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We consider a protocol for sharing quantum states using continuous variable systems. Specifically we
introduce an encoding procedure where bosonic modes in arbitrary secret states are mixed with several ancillary
squeezed modes through a passive interferometer. We derive simple conditions on the interferometer for this
encoding to define a secret sharing protocol and we prove that they are satisfied by almost any interferometer.
This implies that, if the interferometer is chosen uniformly at random, the probability that it may not be used to
implement a quantum secret sharing protocol is zero. Furthermore, we show that the decoding operation can be
obtained and implemented efficiently with a Gaussian unitary using a number of single-mode squeezers that is
at most twice the number of modes of the secret, regardless of the number of players. We benchmark the quality
of the reconstructed state by computing the fidelity with the secret state as a function of the input squeezing.
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I. INTRODUCTION

Quantum systems are notoriously fragile: small losses or
weak interactions with the outside world usually destroy
quantum coherence. Since quantum information cannot be
copied [1], any leakage of information leads to its destruction
in the original system. To fully retrieve it, one usually needs
full control over the environment. This loss of coherence is
at the heart of quantum information, whether we want to
fight it [2–4] or impose it on an adversary [5–7], but it plays
an important role in a broader area of physics, including
thermodynamics [8,9], quantum control [10,11], and black-
hole physics [12–16].

Among the strategies devised to try and overcome this
fragility are quantum error correcting (QEC) codes [17,18]
and quantum secret sharing (QSS) schemes [19–21].

In QSS schemes, a dealer delocalizes the information
between several players, so that authorized subsets of them
(access parties) can fully reconstruct the original information
without the shares of the other players. Unauthorized sets
(adversaries) on the other hand get in principle no information
about the secret. QSS schemes are equivalent to erasure
correcting codes [19], protecting against loss of part of the
system. As well as protecting information, they have many ap-
plications in quantum information, such as secure multiparty
computation [22]. Most QSS and QEC schemes [17,20,21]
are highly structured. However, random codes have been
proven to optimally protect the state of a set of qubits from
erasure errors [18]. Furthermore, their randomness makes
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them a natural model in a variety of physical scenarios where
information is lost.

Most of these results are for two-dimensional, qubit en-
codings. Alternative to qubits, information can be encoded
in the state of infinite-dimensional quantum systems, known
as continuous variable (CV) systems. CV systems are of
great practical importance in quantum technologies [23]:
the possibility to experimentally generate entanglement in
a deterministic fashion makes them interesting candidates
for the realization of quantum communication and computa-
tion protocols. Several CV generalizations of QSS [24–27]
and erasure-correcting codes [28,29] have been proposed,
and some have been experimentally demonstrated [30–32].
Each of these schemes, however, requires encoding the secret
in carefully chosen states. No CV random code has been
proposed to date. This gap poses serious limitations to the
experimental realization of CV-QSS. For example, unless the
experimental setup is specifically tailored for the task, CV-
QSS could not be carried out, or experimental imperfections
might hinder its implementation. As in the qubit case, one may
also expect applications of random coding beyond QSS and
quantum information [12–16].

In this paper, we fill this gap by introducing a form of
random coding for CV. Namely, we show that QSS can be
implemented in bosonic systems mixing a secret state with
squeezed states, the workhorse of CV quantum information
[33,34], through almost any energy preserving transformation.
The latter correspond to passive interferometers in the optical
setting. Our approach also generalizes earlier proposals by
allowing the secret to be an arbitrary multimode state, as long
as enough players are considered. We show that for almost
any passive transformation there exists a decoding scheme,
that each authorized set can construct efficiently, such that the
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secret can be recovered to arbitrary precision, provided the
initial squeezing is high enough. The decoding only requires
Gaussian resources, considered relatively easy to implement
experimentally [34,35]. We show that in the optical case
decoding can be achieved by interferometry, homodyne detec-
tion, and a fixed number of single-mode squeezers. We stress
that our results follow from simple linear algebra and general
considerations on the number of modes.

