
based on phase-space characteristic functions and the Husimi-
Q function to determine the non-Gaussian state heralded by
the quantum scissors and the associated heralding probability.
The complexity of the calculation scales efficiently with the
number of quantum scissors. Having determined the heralded
non-Gaussian state, we evaluated its Gaussian RCI and nu-
merically optimized it over the input mean photon number
and the NLA gain, where the RCI is a lower bound on the
distillable entanglement per copy of the shared state when
many copies are available that is achievable using one-way
LOCC.

We also applied the calculation to the proposal of [34] that
replaces transmission through a lossy channel with telepor-
tation over a NLA error-corrected lossy entangled resource

state as shown in Fig. 8. Previous studies on this scheme had
determined the logarithmic negativity and a Gaussian lower
bound on the EOF of the states heralded by single quantum
scissors. We validated some of these findings with our method
and extended the analysis to the case of two quantum scissors.
Additionally, we calculated the Gaussian RCI for the scheme
with one and two quantum scissors.

Our main conclusions include the following. (a) In CV
entanglement distillation over a pure loss channel, using the
quantum scissors, it is possible to herald entangled states
whose RCI exceeds the direct transmission entanglement
distillation capacity of the channel Cdirect (η) of Eq. (1).
(b) Increasing the number of scissors amounts to higher
Gaussian RCI of the heralded state. The increase in heralded
Gaussian RCI comes at the expense of a significantly lower
success probability. (c) In some cases, a second quantum scis-
sors can help herald a Gaussian RCI that exceeds Cdirect (η),
while a single quantum scissors could not help exceed the
bound. (d) In the NLA-CV error-correction scheme of Fig. 8,
the Gaussian RCI heralded by the scheme, on average (over
the teleportation dual homodyne detection outcomes), does
not exceed Cdirect (η). Yet, when postselected over a narrow
window of the teleportation dual homodyne measurement
outcomes around zero, it can exceed the same. In this limit
of a small window of outcomes, the scheme converges to the
scheme in Fig. 2, a pure loss channel appended by quantum
scissors-based NLA with an entangled state input, albeit with
higher optimal input mean photon numbers.

Although our results show that the quantum scissors-
NLA-based scheme in Fig. 3 can herald entangled states
whose distillable entanglement exceeds Cdirect (η), they do not
demonstrate a quantum repeater. In order to demonstrate a
quantum repeater using the quantum scissors, the product of
heralded RCI and the heralding success probability, which
is the true rate of entanglement distillation, must exceed
Cdirect (η). Clearly, as can be seen in Figs. 5, 7, and 11(b), the
success probability of the quantum scissors drops steeply with
increasing NLA gain, so the product of the heralded RCI and
the heralding probability stays significantly below the direct
transmission rate-loss tradeoff. This is further elucidated in
Fig. 13, where the product of heralded Gaussian RCI and
the heralding success probability for the setup in Fig. 3,
numerically optimized over the NLA gain parameter and the
mean photon number of the input TMSV state, is plotted as
a function of channel loss for number of quantum scissors
N = 1, 2. The curves are found to be below Cdirect (η), whereas
the heralded RCI alone, e.g., at η = 0.01, were seen to exceed
Cdirect (η) in Fig. 4. Nevertheless, the fact that the quantum
scissors are able to herald states with distillable entangle-
ment higher than Cdirect (η) paves the way towards construct-
ing a multiplexing-based, second-generation, CV quantum
repeater scheme using the quantum scissors, as described
in [46].

With regard to the experimental implementation of NLA
using multiple quantum scissors, the primary imperfections to
be considered include detection inefficiencies, single-photon
source inefficiencies, and lack of photon-number resolution.
Our model for the quantum scissors in Fig. 3 already addresses
the latter two considerations, while the former remains to be
analyzed. The heralded RCIs and the success probability of
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FIG. 13. Numerically optimized value of the product of heralded
Gaussian RCI and the heralding success probability for N = 1, 2
NLA in the setup shown in Fig. 2, as a function of the pure loss
channel’s transmissivity η. The value is optimized over the NLA gain
and the mean photon number of the input TMSV state. The black
curve corresponds to the direct transmission capacity Cdirect (η) =
− log2(1 − η).

the quantum scissors are expected to drop when detection
inefficiencies are considered.

