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Quantum-error-correction-assisted quantum metrology without entanglement
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In this article we study the role that quantum resources play in quantum-error-correction-assisted quantum
metrology (QECQM) schemes. We show that there exist classes of such problems where entanglement is not
necessary to retrieve noise-free evolution and Heisenberg scaling in the long time limit. Over short timescales,
noise-free evolution is also possible even without any form of quantum correlations. In particular, for qubit
probes, we show that whenever noise-free quantum metrology is possible via QECQM, entanglement-free
schemes over long timescales and correlation-free schemes over short timescales are always possible.
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I. INTRODUCTION

Quantum information science has gained prominence as an
area of research in recent decades. One of the key promises
of the field is that the the quantum regime contains intrinsic
advantages over classical theories that can be exploited for
a variety of informational tasks. An area of study which has
gained considerable attention recently is the application of
quantum-error-correction techniques to enhance the precision
of quantum metrology [1–4]. Quantum metrology concerns
itself with the precise estimation of some unknown physical
parameter, but the precision of such tools often requires the
preparation of nonclassical quantum states that are sensitive
to decoherence effects [5–7]. Quantum-error correction thus
offers the promise of enhancing precision by reducing the
amount of noise acting on the system.

Another key concern in quantum information is the study
of the differences between quantum and classical theories,
leading to the development of a theory of quantum resources.
Examples of quantum resources include entanglement [8] and
quantum coherence [9]. Quantum entanglement is at present
a well-established quantum resource with many applications
such as cryptography [10], teleportation [11], and superdense
coding [12]. In comparison, the resource theory of quantum
coherence is a recent theoretical development, with applica-
tions in topics as diverse as quantum macroscopicity [13,14],
quantum optics [15,16], and quantum metrology [17]. It is
worth noting that entanglement and coherence are not entirely
separate quantum resources, since entangled states generally
contain coherence, though the converse is not necessarily true
[18–20].

In this article, we will examine the problem of the quantum
resources that are necessary for quantum-error-correction pro-
tocols to succeed while simultaneously allowing for quantum
enhanced metrology [21–23]. Interestingly, we find that there
exist regimes where this can occur without the presence of
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quantum entanglement, thus requiring us to invoke more
general notions of nonclassicality such as quantum discord
[24,25] in order to account for the success of such protocols.
This joins a list of known applications for quantum discord
in quantum information [26–30]. Quantum discord was also
considered previously in various other specialized metrologi-
cal scenarios [31–34].

We also show that in the extremal case of short inter-
action times, product states containing zero quantum corre-
lation but nonzero quantum coherence are sometimes suf-
ficient to generate nontrivial Fisher information in a noise-
free manner. This complements recent results concerning
ancilla-free protocols in the long interaction time limit [35].
For qubit probes in particular, we prove that whenever
quantum-error-correction-assisted protocols are possible, then
an entanglement-free protocol over long timescales, or a
quantum-correlation-free protocol over short timescales is
also possible.

II. PRELIMINARIES

Here, we review some basic notions concerning nonclas-
sical quantum states that will be used in the paper. A more
detailed description of quantum metrology and the role of
quantum-error correction in metrology will be provided in the
next section.

First, we define the notion of coherence. Let ρ be the
density matrix of a quantum state. Then for a fixed basis {|i〉},
if ρ is not diagonal with respect to this basis, then we say that
the state is coherent, or that the state contains coherence.

Second, a pure, bipartite quantum state of the form
|ψ〉1〈ψ | ⊗ |φ〉2〈φ| is referred to as a product state. A quantum
density matrix ρ that is expressible as a convex sum of product
states ρ = ∑

i pi|ψi〉1〈ψi| ⊗ |φi〉2〈φi| is called a separable
state. Furthermore, if a state ρ is not separable, then we say
that the state is entangled.

We now introduce some notation. We will denote the
canonical Pauli matrices on the mth qubit as Xm, Ym, and
Zm respectively. The computational basis refers to the ba-
sis {|0〉, |1〉}, from which we can define the states |+〉 :=
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1√
2
(|0〉 + |1〉) and |−〉 := 1√

2
(|0〉 − |1〉). The unitary perform-

ing a CNOT operation between the mth and nth qubits is
denoted U CNOT

m,n where the first subindex m is the control
qubit, i.e., U CNOT

m,n |0〉m|ψ〉n = |0〉m|ψ〉n and U CNOT
m,n |1〉m|ψ〉n =

|1〉mXn|ψ〉n.

