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Experimental comparison of tomography and self-testing in certifying entanglement
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We assess the quality of a source of allegedly pure two-qubit states using both standard tomography and
methods inspired by device-independent self-testing. Even when the detection and locality loopholes are open,
the latter methods can dispense with modeling of the system and the measurements. However, due to finite
sample fluctuations, the estimated probability distribution usually does not satisfy the no-signaling conditions
exactly. We implement data analysis that is robust against these fluctuations. We demonstrate a high ratio fs/ ft ≈
0.988 between the fidelity estimated from self-testing and that estimated from full tomography, proving the high
performance of self-testing methods.
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I. INTRODUCTION

Like any physical device, quantum devices (for example,
sources, transformations, and measurements) must be cali-
brated or certified. In this paper we focus on certifying the
properties of the state produced by a source. The obvious
technique is quantum state tomography, i.e., the reconstruc-
tion of the density matrix. State tomography requires prior
modeling, as it assumes from the start the dimension of the
Hilbert space of the degree of freedom under study. It also
requires modeling and calibration of the measurements.

If one is interested only in entanglement, an entanglement
witness can be used instead. As is well known, no measure-
ment can detect every entangled state: A witness can only
be designed with a target state in mind. Most entanglement
witnesses also assume modeling of the dimension and cal-
ibration of the measurements. Famously, some do not: Bell
inequalities are device-independent entanglement witnesses
[1,2]. There exists also a device-independent analog of tomog-
raphy, called self-testing. Initially proved for the maximally
entangled state of two qubits [3–7], self-testing has become a
rather generic and versatile tool for the black-box certification
of how close a state is to a target state |ψ〉, which must be
pure and entangled, up to local isometries [8–12]. Indeed,
self-testing is currently being applied to real experimental data
[13–16]. Our work contributes to this effort by applying self-
testing to high-quality sources, which requires the application
of proper data analysis tools [17].

II. TOMOGRAPHY VERSUS SELF-TESTING:
QUALITATIVE OVERVIEW

When tasks based on Bell nonlocality are mentioned, they
immediately evoke the daunting task of performing loophole-
free Bell tests [18–21]. Closing loopholes is indeed needed
to claim the label of device independent; however, diag-
nostics based on Bell nonlocality are of interest even if a

loophole-free Bell test is not performed. Specifically, even if
the detection and the locality loopholes are not closed, self-
testing presents some advantage over standard tomography (in
which fair sampling and no signaling are routinely assumed as
a consequence of the required modeling). First, it avoids the
modeling assumptions on dimensions and the calibration of
the measurements, which may lead to a false positive [22] (see
Appendix A). Second, it requires estimating fewer average
values than tomography: For bipartite systems, three measure-
ments on Alice and four on Bob are sufficient to assess the
closeness to any pure bipartite state, of any dimension [12].
In summary, it is meaningful to apply self-testing tools even
when the certification cannot be called device independent in
the usual sense.

Next we must stress that it is not possible to get something
for nothing: The additional assumptions give tomography
some edge over self-testing. Notably, tomography can be
performed on an a priori unknown state, also of a single
degree of freedom, and even in the case where (for whatever
reason) the experimentalists would be targeting to produce a
mixed state. By contrast, self-testing requires the target state
to be known, pure, and entangled: only then it provides an
estimate of the closeness of the actual state (which may be
mixed of course) to the target one.

We can put this difference in a more lively narrative. The
experimentalist setting up the experiment will definitely have
recourse to tomography: One needs a handle over the actual
degrees of freedom and one needs potentially to scan the
whole space of parameters before getting what one wants.
Once the setup is up and working, one may prefer self-testing
(if applicable) to convince an external referee of the quality
of one’s source. Indeed, such a referee is unconcerned about
conventional choices of bases, so one would not be bothered
by the fact that self-testing is up to local isometries. However,
the referee may have doubts that measurements have been
calibrated correctly and will welcome a certification that does
not rely on that.
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FIG. 1. Schematic of the experiment used to certify the quality
of the source.