Note added. Recently, we became aware of the work of
[55], which investigates the use of quantum scissors-based
NLA in the context of CV quantum key distribution over
a thermal loss channel using a method similar to ours and
shows improved distance of transmission. They lower bound
the secret key generation rate in terms of the difference of
mutual information and Holevo information, whereas we have
lower bounded the entanglement and secret key distillation
rates over a pure loss channel using the reverse coherent
information.
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APPENDIX A: MATHEMATICAL DESCRIPTION
OF THE SYSTEM

Gaussian states of a bosonic CV system. A system
of M bosonic modes can be described by the creation
and annihilation operators â†

i and âi, such that [âi, â†
j ] =

δi, j and [âi, â j] = [â†
i , â†

j ] = 0 ∀ i, j ∈ {1, . . . , M}, and the

corresponding quadrature operators x̂i = (âi + â†
j )/

√
2 and

p̂i = (âi − â†
j )/i

√
2, such that [x̂i, p̂ j] = iδi, j . For a quantum

state ρ̂ defined on the M-mode Hilbert space H⊗M , a char-
acteristic function can be defined as the operator Fourier
transform (cf. [56])

χ (ξ ) = Tr[ρ̂Ŵ (ξ )], (A1)

where Ŵ (ξ ) is the Weyl operator

Ŵ (ξ ) = exp(−iξT r̂), (A2)

with r̂ = (x̂1, . . . , x̂M , p̂1, . . . , p̂M )T , ξ = (ξ1, . . . , ξ2M )T , and
ξi ∈ R ∀ i ∈ {1, . . . , M}. The characteristic function of (A1)
for a quantum Gaussian state by definition is Gaussian, i.e., it
can be written as

χ (ξ ) = exp
(− 1

4ξT Vξ − isT ξ
)
, (A3)

where V is the 2M × 2M real symmetric covariance matrix
defined as Vi, j = 〈{r̂i, r̂ j}〉ρ − 2〈r̂i〉ρ〈r̂ j〉ρ and s = 〈r̂〉ρ is the
2M-dimensional mean displacement vector.

The vacuum state is a Gaussian state with a covariance
matrix equal to the identity operator I . The TMSV state of
mean photon number μ = sinh2(r) (r being the squeezing
parameter) is a Gaussian state with

VTMSV(μ) =
(

V+(μ) 0
0 V−(μ)

)
,

V±(μ) =
(

2μ + 1 ±2
√

μ(μ + 1)

±2
√

μ(μ + 1) 2μ + 1

)
, (A4)

and s = 0. The vacuum state is a special case of the TMSV
with r = μ = 0.

The covariance matrix of a quantum state satisfies the
Heisenberg uncertainty principle V + i� � 0, where

�n =
(

0 1
−1 0

)
⊗ In×n.

According to Williamson’s theorem, a quantum covariance
matrix V + i� � 0 can be diagonalized as

V = SV (DV ⊕ DV )ST
V , (A5)

where SV is a 2n × 2n real symplectic matrix and DV =
diag(ν1, . . . , νn), where the ν j are called the symplectic eigen-
values of V.

Gaussian unitaries. Unitary operators of the form Ûs,S =
exp(iĤ ), where Ĥ is a Hamiltonian that is at most quadratic in
r̂, are called Gaussian unitaries. They map quantum Gaussian
states into quantum Gaussian states. An arbitrary Gaussian
unitary operator can be decomposed as

Ûs,S = D̂−sÛS, (A6)

where s ∈ R2M , D̂−s = ⊗M
j=1D̂−(s j ,sM+ j ) is the displacement

operator such that

D̂−(s j ,sM+ j ) = exp[i(sM+ j r̂ j − s j r̂+M+ j )], (A7)

and ÛS is a canonical Gaussian unitary operator generated by
a purely quadratic Hamiltonian.

A canonical Gaussian unitary operator Ûs,S transforms the
quadrature operators as

r̂ → Ûs,S r̂Û †
s,S = Sr̂ + s, (A8)
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where S is a 2M × 2M symplectic matrix and s ∈ R2M . Con-
sequently, it transforms the first two statistical moments of an
arbitrary quantum state as

s → Ss, V → SVST, (A9)

where s ∈ R2M is the mean vector and V the 2M × 2M
covariance matrix.