III. ERROR CORRECTION IN THE SEQUENTIAL
SCHEME FOR QUANTUM METROLOGY

We will primarily consider error-correcting strategies
within the framework of the sequential scheme for quantum
metrology. In the sequential scheme, an experimenter has
access to a probe which can be initialized into any quantum
state |ψ〉. This probe is subject to a Hamiltonian interaction
of the form H = θG which encodes a signal onto the probe.
G shall be referred to as the generator, to distinguish it from
H . The experimenter will also have access to any number of
noiseless ancillary particles and have the ability to perform
accurate and fast quantum gates on the total probe-ancilla sys-
tem. Notably, it is assumed that only the probe state interacts
with the Hamiltonian and is affected by environmental noise.
The quantum gates themselves are presumed to be ideal and
instantaneous, while the ancillae are noiseless and perfectly
shielded.

The objective of the experimenter is to obtain a measure-
ment of the unknown quantity θ given the generator G. The
parameter θ describes the strength of the interaction between
the probe and the Hamiltonian H . In a noiseless scenario,
the ultimate precision of this measurement is given by the
quantum Cramér-Rao bound [36,37] δθ � 1√

νF (|ψ〉,G)
, where

ν is the number of times the experiment is repeated and
F (|ψ〉, G) is the Fisher information quantity. In general, the
quantum Cramér-Rao bound may be saturated by performing
some optimal quantum measurement [37] and then repeating
the experiment a large number of times, i.e., in the asymptotic
limit of large ν [38]. It is important to note that in the single
shot case, it is no longer guaranteed that the bound will be
saturated. Nonetheless, so long as a sufficiently large number
of probes are prepared and measured, the probe with the larger
Fisher information will be more useful for the estimation of
some unknown parameter θ .

For the remainder of this article, we will focus on com-
paring the quantum Fisher information of various quantum
probes in the sequential scheme in order to judge their
metrological usefulness. Since the Fisher information is being
compared, the implicit assumption is that the probe will be
prepared and measured many times in order to extract this
usefulness. In the sequential scheme, one figure of merit is
the scaling of the Fisher information with the total interaction
time t with the Hamiltonian H . In the quantum regime, it is
possible for the Fisher information to achieve a scaling of ∼ 1

t .
This is known as Heisenberg scaling (HS). However, quantum
noise can diminish this scaling factor to ∼ 1√

t
, which is known

as the standard quantum limit (SQL). Note that repeating the
experiment ν times will append a multiplicative factor to the
Fisher information, but does not change the scaling with t .

In this article, we will assume the noise is Markovian
and the probe evolves according to the time homogeneous
Lindblad equation. In its diagonal form, this is described by

the Lindblad master equation [39,40]

dρ

dt
= −i[H, ρ] +

∑
k

(
LkρL†

k − 1

2
{L†

k Lk, ρ}
)

,

where Lk describes the noisy part of the evolution and are
called Lindblad operators or jump operators.

The goal of the experimenter is to combat the effects of
noise using the tools at his disposal. Since the experimenter
has access to fast quantum gates, the experimenter may split
the total interaction time t into a total of κ = t

dt rounds,
each lasting a sufficiently short period of time dt , with
k = 1, . . . , κ denoting the kth round. Within each of these
rounds, the experimenter can implement a quantum-error-
correction (QEC) scheme via fast quantum gates between
the ancillae and the probe, with the goal of (i) removing
the noise component of the time evolution and (ii) retrieving
nontrivial noiseless evolution. In order to achieve nontrivial
noiseless evolution, the experimenter must carefully choose
an error-correction procedure that is able to correct the errors
represented by the Lindblad operators Lk while preserving the
HS scaling. Figure 1 illustrates the process.

Such a strategy involves the use of full and fast quantum
control (FFQC), and is sometimes referred to as FFQC-
assisted metrology. However, FFQC-assisted metrology is
in fact the most general framework for quantum-error-
correction-assisted quantum metrology considered thus far,
with other scenarios existing as special cases of such strategies
[21]. As such, in this article we will collectively refer to
such strategies as quantum-error-correction-assisted quantum
metrology (QECQM) schemes. In [22], it was shown that as
long as H is not representable as a linear sum of the operators
1, Lk, L†

k , and L†
j Lk then QECQM is always possible. The set

of all possible linear sums of such operators is known as the
Lindblad span, which we denote by S . Conversely, when this
condition is not satisfied, the experimenter can at best achieve
SQL scaling, regardless of the strategy employed [23].