This brings us to the last point of this comparison. For
the experimentalist to report one’s results using self-testing,
another condition must be met: The certification must be
of comparable quality to that obtained with tomography. If
tomography yields 99% fidelity with the target state, self-
testing should not yield 70%. In this paper we implement
tools for the assessment of the self-testing fidelity on finite
samples. We then apply them to experimental measurements,
to characterize a source that allegedly produces pure two-qubit
entangled states. We find that the self-testing fidelity can
match the tomography fidelity. Thus, self-testing certification
can replace tomography in reporting the quality of sources of
almost pure entangled states.

III. THEORY

A. Framework

A conceptual scheme of the setup is shown in Fig. 1.
The source is designed to produce, ideally, two-qubit pure
entangled states. In other words, we aim at certifying how
close the actual state is to one of the states described as

|ψ (θ )〉 = cos θ |00〉 + sin θ |11〉, 0 < θ � π

4
, (1)

up to local isometries. Each of the measurement devices,
called Alice and Bob as usual, has a classical input (denoted,
respectively, by x and y) and a classical output (denoted,
respectively, by a and b). Ideally, the input determines which
measurement is performed and the output is the outcome of
the measurement; we emphasize that our treatment makes
no assumption on how inputs are treated or how outputs are
produced. In this work we consider binary inputs and outputs
and denote them by x, y ∈ {0, 1} and a, b ∈ {−1,+1}.

After performing several rounds of the experiment, we
compute the frequencies f (a, b, x, y) of each of the sixteen
4-tuples (a, b, x, y), whence we estimate the conditional prob-
abilities P(a, b|x, y) through

P(a, b|x, y) ≈ f (a, b, x, y)∑
a′,b′ f (a′, b′, x, y)

. (2)

It is in this estimate that we leave aside the possibility of
device-independent certification. First, the probabilities are

reconstructed only from events in which one detector fired on
each side (thus we assume fair sampling). Second, without
arranging spacelike separation between the relevant events,
we assume that no side communication channel carries the
information of one box’s input to the other box. Under this
no-signaling constraint, the sixteen P(a, b|x, y) must depend
on eight real parameters only: For our purposes, we take the
four correlators 〈AxBy〉 and the four marginals 〈Ax〉 and 〈By〉,
defined by

〈Ax〉 = P(a = +1|x) − P(a = −1|x), (3)

〈By〉 = P(b = +1|y) − P(b = −1|y), (4)

〈AxBy〉 = P(a = b|x, y) − P(a �= b|x, y). (5)

B. Self-testing of pure two-qubit entangled states

The first examples of self-testing proved that the max-
imal violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality [23] can only by achieved, up to local isometries,
by complementary measurements on a two-qubit maximally
entangled state [3–5]. There exists a similar criterion for pure
nonmaximally entangled states [8,10]: For every α ∈ [0, 2),
the maximal quantum violation Iα = √

8 + 2α2 of the tilted
CHSH inequality [24]

Iα = α〈A0〉 + 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉
� 2 + α (6)

can only be achieved by the state (1) with α =
2/

√
1 + 2 tan2(2θ ), measured according to

A0 = σz, B0 = cos μσz + sin μσx,

A1 = σx, B1 = cos μσz − sin μσx,
(7)

where μ = arctan[sin(2θ )].
Since our source may not be ideal, we will need a version of

self-testing that is robust against experimental imperfections.
The criterion itself can be made robust [10], but one can do
better than simply checking the value of Iα , since an estimate
of all the P(a, b|x, y) is available from the observed values. In
this paper we will adopt the SWAP method [9,25], based on the
Navascués-Pironio-Acín (NPA) [26] hierarchies of relaxation
of the set of quantum correlations.

C. Finite-sample-size effects

In the first report of the application of self-testing to
experimental observations [14], the bound on the fidelity
with the target state was estimated by plugging the observed
frequencies into the expressions of suitable Bell-type inequal-
ities. Here we implement previous data processing, addressing
concerns that arise due to statistical fluctuations.