These results have immediate experimental and techno-
logical applications. Indeed, they imply that almost any ex-
perimental setup involving squeezed states can be used for
QSS. Moreover, small deviations of the setup from a theo-
retical target one are not important, as long as they can be
characterized. This opens the possibility to share resource
states securely over a network of CV systems with arbitrarily
distributed entanglement links, which may pave the way to
server-client architectures for CV-quantum computation. But
the relevance of CV random codes is not limited to their
practicality. Optimality of random erasure correcting codes
for qubits was used in a seminal paper to estimate the rate
of information leakage from black holes through Hawking
radiation [12]. The most relevant objects in this setting are
however fields, namely, CV systems. This stimulated work
applying CV techniques, notably related to QSS, in relativistic
contexts [13–16]. The existence of efficient CV random QSS
codes may open new avenues for tackling the black-hole
information puzzle and related fundamental questions.

The remainder of the paper is structured as follows. Some
background information is recalled in Sec. II. In Sec. III we
describe the encoding procedure the dealer uses to share the
secret with all players. In Sec. IV we derive conditions ensur-
ing that any sufficiently large group of players can retrieve the
secret state. The decoding operations that the players can carry
out when these conditions are satisfied are further described
in Sec. V. A precise formulation of our main result is given
in Sec. VI together with a sketch of the proof. In an ideal
setting, access parties should get full information about the
secret and adversaries should get none. As it is often the case
in CV, the ideal situation is never achieved in physical sce-
narios where only finite squeezing is available. Sections VII
and VIII discuss the amount of information retrieved by the
authorized players and the adversaries, respectively, in the
finite squeezing scenario. Final remarks in Sec. IX conclude
the paper. More details about the derivations can be found in
the Appendices.

II. CV QUANTUM OPTICS

A convenient way to study an n-mode bosonic system is
through the 2n-dimensional phase space. The 2n components
of the quadrature vector ξ = (qT , pT )T are the position and
momentum operators, obeying the canonical commutation
relations

[ξ j, ξl ] = iJ (n)
jl , (1)

with J (n) the standard symplectic form

J (n) =
(

0n In

−In 0n

)
, (2)

0n and In being zero and identity n × n matrices. The state
of a n-mode system is characterized by its Wigner function
W (q, p),1 a quasiprobability distribution defined on phase
space [34]. Gaussian states are naturally defined as those the
Wigner function of which is Gaussian, and they are fully char-
acterized by the mean and covariance matrix of the quadrature
vector ξ.

Gaussian transformations—preserving the Gaussian char-
acter of the state—are an essential subset of physical transfor-
mations, since they can be implemented deterministically in
quantum optics experiments with existing technologies. Uni-
tary Gaussian transformations are elegantly described by the
formalism of symplectic matrices. In the Heisenberg picture,
the action of a unitary Gaussian operation UG can be expressed
with a slight abuse of notation as a linear map [23,34]:

U †
GξUG = Sξ + η, (3)

where S is a 2n × 2n real symplectic matrix and η is a vector
of real numbers [36]. Symplectic matrices acting on n modes
are the matrices S preserving the standard symplectic form:
SJ (n)ST = J (n). Under matrix multiplication, they form the
group Sp(2n,R). If displacements are included, amounting
to phase-space translations, one gets the so-called inhomo-
geneous symplectic group. Of specific interest are squeezing
and passive operations. Squeezing does not conserve pho-
ton number [34] and is usually realized through nonlinear
optical processes. Independent squeezing operations on each
mode are represented by diagonal symplectic matrices K =
diag(er1 , . . . , ern , e−r1 , . . . , e−rn ), where ri is the squeezing
parameter of mode i [37]. Passive operations are defined
as photon-number preserving Gaussian unitaries and corre-
spond to linear optics, represented by the subgroup L(n) =
Sp(2n,R) ∩ O(2n) of orthogonal, symplectic matrices [36].
Each SL ∈ L(n) corresponds to a n × n unitary matrix X +
iY ∈ U (n) such that

SL =
(

X −Y

Y X

)
. (4)

This allows us to speak interchangeably of passive interferom-
eters or the corresponding symplectic and unitary matrices.