The two-mode beam-splitter transformation is a canonical
Gaussian unitary transformation given by

Ûbs = exp[iθ (x̂1 p̂2 − p̂1x̂2)], (A10)

where t = cos2 θ ∈ [0, 1] is the transmissivity of the beam
splitter. The corresponding symplectic matrix is given by

S(t ) =

⎛
⎜⎜⎜⎝

√
t

√
1 − t 0 0

−√
1 − t

√
t 0 0

0 0
√

t
√

1 − t

0 0 −√
1 − t

√
t

⎞
⎟⎟⎟⎠.

(A11)

Pure loss channel. The pure loss channel of transmissivity
η is a Gaussian channel that maps Gaussian states to Gaussian
states. It can be modeled as a beam-splitter unitary transfor-
mation of the same transmissivity between the lossy mode and
an environment mode that is in the vacuum state. The action of
the pure loss channel on the lossy mode is obtained by tracing
out the environment mode and can be expressed as

N (η) : V → X T VX + Y, (A12)

where X = √
ηI and Y = (1 − η)I .

Initial and premeasurement states in Fig. 3. Since the
pure loss channel is a Gaussian channel and the beam-splitter
transformation is a Gaussian unitary operation, the scheme
depicted in Fig. 3, the quantum state across the five modes
initially, and prior to measurements in modes A, B, C, Y ,
and D, are both Gaussian state with zero displacement and
covariance matrices given by

Vinitial = VTMSV
AA′ (μ) ⊗ VTMSV

C′D (μaux ) ⊗ IB′ , (A13)

Vpremeas = S(1/2)
Y ′,C′′S

(κ )
B′,C′N η

A′→Y ′ (Vinitial )
(
S(κ )

B′,C′
)T (

S(1/2)
Y ′,C′′

)T
,

(A14)

respectively.

APPENDIX B: GAUSSIAN MEASUREMENTS,
CONDITIONAL DYNAMICS AND CV TELEPORTATION

A Gaussian measurement is a projection onto a quantum
Gaussian state and thus is completely characterized by a mean
vector and a covariance matrix.

Homodyne and heterodyne detection. Homodyne detection
on a single mode, say, of the x quadrature, is the projection
onto the Gaussian state with mean vector and covariance
matrix

rhom = (xhom, 0)T, (B1)

Vhom = lim
r→∞

(
exp(−2r) 0

0 exp(+2r)

)
, (B2)

respectively, where xhom is measurement outcome and r ∈ R
is the squeezing parameter. Heterodyne detection, likewise,
is the projection onto a coherent state with mean vector and
covariance matrix

rhet = (xhet, yhet )
T, Vhet =

(
1 0
0 1

)
, (B3)

respectively, where xhet + iyhet ∈ C is the measurement out-
come.

Dual homodyne detection. Dual homodyne detection is
the continuous-variable analog of a Bell state measurement
between two modes A and B. It is a projection of the two
modes onto a displaced Einstein-Podolsky-Rosen (EPR) state
(displaced infinitely squeezed TMSV state), which is realized
by mixing the two modes on a 50:50 beam splitter, following
by orthogonal homodyne detections on the two modes (x̂
measurement on one mode and p̂ measurement on the other).
The mean vector and covariance matrix of the measurement
after the beam-splitter transformation of the two modes are
given by

rdual-hom = (γx, 0, 0, γy )T, (B4)

Vdual-hom = lim
r→∞

(
exp(−2r) 0

0 exp(−2r)

)

⊕
(

exp(+2r) 0
0 exp(−2r)

)
, (B5)

where γx + iγy ∈ C is the measurement outcome.
Gaussian conditional dynamics and overlap integrals. Con-

sider a continuous-variable system of n modes. Let AB be a
bipartition of the modes such that subsystem B consists of
m modes and subsystem A consists of the remaining n − m
modes. Let

s =
(

sA

sB

)
, V =

(
VA VAB

VT
AB VB

)
(B6)

be the mean vector and covariance matrix of a quantum
Gaussian state ρ̂ over the systems A and B. The quantum
state obtained in mode A by tracing out subsystem B, namely,
ρ̂A = TrB(ρAB), is also a quantum Gaussian state with mean
vector and covariance matrix given by

s = sA, V = VA, (B7)

respectively. On the other hand, when the subsystem B is
measured by a Gaussian projective operator ρ̂G of mean
vector rm ∈ R2m and covariance matrix Vm, then the quantum
state ρ̂A conditioned on the measurement outcome rm ∈ R2m

is a quantum Gaussian state too, but its mean vector and
covariance matrix are given by [50,54]

s = sA + VAB
1

VB + Vm
(rm − sB),

V = VA − VAB
1

VB + Vm
VT

AB,

(B8)

where the probability density function of the outcome rm is
given by the Gaussian overlap integral p(rm) = Tr(ρ̂G