The awareness of the importance of statistical fluctuations
due to the finite size of the samples is rather recent even
in normal tomography [27,28]. Notably, we mention two
such concerns. The first is rather obvious: If the source is
of high quality, Iα will be close to the quantum maximum.
An estimate over few rounds may exceed that maximum,
making it impossible to draw any conclusion from the point
estimator. The second concern arises from the fact that the
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FIG. 2. Experimental setup for the quantum state verification: 1,
405-nm pump laser; 2, BBO1 on a linear translational stage to change
the value of θ ; 3, special waveplate; 4, BBO2; 5, dichroic mirror
for removing the pump laser; 6, temporal compensator (YVO4); 7,
single-mode fiber; 8, dichroic beam splitter for splitting the signal
and idler photons; 9, quarter waveplate (only for tomography); 10,
polarizer for the projective measurements; 11, single-photon detec-
tors; and 12, coincidence unit for calculating P(a, b|x, y).

probabilities inferred from the frequencies generally do not
obey the no-signaling condition exactly. This is an issue
because many tools in the theory of Bell nonlocality, including
Bell inequalities themselves,1 can be properly used only in
the no-signaling set. Using our measured results, we show an
illustration of both these concerns in Fig. 3.

We address these issues following the proposal of Lin
et al. [17]. Based on the work in [29], they devised a method
to obtain a point estimator of correlation that is compatible
with quantum theory from the raw observations. Since the
quantum set cannot be efficiently parametrized, the point
estimator is chosen as the one most compatible with the raw
observations within the NPA relaxation of the quantum set
of a given hierarchy level. In particular, the nearest quantum
approximation (NQA2) method, which uses the 2-norm as
a measure between correlations, can be computed efficiently
using any semidefinite programming solver. We will use this
point estimator as the input for the SWAP method.

IV. EXPERIMENTAL SETUP

The experimental setup is sketched in Fig. 2. Polariza-
tion entangled photon pairs are generated using spontaneous
parametric down-conversion (SPDC) where a pump photon
undergoes frequency conversion within a χ2 nonlinear crystal
to generate photon pairs of lower frequency. We have used a
type-1 critically phase-matched SPDC source that produced
collinear nondegenerate photon pairs from two β barium
borate (BBO) crystals whose axes are parallel [30]. A pump

1Bell inequalities are hyperplanes bounding the set of local vari-
ables (also know as local polytope), which is obviously a subset of
the no-signaling set. If we consider the whole space of probabilities,
there are infinitely many hyperplanes whose intersections with the
no-signaling set define the same Bell inequality. For a given signaling
probability point, one can find hyperplanes for which the point lies
on the side of the local set and others for which the point lies on the
other side. In other words, if one takes a signaling point and plugs it
into the expression of a Bell inequality, the conclusion (violation or
not) may be an artifact of the choice of the Bell expression.

laser of wavelength 405 nm is focused to two BBO crystals
of 6 mm length with a special waveplate sandwiched between
them. The beam waist of the focused pump is 110 μm. The
vertically polarized pump generates photon pairs with hori-
zontal polarization (with state |HH〉) in both the crystals. The
waveplate in between the crystals rotates the polarization of
the pairs produced in the first crystal (|HH〉 −→ |VV 〉) with-
out affecting the polarization of the pump. The wavelength-
dependent phase between |HH〉 (produced in the second crys-
tal) and |VV 〉 (generated at the first crystal) is compensated
using a single a-cut yttrium orthovanadate crystal (YVO4) of
length 3.76 mm.