We recall for later convenience that given two vectors
x, y ∈ R2n their symplectic product is defined as

〈x, y〉 ≡ xT J (n)y. (5)

We denote by x · y the ordinary Euclidean product x · y =∑
j x jy j and by ‖x‖ = √

x · x the Euclidean norm. Note that,
formally, taking the dot product between a vector of real
numbers and the vector of quadratures results in a linear com-
bination of quadrature operators. The commutator between
two such combinations is simply related to the symplectic
product of the vectors

[x · ξ, y · ξ] = i〈x, y〉 (6)

as can be checked using Eq. (1). A basis {x j} of R2n such that
〈x j, xl〉 = J (n)

jl is called a symplectic basis.

1Here, q and p are real-valued n-dimensional vectors, not vectors
of operators. In the following we use the same symbols for vectors of
quadrature operators and phase-space variables; the meaning should
be clear from the context.
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FIG. 1. A sketch of the encoding procedure with n = 2, m = 2, followed by decoding from the share of the access party consisting of
the first, second, and fourth mode, while the third mode, corresponding to an adversary, is discarded. As shown in Sec. IV, the secret can be
recovered from any m + 	 n

2 
 = 3 out of the four modes. The decoded state ρout converges to the secret state ρs as the input squeezing increases
and the last mode can also be discarded after the decoding (see Sec. V).

III. ENCODING

We consider the following encoding scheme (see Fig. 1):
the dealer couples m modes in a secret state ρs to n squeezed
modes in a passive interferometer described by the symplectic
matrix SL. We assume that each mode’s momentum quadra-
ture is squeezed (ri > 0). This simplifies the notation but
implies no loss of generality, as local phase-space rotations
aligning the squeezing directions correspond to linear optics
and can be included in the interferometer.

We denote the vector containing all input quadratures by
ξin = ((qsqz)T , (qs)T , (psqz)T , (ps)T )

T
where the quadratures

of the jth squeezed mode are related to the vacuum quadra-
tures by qsqz

j = er j q(0)
j , psqz

j = e−r j p(0)
j . After the interferome-

ter the vector of quadrature operators is transformed as

ξnet =

⎛
⎜⎜⎝

qnet

qd

pnet

pd

⎞
⎟⎟⎠ = SLξin =

(
X −Y
Y X

)
ξin. (7)

One of the output modes of the interferometer is then sent to
each of the players.

IV. DECODABILITY CONDITIONS

We now investigate the conditions that the symplectic
matrix SL must satisfy and the relations between k, m, and
n in order for any set of k or more players to be able to access
the secret quadratures. Specifically, for each authorized set we
look for 2m independent linear combinations of quadratures
that do not involve the antisqueezed quadratures qsqz

j and
contain one of the secret quadratures each. We will later show
that if such combinations exist all information about the secret
can be accessed by any group of k or more players. We will
require k � m, otherwise the players cannot reconstruct a
general state of m modes.

Consider a subset of players A = {a1, a2, . . . , ak} who
are given the modes with quadratures

ξA =
(

[c]QA

PA

)
,

QA = (
[c]qnet

a1
, qnet

a2
, . . . , qnet

ak

)T
,

PA = (
[c]pnet

a1
, pnet

a2
, . . . , pnet

ak

)T
.

(8)

A need to cancel the contribution of the antisqueezed quadra-
tures. Let us rewrite Eq. (7) as

ξA = MAqsqz + NA psqz + HAξs (9)

where the entries of the matrices MA, NA, and HA are defined
by the coefficients of SL and ξs collects the secret quadratures.
Any linear combination of the ξA can be written vT ξA with v ∈
R2k . According to Eq. (9), the product vT ξA does not contain
any antisqueezed quadrature iff v lies in the kernel of (MA)T .
By construction, MA has 2k rows and n columns, therefore

dim(ker(MA)T ) � 2k − n. (10)

Then, if k � m + 	 n
2
 it is always possible to find 2m linearly

independent vectors v1, . . . , v2m ∈ ker (MA)T (here 	x
 de-
notes the smallest integer greater than or equal to x). Let us
suppose this condition is satisfied and organize the vectors v j

as rows of a matrix R. Applying R to ξA we get

RξA = RMAqsqz + RNA psqz + RHAξs (11)

≡ RNA psqz + T ξs (12)

where the last line defines the 2m × 2m matrix T = RHA. The
access party A can then decode the secret iff T is invertible.
Indeed, multiplying T −1 by Eq. (12) and defining D ≡ T −1R,
B = T −1RNA, leads to