IV. NOISELESS EVOLUTION OVER SHORT TIMESCALES

In this section, we demonstrate that there exist Lindblad
operators Lk and corresponding nontrivial generators G such
that (i) HS is achieved over total interaction time t and (ii) the
probe-ancilla system is uncorrelated during the round k = 1.
Recalling that each round lasts for a period of dt , this suggests
that over short timescales, it is possible for QECQM to be
successful without quantum correlations.

This is summarized by the following proposition:
Proposition 1. Let S = span{1, Lk, L†

k , L†
k L j} be the Lind-

blad span. For any generator G, we can always write the
decomposition G = G‖ + G⊥ where G‖ and G⊥ are the par-
allel and perpendicular components of G with respect to the
Lindblad span S and the operator inner product 〈A, B〉 :=
Tr(A†B).

If G⊥ is rank 2, then G⊥ ∝ |c0〉〈c0| − |c1〉〈c1| for some
orthogonal vectors {|c0〉, |c1〉}, and HS can always be achieved
via QECQM for every timescale t .

Furthermore, the initial probe-ancilla state can always be
chosen such that it is a product state with no quantum cor-
relations present during the round k = 1. QECQM without
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FIG. 1. Quantum-error correction in the sequential scheme of quantum metrology. After state preparation, the probe is allowed to evolve
for a short period dt . This evolution is represented by the quantum map Edt which includes the interaction with some signal Hamiltonian,
as well as contributions from noise. The ancillae are assumed to be perfectly shielded and noise free. This is followed by an instantaneous
quantum control operation on probe+ancillae. The process is repeated for a total of κ rounds, at the end of which a measurement is performed.
The total interrogation time is t = κdt .

quantum correlations is therefore possible over a sufficiently
short timescale dt .

Proof. First, we observe that if G⊥ is rank 2, then G is not
an element of S and thus is not contained within the Lindblad
span. As such, we know that there must exist some QECQM
strategy that enables HS. Furthermore, G⊥ is Hermitian since
G is Hermitian, and must be perpendicular to 1, which is
an element of S . As such, we must have Tr(1G⊥) = 0. The
only rank 2, Hermitian, and traceless operator has the form
λ|c0〉〈c0| − λ|c1〉〈c1| for some orthogonal {|c0〉, |c1〉} and λ >

0, so G⊥ ∝ |c0〉〈c0| − |c1〉〈c1|, which establishes the first part
of the theorem.

For convenience, let us define |0〉 := |c0〉 and |1〉 := |c1〉
and |±〉 := 1√

2
(|0〉 ± |1〉). Let us choose the code space

defined by {|0〉|+〉, |1〉|−〉} with corresponding projections

C := |0〉〈0| ⊗ |+〉〈+| + |1〉〈1| ⊗ |−〉〈−|. We can verify
that 〈0|〈+|O ⊗ 1|1〉|−〉 = 0 and that 〈0|〈+|O ⊗ 1|0〉|+〉 −
〈1|〈−|O ⊗ 1|1〉|−〉 = Tr(G⊥O)/λ. Therefore, if O is substi-
tuted with Lk or L†

k L j , we have that 
CLk
C = μk
C and

CL†

k L j
C = μk, j
C which are exactly the error-correction
conditions, so errors generated by Lk or L†

k L j are always
correctable for any vector within this code space.

Furthermore, if we substitute O with G, we get 〈0|〈+|G ⊗
1|0〉| + 〉 − 〈1|〈 − |G ⊗ 1|1〉| − 〉 = Tr(G2

⊥)/λ = 2λ > 0, so
within the code space defined by {|0〉|+〉, |1〉|−〉}, the effec-
tive generator 
CG
C is nontrivial (i.e., it is not a constant).
As such, within this code space, the evolution is noiseless and
nontrivial, and thus, HS within the QECQM framework can
be achieved.

We observe that by repeating similar arguments as above,
the code space defined by {|0〉|−〉, |1〉|+〉} and correspond-
ing projectors 
′

C := |0〉〈0| ⊗ |−〉〈−| + |1〉〈1| ⊗ |+〉〈+| will
similarly allow errors generated by Lk or L†

k L j to be corrected
and achieve HS.