The SPDC photons from both crystals are collected using
a single-mode fiber (SMF). The collection focus is centered
at the special waveplate such that photons from both crys-
tals are coupled with equal probabilities and generate the
state 1√

2
(|HH〉 + |VV 〉). In our experiment the collection

beam waist is set to 60 μm. If one of the BBO crystals is
moved away from the waveplate, the collection of the SMF
is asymmetrical, generating the state cos θ |HH〉 + sin θ |VV 〉.
The parameter θ is varied by changing the relative distance
between one of the BBO crystals and the collection focus.
In our experiment, BBO1 is mounted on a translation stage
to generate states with 0 < θ � 45. For each position of
BBO1, quantum state tomography is performed to determine
the exact values of θ . The photons are split using a dichroic
beam splitter. The polarization state of the photons is analyzed
at Alice’s and Bob’s locations to evaluate P(a, b|x, y) using
polarizers. Polarizer angles are determined by the value of x
or y. As we are working in the nonadversarial scenario, there
is no need to randomize our settings as long as we check that
our measurement results have no significant drifting. In order
to perform quantum state tomography, a quarter waveplate
is inserted before the polarizer in Alice’s and Bob’s stations.
The SPDC photons are then finally detected by single-photon
detectors.

V. RESULTS AND DISCUSSION

Using the source described earlier, we attempt to prepare
the state |ψ (θ )〉 for some predetermined values of θ between
30◦ and 45◦. This range of θ is chosen due to the ample local
quantum separation of the tilted CHSH violation with respect
to the error bars (see Fig. 3). One can extend this range by
increasing the number of trials to reduce the error bars. Both
tomography and self-testing were performed on the states
produced in the experiment to benchmark the quality of our
source. Tomography is performed using calibrated projective
measurements of σx, σy, and σz. The fidelity between the
tomographically reconstructed state and the corresponding
target pure states is shown in Fig. 4.

For self-testing, we implemented the measurements (7) that
maximally violate the tilted CHSH inequalities; of course, a
verifier does not need to take this piece of information into
account since self-testing does not assume the calibration of
measurement devices. When testing for polarization entangle-
ment, calibration of devices usually involves the alignment
of the polarization axes of polarizers or waveplates used. In
our experiment, the polarizer of Alice is aligned to 0◦ and
45◦ (and their orthogonal angles) while Bob’s polarizer is
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FIG. 3. Observed violation of the tilted CHSH inequalities for
various values of θ . The experimental results used for this plot consist
of 500 trials per setting (x, y). The error bars represent standard
deviation obtained by assuming a Poisson distribution of photon
counting. For the same experimental results, we compute 〈A0〉y :=∑

a,b aP(a, b|x = 0, y) for both y = 0, 1. This plot is an example
that illustrates two concerns that call for a proper finite sample
analysis. First, for θ = 32.5◦ the point estimator clearly violate
the no-signaling condition, as 〈A0〉y=0 �= 〈A0〉y=1. Second, the plot
in the inset is obtained from experimental results consisting of 100
trials per setting (x, y), which is one-fifth of that for points outside the
inset. For θ = 42.5◦, 45◦, the sample mean exceeds the theoretical
quantum maximum.
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FIG. 4. Plot of the fidelity between the measured state and the
ideal state, |ψ (θ )〉, against θ . The blue upright triangles indicate the
fidelity ft obtained from quantum state tomography performed on
the quantum state produced by the source in the experiment. The red
inverted triangles indicate the lower bound fs obtained by self-testing
(with the measurements that maximize the tilted CHSH inequality).
These plots are obtained using a 37 × 37 NPA moment matrix and
two 16 × 16 localizing matrices. The values of ft and fs are listed in
Table I.

TABLE I. Fidelities obtained via tomography ( ft ) and self-
testing ( fs) from the experimental results.