B ρ̂AB),
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which evaluates to

p(rm) = exp
(−(rm − sB)T 1

VB+Vm
(rm − sB)

)
πm

√
det(VB + Vm)} . (B9)

CV teleportation of a TMSV across the EC box of [34]. Con-
sider the scheme in Fig. 8. Since the dual homodyne detection,
the lossy channel, and the beam splitters in the quantum
scissors are all Gaussian operations, the joint quantum state
across the modes prior to the measurements in the quantum
scissors is Gaussian. The mean and covariance matrix of this
Gaussian can be written down using (A4), (A11), (A12),
and (B8).

Based on the observed dual homodyne outcome γ , after the
NLA operation, a displacement correction unitary is applied
on the modes A and B, where these modes are displaced
back by gA(−γx,−γy) and gB(−γx,+γy). Here gA and gB are
classical gain parameters, which can be optimized over.

APPENDIX C: NON-GAUSSIAN MEASUREMENT BASED
ON ON-OFF PHOTODETECTION AND GAUSSIAN

OVERLAP INTEGRALS

On-off photodetection is a measurement scheme described
by the positive-operator-valued measure elements

�0 = |0〉〈0|, �1 = I − �0, (C1)

where the projective measurement �0 is Gaussian, but �1 is
not. In the modified quantum scissors operation considered in
this work, in both Figs. 3 and 8, the heralding measurements
of NLA are based on on-off photodetection.

When the subsystem B consisting of m out of n modes of a
CV system AB in a quantum Gaussian state ρ̂AB is measured
with off photodetection (�0 projection) on all the m modes,

the conditional (Gaussian) quantum state on subsystem A and
the probability of obtaining the off outcome across the m
modes follow from (B8) and (B9), respectively, with Vm =
I⊗m and rm = 0. The latter is the overlap integral Tr(�0ρ̂ )
and simplifies to

p0̄ = Tr
[(

�⊗m
0

)
Bρ̂AB

] = 2m exp
( − sT

B
1

VB+I⊗m sB
)

√
det(VB + I⊗m)

, (C2)

where sB and VB are the mean and covariance matrix of the
modes in B.

Likewise, the probability of observing �1 in all the m
modes is given by

p1̄ = Tr
[(

�⊗m
1

)
Bρ̂AB

]
(C3)

= Tr
[(

�⊗m
1

)
Bρ̂B

]
(C4)

= Tr
[
(I − �0)⊗m

B ρ̂B
]

(C5)

=
∑

τ∈P (K)

(−1)|τ | 2
|τ | exp

(−sT
τ

1
Vτ +I|τ |

sτ

)
√

det(Vτ + I|τ |)
, (C6)

where K is the set of all m modes contained in system B,
P (K) is the power set of K, i.e., the set of all subsets of K
(inclusive of the null element), sτ and Vτ are the mean vector
and covariance matrix of the reduced quantum state on the
modes in element τ ∈ P (K), and I|τ | is the identity matrix
of dimension |τ |. Though, in this case the postmeasurement
state on subsystem A is non-Gaussian, and hence cannot be
captured using (B8) anymore. Nevertheless, the Husimi-Q
function of the non-Gaussian state on the modes in subsystem
A can be written down, e.g., when A consists of two modes â
and b̂, as

Q(α, β ) = Tr
[
(|α〉〈α|a ⊗ |β〉〈β|b)A ⊗ (

�⊗m
1

)
Bρ̂AB

]
π2 p1̄

(C7)

⇒ Q(αx, βx, αy, βy) =
∑

τ∈P (K)(−1)|τ | 2|τ |+2 exp
(
−(sτ∪A−rτ∪A )T 1

Vτ∪A+I|τ |+2
(sτ∪A−rτ∪A )

)
√

det(Vτ∪A+I|τ |+2 )

4π2 p1̄
, (C8)

where α = (αx + iαy)/
√

2 (and likewise β) and rτ∪A is the
zero vector except for the entries corresponding to the modes
in A, which take the values (αx, βx, αy, βy).

The same approach can be used to the construct the Q
function that is heralded when some of the modes in B are
projected onto �0, while some others are projected onto �1,
which is how we construct the Q function heralded by the
N-quantum scissors NLA operations.