Let {Ki} be the Kraus operators [41] representing the error-
correcting map for 
C . By definition, it must be able to correct
errors of the form Lk or L†

k L j , so KiO ⊗ 1|0〉|+〉 ∝ |0〉|+〉 and
KiO ⊗ 1|1〉|−〉 ∝ |1〉|−〉 for every i, and O can be any Lk or
L†

k L j .

It is also clear that for 
′
C , the corresponding error

correcting map is just {K ′
i = (1 ⊗ Z )Ki(1 ⊗ Z )} where Z is

the standard Pauli Z operator. Since {|0〉|+〉, |1〉|−〉} and
{|0〉|−〉, |1〉|+〉} differ only by a phase flip on the ancilla,
the projectors 
C and 
′

C may be thought of as projections
onto the even and odd parity subspaces. As such, if we define
K total

i := 
CKi
C + 
′
CK ′

i 

′
C , every error generated by Lk

or L†
k L j acting on the first qubit within the combined code

space {|0〉|+〉, |1〉|−〉} ∪ {|0〉|−〉, |1〉|+〉} can be corrected.
The corresponding projector for this code space is just 
′

C :=
(|0〉〈0| + |1〉〈1|) ⊗ (|+〉〈+| + |−〉〈−|).

We now compute the effective generator and find that

′

CG ⊗ 1
′
C = λ|0〉〈0| ⊗ (|+〉〈+| + |−〉〈−|) − λ|1〉〈1| ⊗

(| + 〉〈+| + |−〉〈−|) + constant + off diagonal elements, so
the effective generator is indeed nontrivial since the
leading diagonal elements are not all equal. To achieve
noiseless evolution and HS, we just need to choose from
within the combined code space any vector that is not
an eigenvector of 
′

CG ⊗ 1
′
C . The equal superposition

1√
2
(|0〉 + |1〉)|+〉 = |+〉|+〉 will suffice, because the only

way this can possibly be an eigenvector of 
′
CG ⊗ 1
′

C is
by having λ = −λ = 0, which is impossible since λ > 0.
Therefore, this initial probe-ancilla state will generate
nontrivial time evolution, and the state will be separable
during round k = 1. This completes the proof. �

Proposition 1 is a technical result that establishes that
whenever G⊥ is rank 2, a product state is sufficient to
successfully perform QECQM over time dt . The following
lemma expands upon this observation by describing a class
of Lindblad operators for which a generator of this type is
guaranteed to exist.

Lemma 1. If the noisy evolution is described by a single
Lindblad operator L (i.e., the noise is rank 1), then there
always exists some generator G such that Tr(GL) = 0, and G
is traceless and rank 2.

Proof. First, we recall that the Lindblad operator is unique
up to the addition of a constant. Therefore, we can always
assume that L is a traceless matrix. Any square traceless
matrix is unitarily similar to a zero diagonal matrix [42]. As
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such, we are guaranteed that there exists some orthonormal
basis {|ci〉} such that 〈ci|L|ci〉 = 0 for every i. Let us choose
G = |c0〉〈c0| − |c1〉〈c1|. We see that G is rank 2 and traceless.
We can then directly verify that Tr(GL) = 0 since 〈ci|L|ci〉 =
0, which proves the required result. �

Using Proposition 1 and Lemma 1, we now prove that for
the qubit case, you can always choose the initial probe-ancilla
state to be a product state so long as HS is achievable.

Theorem 1. For a qubit probe subject to Markovian noise,
if HS is achievable via QECQM, then you can always choose
the initial probe-ancilla state such that it is a product state in
round k = 1. A product state is therefore sufficient to perform
QECQM over time dt .

Proof. It is known that for a qubit probe, the only case
where HS is achievable via QECQM is when the noisy
evolution is described by a single Lindblad operator, and
that QECQM is achievable only when G /∈ span{1, L} [22]. If
more Lindblad operators are necessary to describe the noise,
then the Lindblad span will span the entire operator space of
a qubit, and HS can never be achieved via QECQM since
every Hamiltonian will be an element of the Lindblad span.
From Proposition 1 and Lemma 1, we already know that some
generator G will exist such that a product probe-ancilla state
is possible in round k = 1.