θ ft fs fs/ ft

30◦ 0.990 0.943 0.953
32.5◦ 0.996 0.933 0.937
35◦ 0.984 0.963 0.979
37.5◦ 0.992 0.979 0.987
40◦ 0.992 0.978 0.986
42.5◦ 0.988 0.985 0.997
45◦ 0.991 0.982 0.991

aligned to 22.5◦ and 67.5◦ to achieve maximum Bell violation
for θ = 45◦. However, in a practical quantum communication
scenario, the exact calibration of two remote waveplates may
be difficult to achieve. There can be scenarios where (a) the
reference axes of the polarizers or waveplates are different
from one another, (b) the devices measure different angles due
to nonlinear response (liquid crystals) or inaccurate movement
(rotation stages), or (c) the polarization axis of the incident
photons has been shifted after the initial alignment. In such
cases, tomography cannot be used to check the quality of the
state, as it assumes perfect measurement settings. However,
in self-testing one can always obtain a lower bound for the
fidelity even if the measurement angles are off from the ideal
ones. Note that with nonideal measurement angles, the fidelity
obtained by self-testing will only be an underestimation of
quantum correlation present in the source.

After the measurements are made, we apply the NQA2
method on the frequencies of coincidences f (a, b, x, y) to
obtain the nearest set of marginals and correlators that resides
in the NPA relaxation to the set of quantum correlations. We
used a 37 × 37 NPA moment matrix detailed in Appendix B.
Next we apply the SWAP method on these marginals and
correlators. Here we used the same 37 × 37 NPA moment
matrix with two additional 16 × 16 localizing matrices. The
resulting lower bound on the fidelity with the target state is
also shown in Fig. 4.

The fidelity obtained by tomography, denoted by ft , is
always higher than that obtained by self-testing, denoted by
fs (see Table I). Though expected, this is not trivial: It can
be taken as a validation of the modeling assumptions made
for tomography. Nevertheless, the fidelities computed from
self-testing are almost identical for θ � 35◦. There is nothing
fundamental in this number: The range of agreement could be
improved by taking larger moment matrices in the NPA hierar-
chy. The average ratio fs/ ft is 0.976, but for θ = 30.0◦, 32.5◦,
the values of fs/ ft are visibly smaller than other data points.
These anomalies can be explained by the tilted CHSH vio-
lation falling short of their maximal quantum value at these
points. In Fig. 3 we can see that the probable regions for these
points exclude the value of quantum maximal violation. If one
considers only the data points where the probable region of
the Bell violation includes the quantum maximal violation,
i.e., θ = 35.0◦, 37.5◦, 40.0◦, 42.5◦, 45.0◦, the average ratio
fs/ ft is given by 0.988. Our results demonstrate that even in
the regime of near-maximal violation of the CHSH inequali-
ties, self-testing (in a nonadversarial scenario) can provide a
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physically plausible point estimator of the bipartite entangled
qubit state.

In recent work [14], a similar self-testing analysis has
been done for pure bipartite entangled qudits states that max-
imally violates the Collins-Gisin-Linden-Massar-Popescu
(CGLMP) [31,32] and the Salavrakos-Augusiak-Tura-Wittek-
Acín-Pironio (SATWAP) [33] inequalities for Hilbert space
dimensions up to 8. In Ref. [14], violation of CGLMP and
SATWAP inequalities was obtained and used to estimate the
quality of the source. However, the violations observed were
far from the quantum maximal value and the analysis did not
encounter the problems associated with near-maximal Bell
violation using a finite sample size.

Similar observations can be made regarding any fully
device-independent self-testing that has been performed (or
will be performed in the near future). In another recent work
[15], a fully device-independent certification of the singlet
state was performed and yielded a fidelity of 0.5554 with a
99% confidence. In fact, the projected near-term achievable
CHSH violation by a loophole-free Bell test is given by
2.47 [34], which gives a singlet fidelity of 0.752 using the
method from [11]. For experimentalists who wish to check
the serviceability of their entanglement source, such bounds
are too pessimistic.

VI. CONCLUSION AND OUTLOOK

We have shown that with existing quantum devices, self-
testing could provide a good point estimator of the per-
formance of a source of quantum states without assuming
the characterization of the measurements. Furthermore, this
estimation is robust against false positives and requires fewer
measurement settings as compared with quantum state tomog-
raphy. This can be of great interest in practical deployment
of ground- or space-based quantum communication systems
since we can estimate the lower bound for the fidelity of the
state even if the measurement devices are not calibrated.