APPENDIX D: ENTANGLEMENT OF FORMATION

Definition 1. The EOF of a bipartite state ρAB is defined as
[49]

EF (ρAB) := inf

{∑
k

λkE (|�k〉)

∣∣∣∣∣ρAB =
∑

k

λk|�k〉〈�k|
}

,

(D1)

where |�k〉 are entangled pure states and E (|�k〉) is the
entanglement entropy of |�k〉.

It is the minimum amount of pure entanglement required
to construct the state ρAB. The EOF is nonincreasing under
LOCC.

Definition 2. The GEOF of a bipartite Gaussian state ρAB of
mean vector d and (4n × 4n)-dimensional covariance matrix
V (2n total modes) is defined as [57]

EG[ρAB(V, d )] : = inf
λ

{ ∫
λ(dVp, dξ )E

[
�G

AB(Vp, ξ )
]∣∣∣∣ρAB

=
∫

λ(dVp, dξ )�G
AB(Vp, ξ )

}
, (D2)

where �G
AB are entangled Gaussian pure states and λ is a

measure in probability space. For an n|n-mode bipartite state
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(total 2n modes), the GEOF is given by

EG[ρAB(V, d )] =
n∑

k=1

H (rk ), (D3)

H (r) = cosh2(r) log2[cosh2(r)] − sinh2(r) log2[sinh2(r)].
(D4)

This is so because every n|n-mode bipartite pure Gaussian
state is a tensor product of n two-mode squeezed states with
squeezing parameters rk , k ∈ {1, . . . , n}, up to a local Gaus-
sian local operations and classical communication (GLOCC)
unitary operation, and the entanglement of a TMS state with
squeezing r is H (r) as above.

It is the minimum amount of pure Gaussian entanglement
required to construct the state ρAB. The GEOF is nonincreas-
ing under GLOCC.

Lemma 1 (Gaussian extremality of EOF [53]). Among the
set of all quantum states with covariance matrix V and arbi-
trary mean and other moments, the entanglement of formation
is minimized by the Gaussian states whose covariance matrix
equals V , i.e.,

EF [ρAB(V )] � EF
[
ρG

AB(V )
]
. (D5)

Proposition 1. For any two-mode Gaussian state ρG
AB, the

Gaussian entanglement of formation equals its entanglement
of formation [58], i.e.,

EG
(
ρG

AB

) = EF
(
ρG

AB

)
. (D6)

Lemma 2. The Gaussian entanglement of formation of a
bipartite Gaussian state of mean d and covariance matrix V
equals [57,58]

EG
[
ρG

AB(V, d )
]

:= inf
Vp

{
E

[
ρG

AB(Vp, 0)
]|Vp � V

}
, (D7)

where ρG
AB(Vp, 0) are pure entangled states and E is the

entanglement entropy.
We use the results in [58] to evaluate the (Gaussian)

entanglement of formation of the heralded covariance matrix
in the NLA-assisted communication schemes.

Remark 1. Evidently, from Lemma 2, the Gaussian entan-
glement of formation is independent of displacements and
equals the entanglement entropy of a TMSV state, wherein
the infimum picks the TMSV state with the smallest possible
squeezing.

Corollary 1. When the covariance matrix of a non-
Gaussian quantum state ρAB is V (γ ), where γ is some com-
plex parameter distributed according to P(γ ), we have that∫

dγ P(γ )EF/G{ρAB[V (γ )]} �
∫

dγ P(γ )EF/G
{
ρG

AB[V (γ )]
}
.

(D8)

Proof. This follows from Lemma 1 and the fact that P(γ ) �
0 and EF/G � 0 for any state. �

Remark 2. We use the lower bound in Corollary 1 (with EG)
as our figure of merit for the scheme depicted in Fig. 8.

Remark 3. A deterministic displacement operation affects
only the mean of a generic quantum state and does not change
its covariance matrix or higher moments.

Corollary 2. Given a generic conditional state ρAB(γ ) of
mean d (γ ) and covariance matrix V (γ ), conditioned on a
parameter γ (e.g., γ could be the outcome of a dual homodyne
detection), the action of conditional displacements D(gγ ) on
the state does not change its GEOF or the average GEOF of
Corollary 1.

Remark 4. Thus, teleportation displacement correction
does not affect the ergodic average GEOF lower bound we
calculate for the scheme in Fig. 8.
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