It remains to be shown that for every G acting on a
qubit that does not belong to the Lindblad span, a product
probe-ancilla state is possible in round k = 1. Since we can
always assume that L is traceless, it is always proportional
to 
a · 
σ where 
a is a real three-dimensional vector and 
σ is
the usual vector of Pauli matrices [22]. Similarly, since the
addition of a constant to the Hamiltonian does not change the
time evolution, we can assume that the generator G is also
traceless, so G = 
b · 
σ for some real vector 
b. Without any
loss in generality, let us assume 
a = ẑ. Then we can write
G = G‖ + G⊥ where G‖ = bzZ and G⊥ = bxX + byY , where
X,Y, Z are the usual Pauli matrices. It is clear that G⊥ is
proportional to a Pauli matrix in the direction (bx, by, 0) and
so must be rank 2. From Proposition 1, we see that a separable
probe-ancilla state is possible in round k = 1, which proves
the required result. �

We can therefore conclude that over short timescales, quan-
tum correlations are not a necessary prerequisite for QECQM.
This is especially true for qubit probes, because of Theorem
1. We also note that the observations in Proposition 1 and
Lemma 1 are not necessarily limited to the qubit case, so such
examples also exist in higher dimensions.

V. EXAMPLE: QUBIT PROBE WITH PERPENDICULAR
NOISE

Here, we illustrate a case by examining a qubit probe with
noise that is perpendicular to the Hamiltonian and generator.
For simplicity, we will assume that G = Z and L = X . We
see that in this case, the generator G is rank 2, and the noise is
rank 1 so it can be described using only one Lindblad operator.
From Theorem 1, we know for certain that we can always
choose a product state as our initial probe-ancilla state. In this
case the choice is especially simple. We will adopt the usual
convention of letting the eigenvectors of the Z Pauli matrix

determine the computational basis. For the probe state, let us
choose it to be |+〉1.

In this case, the Lindblad master equation reads

dρ

dt
= −i[Z, ρ] + (XρX − ρ).

The substitution of ρ = |+〉〈+| gives us

dρ = −i[Z, ρ]dt + (XρX − ρ)dt = −i[Z, ρ]dt,

which describes noiseless evolution over short timescales. As
such, for a sufficiently short interaction time dt , no probe-
ancilla correlations are necessary and the only quantum re-
source required is the local coherence of the probe state, which
is necessary in order to generate nontrivial Fisher information.

VI. NOISELESS EVOLUTION OVER LONG TIMESCALES

To achieve HS over every timescale, some form of quantum
correlation is necessary. However, we will demonstrate in
this section that this does not have to be in the form of
entanglement.

To do that, we first describe a particular error-correcting
procedure. Consider the product state |+〉1|0〉2. We can per-
form a CNOT operation U CNOT

1,2 with qubit 1 acting as the
control. This leads to the maximally entangled state |�+〉12 =

1√
2
(|00〉12 + |11〉12) after acting on the product state. Suppose

we perform a bit flip operation X1 on qubit 1 (the probe).
This results in the state |ψ+〉12 = 1√

2
(|10〉12 + |01〉12). The

application of another identical CNOT operation will result in
U CNOT

1,2 |ψ+〉12 = |+〉1|1〉2. For reasons that will be clear in the
next paragraph, we also apply the operation U CNOT

2,1 , which
leaves the state unchanged. By observing the final state, we
see that a Pauli X1 operation is propagated from the probe to
the ancilla.

We repeat the argument for the product state |−〉1|0〉2.
Applying the first CNOT leads to |�−〉 = 1√

2
(|00〉12 − |11〉12).

After the Pauli error X1, we get −|
−〉 = −1√
2
(|01〉12 −

|10〉12). Applying U CNOT
1,2 , we get the −|−〉1|1〉2. Finally, we

apply the operation U CNOT
2,1 and observe that this corrects the

additional negative phase in front. The final state is |−〉1|1〉2.
Again, we can see that a Pauli error X1 on the probe is
propagated to the ancilla.

Let us choose the encoding procedure to be E = U CNOT
1,2 ,

and the decoding procedure to be D = U CNOT
2,1 U CNOT

1,2 . With
this, we are ensured that a Pauli X1 error from the probe
will always be propagated to the ancilla for any quantum
superposition of the states |+〉1|0〉2 and |−〉1|0〉2.

Let us consider what happens when a Pauli Z1 error
occurs on the probe instead. Following the same encoding
→ error → decoding process described above, we find that
|+〉1|0〉2 → |−〉1|0〉2 and |−〉1|0〉2 → |+〉1|0〉2. In summary,
the error-correcting procedure that was just described will
always propagate a Pauli X1 (bit flip) error to the ancilla, while
Pauli Z1 (phase flip) error is not propagated and remains on the
probe qubit.