There is one final missing ingredient for the full solution
to the problem: We could not propagate the error bars on
the Bell violation and/or conditional probabilities to the error
bars on the fidelity between the measured and ideal quantum
states. We hope that this experimental demonstration in this
paper would motivate researchers to find the full solution to
the problem proposed.
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APPENDIX A: FALSE POSITIVE OF TOMOGRAPHY DUE
TO MISCALIBRATION OF MEASUREMENT

In this Appendix we will illustrate a possible scenario
where miscalibration of measurements would lead to false
positives in quantum state tomography. Consider the quantum

state |φ〉 := cos( π
8 )|0〉 + sin( π

8 )|1〉 which translates to the

density matrix ρ := |φ〉〈φ| = 1+ σz+σx√
2

2 , where σx, σy, and σz

are the Pauli matrices. Suppose we would like to generate
ρ in the laboratory and check the quality of our source. We
could perform quantum state tomography on the produced
state, denoted by ρ̃, and check its fidelity with ρ, denoted by
F (ρ, ρ̃ ), which is given by

F (ρ, ρ̃ ) := (Tr
√√

ρρ̃
√

ρ)2 = 〈φ|ρ̃|φ〉. (A1)

Since the quantum state under question is a qubit state, we can
write the reconstructed state, denoted by ρ ′, as

ρ ′ := 1 + �n · �σ
2

, (A2)

where �n is the Bloch vector and �σ is an array of Pauli matrices.
Hence, one could perform quantum state tomography by
making the σx, σy, and σz measurements on ρ̃ in order to
determine its Bloch vector.

In this example, suppose the prepared state ρ̃ is given by

ρ̃ = pρ + 1 − p

2
1 (A3)

for some 0 � p � 1. Hence, ρ̃ produces the following statis-
tics in a tomography experiment:

Tr(ρ̃σz ) = p√
2
,

Tr(ρ̃σx ) = p√
2
,

Tr(ρ̃σy) = 0.

(A4)

This implies that F (ρ, ρ̃ ) = 1+p
2 . On the other hand, if there

is a miscalibration of the measurements σx and σz such that
the miscalibrated measurements, denoted by σ ′

x and σ ′
z , are

given by

σ ′
z := cos (ξ )σz + sin (ξ )σx,

σ ′
x := cos (ξ )σx + sin (ξ )σz,

(A5)

where 0 � ξ < π
2 , the resulting statistics that is observed in

the tomography experiment is given by

Tr(ρ̃σ ′
z ) = [sin(ξ ) + cos(ξ )]

p√
2
,

Tr(ρ̃σ ′
x ) = [sin(ξ ) + cos(ξ )]

p√
2
, (A6)

Tr(ρ̃σy) = 0.

If one mistakes σ ′
z as σz and σ ′

x as σx, then one would
reconstruct the state ρ ′ and conclude that F (ρ, ρ ′) =
1+p[sin(ξ )+cos(ξ )]

2 .
Note that when miscalibration occurs, i.e., ξ > 0,

F (ρ, ρ ′) > F (ρ, ρ̃ ), which implies that we always get an
overestimation of the fidelity between the actual state and
the target state. Moreover, when sin(ξ ) + cos(ξ ) > 1

p , the
estimated fidelity between the actual state and the target state
F (ρ, ρ ′) > 1, which is absurd. Thus, this analysis proves
that a miscalibration of the measurements in a tomography
experiment could result in a false positive.
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FIG. 5. Local isometry that is chosen for self-testing of qubits
states where H represents the Hadamard gate. If the operators ZA (B)

and XA (B) correspond to the Pauli matrices σz and σx , respectively,
then the quantum circuit above corresponds to a SWAP gate between
the Hilbert spaces AB and A′B′.

APPENDIX B: METHODS FOR ROBUST SELF-TESTING

The techniques of robust self-testing that are employed
in this paper will be documented in this section. In order
to prove self-testing, it is sufficient to show the existence of
a local isometry �(·) such that �(|ψ〉) = |junk〉 ⊗ |ψtarget〉,
where |ψ〉 is the measured quantum state, |ψtarget〉 is the target
quantum state, and |junk〉 can be any arbitrary quantum state.

Without loss of generality, one can pick the local isometry
�(·) to be the quantum circuit given by Fig. 5. After going
through the computation of the circuit, we arrive at the fol-
lowing state:

�(|ψ〉AB) = 1
4 [(1 + ZA)(1 + ZB)|ψ〉AB|00〉A′B′

+ XAXB(1 − ZA)(1 − ZB)|ψ〉AB|11〉A′B′

+ XB(1 + ZA)(1 − ZB)|ψ〉AB|01〉A′B′

+ XA(1 − ZA)(1 + ZB)|ψ〉AB|10〉A′B′ ]. (B1)

The remaining task is to show that given the observed statistics
or Bell violation, the bipartite qubits state in the Hilbert space
A′B′, denoted by ρA′B′ , is indeed |ψtarget〉. In the case of this
paper, the target states are the pure bipartite entangled states
given by |ψ (θ )〉 = cos θ |00〉 + sin θ |11〉.

However, experimental results can never achieve the cri-
teria for self-testing due to noise and error. Nonetheless, one
can obtain a lower bound for the fidelity between a measured
quantum state and the target quantum state, denoted by F ,
given a certain amount of deviation from the ideal statistics.
Since the target states are pure, we can define the fidelity as

F := 〈ψ (θ )|ρA′B′ |ψ (θ )〉. (B2)

Next, in order for the unitaries ZA (B) and XA (B) in the
local isometry to simulate the effect of σz and σx operators,
respectively, we set the operators ZA, XA, Z̃B, and X̃B as

ZA := A0, (B3)

XA := A1, (B4)

Z̃B := B0 + B1

2 cos μ
, (B5)

X̃B := B0 − B1

2 sin μ
, (B6)

where tan μ = sin 2θ . Notice that we define the operators Z̃B

and X̃B with tildes as we anticipate that they are not unitary
in general. Hence, inserting Z̃B and X̃B in the quantum circuit
will not result in a valid local isometry.

In order to circumvent this problem, we employ a method
[9] which exploits a result from polar decomposition. For any
operator B, there exists a decomposition such that B = UP,
where U is a unitary operator and P is a positive-semidefinite
operator. Moreover, P is unique and if B is unitary, this implies
that U = B. Since Z̃B and X̃B are Hermitian, one can show that
the unitaries of their polar decomposition can be Hermitian.
Hence, there exist some operators with ±1 eigenvalues B2 and
B3 such that

B2(B0 + B1) � 0, (B7)

B3(B0 − B1) � 0, (B8)

and we define

ZA = A0, XA = A1, (B9)

ZB = B2, XB = B3. (B10)

Using these relations, the optimization to lower bound the
fidelity F is given by

min F

such that  � 0,
(B11)

B2(B0 + B1) � 0,

B3(B0 − B1) � 0,

where  is the moment matrix associated with the NPA
[26] relaxation that is compatible with the observed statistics
P(a, b|x, y). The moment matrix i j := 〈ψ |O†

i O j |ψ〉 used in
this paper employs the following set of operators {Oi}i: 1, A0,
A1, B0, B1, B2, B3, A0A1, A1A0, B0B1, B1B0, B0B2, B2B0, B0B3,
B3B0, B1B2, B2B1, B1B3, B3B1, B2B3, B3B2, A0B0, A0B1, A1B0,
A1B1, A0B2, A0B3, A1B2, A1B3, A0A1A0, A1A0A1, B2B3B2,
B3B2B3, A0B2B3, A0B3B2, A1B2B3, and A1B3B2. Hence, the
 we use in this paper is a 37 × 37 matrix.