We now describe how the above protocol may be used
to implement an entanglement-free QECQM protocol. In the
sequential scheme, we can initialize probe-ancilla in some
state ρ1 ⊗ |0〉2〈0| before the start of every round, perform
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the encoding E , allow for free evolution of the probe, and end
the round by performing the decoding D. If the evolution of
the probe is described by a master equation of the form

dρ1

dt
= −i[Z1, ρ1] + (X1ρ1X1 − ρ1),

we see that the noise is generated by the Pauli matrix X1, while
the signal is generated by the Pauli matrix Z1. This allows us to
exploit the error-propagation properties of the error-correcting
protocol. Due to the propagation of X1 (bit flips) and the
nonpropagation of Z1 (phase flips) to the ancilla, the effective
evolution of the probe is described by the noiseless evolution

dρ1

dt
= −i[Z1, ρ1],

while the evolution of the ancilla within each round is de-
scribed entirely by the noisy part of the evolution

dρ2

dt
= (X2ρ2X2 − ρ2).

At the beginning of every round, we can repeat the error-
correcting process by using a fresh ancilla initialized in the
state |0〉.

Let us consider the probe state |θ〉1 := cos θ |0〉1 +
sin θ |1〉1 and the ancilla |0〉2. After performing the encoding
E , the resulting state is the entangled pure state |ψθ 〉12 :=
cos θ |00〉12 + sin θ |11〉12. We now apply the Vidal-Tarrach
Theorem [43], which states that every state of the form ρθ :=

1
1+s |ψθ 〉12〈ψθ | + s

4(1+s)1 is separable so long as s � 2 sin(2θ ).
For the choice s = 2, ρθ will always be separable for every θ .
We therefore see that over one round of the QECQM proto-
col, the preparation of the initial state 1

1+s |θ〉1〈θ | ⊗ |0〉2〈0| +
s

4(1+s)1 where s = 2 will ensure that the state is completely
separable during the round.

Thus far, we have considered the output of instantaneous
CNOT operations in the protocol and showed that ρθ is not
entangled. However, realistic implementations of a quantum
CNOT gate are typically continuous time processes. We note
that even for a continuous time implementation of CNOT,
the probe-ancilla state will remain separable at any point in
time. This is because when s � 2, ρθ is separable even when
θ = π/4 and |ψθ 〉 = 1√

2
(|0, 0〉12 + |1, 1〉12) is maximally

entangled.
More generally, suppose the QECQM protocol is to be

performed for a total of κ number of rounds and we use a
fresh ancilla in the state |0〉 at the start of every round of
the error-correction protocol. As a result, a probe-ancilla state
of the form 1

1+s |θ〉〈θ | ⊗ (|0〉〈0|)⊗κ + s
2κ+1(1+s)1 will suffice to

ensure that the total probe-ancilla state is never entangled
throughout the entire process. The Fisher information is in this
case F (ρ1, G) = t2I where

I = 2
∑
i, j

(λi − λ j )2

λi + λ j
|〈i|G| j〉|2,

λi and |i〉 are the eigenvalues and eigenvectors of ρ1, and
ρ1 = 1

1+s |θ〉1〈θ | + s
2(1+s)11. This gives the required quadratic

scaling for the Fisher information and demonstrates that en-
tanglement is not a necessary resource to achieve noiseless
time evolution and HS.

It is in fact always possible to implement an entanglement-
free protocol for every qubit probe that permits HS through
QECQM. This is summarized in the following result:

Theorem 2. For a qubit probe subject to Markovian noise, if
HS is achievable via QECQM, then you can always choose the
probe-ancilla state and QEC protocol such that it is separable
in every round k = 1, . . . , κ = t/dt , where κ is the total
number of rounds in the QECQM protocol, t is the total
interaction time, and dt is the duration of each round.

Proof. This proof largely follows a modified version of the
argument presented in Theorem 1, in conjunction with the
error-correcting protocol described above.

The only scenario where QECQM is possible for a qubit
subject to Markovian noise is when L ∝ 
a · 
σ where 
a is a real
three-dimensional vector. Similarly, since adding a constant to
the generator G does not change the Lindblad master equation,
we can assume G is traceless, and G = 
b · 
σ for some real
vector 
b. Without any loss in generality, let us assume 
a ∝ x̂.
Then we can write G = G‖ + G⊥ where G‖ = bxX and G⊥ =
byY + bzZ , where X,Y, Z are the usual Pauli matrices. It is
clear that G⊥ is proportional to a Pauli matrix in the direction
(0, by, bz ), and since it is perpendicular to 
a ∝ x̂, we can also
assume without any loss in generality that G⊥ ∝ Z .