Using the definition of F in Eq. (B2) and the isometry
given by Fig. 5, we can compute F as

F = 1
4 [1 + 〈A0B2〉 + cos 2θ (〈A0〉 + 〈B2〉)

+ 1
2 (cos θ + sin θ )(〈A1B3〉 + 〈A1A0B3B2〉

+ 〈A0A1B2B3〉 + 〈A0A1A0B2B3B2〉 − 〈A0A1A0B3〉
− 〈A0A1B3B2〉 − 〈A1A0B2B3〉 − 〈A1B2B3B2〉)]. (B12)

However, the last two constraints of optimization (B11) can-
not be imposed in a numerical program. In order to im-
pose the conditions (B7) and (B8), we use the method of
matrix localization to provide a relaxation of the problem
as it is a necessary condition that the localizing matrix
(B)i j := 〈ψ |O†

i BOj |ψ〉 be positive semidefinite if B is posi-
tive semidefinite. Hence, we will perform the optimization

min F

such that  � 0,

(B2(B0 + B1)) � 0,

(B3(B0 − B1)) � 0. (B13)

022305-6
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FIG. 6. Plot of lower bounds on the fidelity between the mea-
sured state and the ideal state, |ψ (θ )〉, against the deviation from
maximal violation of the tilted CHSH inequality denoted by ε [see
Eq. (B14)] over various values of θ . These plots are obtained using a
37 × 37 NPA moment matrix and two 16 × 16 localizing matrices.

In this paper the set of operators {Oi}i used to construct
the localizing matrices are given by 1, A0, A1, B0, B1, B2, B3,
A0B0, A0B1, A0B2, A0B3, A1B0, A1B1, A1B2, A1B3 and A0A1

[for (B2(B0 + B1))], and A0A1A0B0 [for (B3(B0 − B1))].
Hence, the (B2(B0 + B1)) and (B3(B0 − B1)) we used are
16 × 16 matrices.

Performing optimization (B13) for different θ over statis-
tics with various tilted CHSH violation gives us Fig. 6. In
Fig. 6 the curves show the lower bound of the fidelity between
the measured and ideal states for a given violation of the tilted
CHSH inequality. In this plot, the horizontal axis represents
the deviation, denoted by ε, from the maximal violation of the
tilted CHSH inequalities. As such, the tilted CHSH violation

is given by

α〈A0〉 + 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉
− 〈A1B1〉 =

√
8 + 2α2 − ε. (B14)

One can interpret Fig. 6 as a lookup table of the lower bound
of fidelity between the measured and ideal states for a given
observed Bell violation. As the separation between the local
maximum and the quantum maximum of the tilted CHSH
inequalities increases with θ , the same amount of deviation
from the maximal quantum violation would translate to a more
drastic decrease in the lower bound on fidelity for smaller
values of θ as seen in the plot.

As mentioned in the main text, the estimated conditional
probabilities P(a, b|x, y) may not adhere to the no-signaling
constraint. In order to circumvent this problem, we employed
the NQA2 method [17], which essentially involves searching
for the most compatible point in (the relaxation of) the set
of quantum correlations with the experimental results. The
NQA2 method can be phrased as the semidefinite program-
ming problem

P̄ := argminP s

such that

(
s1 P − f̄

PT − f̄ T s

)
� 0,

 � 0, (B15)

where s is a real number, f̄ is a vector with elements
f (a,b,x,y)∑

a′ ,b′ f (a′,b′,x,y) , P is a vector with elements P(a, b|x, y) such

that it is within some NPA relaxation of the set of quantum
correlations i.e.,  � 0, and P̄ is a vector with its elements
consisting of the regularized conditional probabilities.

For robust self-testing of higher-dimensional pure bipartite
states using conditional probabilities like the type found in
[12], one could adopt the SWAP method with the corresponding
local isometry found therein. The solution to the resulting
optimization problem would provide a valid lower bound on
the fidelity between the measured and target states.
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