We then see that the contribution by G‖ and L are both pro-
portional to X , while G⊥ is proportional to Z . If we now apply
the specific error-correcting protocol described previously for
perpendicular noise, we see that the contributions proportional
to X will propagate to the ancilla leaving G⊥, which is propor-
tional to Z , as the effective generator acting on the probe qubit.
Since this protocol does not employ any entanglement, this
shows that for qubit probes, an entanglement-free protocol
achieving HS always exists whenever a QECQM protocol
achieving HS exists. �

Theorem 2 above demonstrates that in the qubit case, it
is always possible to perform an entanglement-free protocol
provided we are allowed to input a mixed state for the
probe. This noiseless evolution will extend to arbitrarily long
timescales, given the assumptions of QECQM. In this context,
we can view Theorem 1 as an extremal case that applies over
sufficiently brief timescales, where not only is entanglement
not a necessary prerequisite, but also no form of quantum
correlation is necessary.

VII. CONCLUSION

In this article, we considered the short-timescale limit and
find that noiseless time evolution (as well as the quadratic
scaling of Fisher information over the interaction time) can be
recovered over short periods of time without the presence of
any form of quantum correlation. In this case, the only form of
quantumness that is strictly necessary is quantum coherence,
in order to generate nontrivial Fisher information with respect
to the effective Hamiltonian driving the evolution of state.

We also demonstrate that there exist nontrivial QECQM
scenarios where the recovery of noiseless time evolution and
HS in the long time limit can be achieved via separable states.
This is sufficient for us to conclude that a successful QECQM
protocol is not predicated on the existence of entanglement.
In order to recover HS over long timescales, however, some
form of quantum correlation does appear to be necessary, so
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it is natural to suggest that successful QECQM protocols are
in fact driven by some more generalized form of quantum
correlation such as quantum discord. In both long and short
timescales, we note that the Fisher information of the probe
alone is sufficient to achieve HS. In general, it may also be
possible to extract even more information from measurements
on the combined probe and ancillae system. Extracting this
extra information may prove difficult, however, as the ancillae
also contain information about the noise on top of any residual
information from the signal.

The fact that there exist finite timescales over which even
quantum correlations are not necessary for noiseless evolution
further complicates the issue of attributing a single quantum
resource to a successful QECQM protocol. The simplest way
to resolve this appears to be to treat the issue as two separate
regimes. If one wishes to attribute a quantum resource to a
successful QECQM protocol over arbitrarily long interaction
times, then generalized quantum correlations appear neces-
sary in many noise models. Even in such cases, however,
quantum correlations may not be necessary over a finite time
period, as Proposition 1 demonstrates. This is most apparent
for the case of a single qubit probe, where not only are there no
correlations with the ancilla, there are no quantum correlations
within the probe system itself as it is just a two-level sys-
tem. For finite time regimes, any quantum advantage should
therefore be attributed to the quantum coherence present.
We note that in general it is possible to generalize quantum
coherence to include notions of quantum correlation such as
entanglement and discord [17].

It is also interesting to note that for qubit probes in par-
ticular, if QECQM protocols are feasible, then entanglement-

free protocols over long timescales, or quantum-correlation-
free protocols over short timescales is always possible (see
Theorems 1 and 2). We highlight that in Ref. [35], a sufficient
condition for an ancilla-free protocol was studied. This is in
contrast to the quantum-correlation-free and entanglement-
free protocols that was considered in this article, which are
more general. To see this, consider the case where the probe is
a single qubit. In Ref. [35], the sufficient condition for ancilla-
free protocols is that the Hamiltonian H and the Lindblad
operator L commute, i.e., [H, L] = 0. For the qubit case, this
condition implies the trivial cases H = 1 or H ∝ L, neither
of which are able to achieve Heisenberg scaling. In compar-
ison, for the qubit probe, there are quantum-correlation-free
and entanglement-free protocols for every protocol achieving
Heisenberg scaling.

At present, it remains an open question if this connection
between the feasibility of QECQM and quantum correlations
persist in higher dimensional systems. We hope that our
results will spur further interest in the research of quantum
resources in quantum metrology.
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