DξA = Bpsqz + ξs. (13)

So, when A measure the linear combination of quadratures
defined by the jth row of D, the outcomes will follow the same
probability distribution as ξ s

j , apart from random displace-
ments drawn from a Gaussian probability distribution, due to
the term Bpsqz. These displacements decrease with increasing
input squeezing, ultimately vanishing for infinite squeezing.
In this limit, the access party can perfectly sample from the
original secret state. Note that real linear combinations of the
rows of D are linear combinations of the ξ s

j plus the squeezed
quadratures, so A can also measure arbitrary quadratures of
the secret (see below). An alternative description based on
Wigner functions can be found in Appendix C1.

In summary, A can reconstruct the secret if it is composed
of at least m + 	 n

2
 players and the matrix T in Eq. (12) is not
singular.

Given any linear optical network SL, these two conditions
determine the authorized subsets of players, that give the

022303-3



ARZANI, FERRINI, GROSSHANS, AND MARKHAM PHYSICAL REVIEW A 100, 022303 (2019)

access structure. It is not necessary to construct T explicitly
to check whether det T �= 0 as we show in Appendix A that
this is equivalent to det (MA HA) �= 0. The latter condition
explicitly involves the coefficients of SL, which will be useful
to prove our main result.

V. DECODING

We now clarify in which sense the above conditions allow
the access party to decode the secret. Consider an access party
A and suppose the conditions in the previous section are met.
Clearly, A can measure the linear combinations defined by
DξA by combining the results of local homodyne detections.
Indeed, Eq. (13) can be rewritten

ξ s
j +

n∑
l=1

Bjl psqz
l =

k∑
l=1

(
Djl Q

A
l + Dj,l+kPA

l

)
(14)

=
k∑

l=1

α jl
(

cos θ jl Q
A
l + sin θ jlP

A
l

)
(15)

for appropriately chosen α jl , θ jl ∈ R. A achieve their goal by
measuring the rotated quadratures with angles θ jl and sum-
ming their results multiplied by α jl . Since the same reasoning
applies to any linear combination of the ξ js, A can perform an
arbitrary homodyne measurement of the secret ρs. Sampling
any quadrature from ρs allows A to simulate any protocol
needing homodyne measurements of ρs, from quantum key
distribution [38], to measurement based quantum computing
[39], to, when provided with several copies of ρs, tomography
or verification [40].

Moreover, A can physically reconstruct the secret state by
applying a Gaussian unitary transformation. Let us call ξout ≡
DξA. Since the secret quadratures are conjugated canonical
operators we have[

ξ out
j , ξ out

l

] = [
ξ s

j , ξ
s
l

] = iJ (m)
jl . (16)

Since SL is symplectic, we also have [ξA
j , ξA

l ] = iJ (k)
jl . Using

ξout = DξA leads to[
ξ out

j , ξ out
l

] = i(DJ (k)DT ) jl = iJ (m)
jl , (17)

so the rows of D are vectors from a symplectic basis of
R2k [41] the span of which has dimension 2m. They can
be completed to a symplectic basis of R2k through a Gram-
Schmidt-like procedure where the scalar product is replaced
by the symplectic product [41]. Alternatively, the procedure
explained in Appendix B can be used, improving on the
number of required single-mode squeezers (see below). Let
us call SA

D the symplectic matrix the first m and (k + 1)st to
(k + m)th rows of which are the rows of D, while the others
are constructed by one of the above-mentioned procedures.
Its action on the vector of 2k quadratures of the access party A
corresponds to a unitary Gaussian transformation U A

D such that(
U A

D

)†
ξAU A

D = SA
DξA. (18)

By construction, the first m position and momentum entries of
SA

DξA correspond to ξout, so if A apply the physical evolution
corresponding to U A

D and SA
D they end up with m modes in the

secret state, apart from finite squeezing contributions.

Note that SA
D may, and generally does, involve squeezing.

However, remarkably, the procedure detailed in Appendix B
always allows one to construct SA

D involving a passive inter-
ferometer acting on the k modes of A, 2m independent single-
mode squeezers, and a final passive interferometer. For m = 1
(single-mode secrets), the number of squeezers can be further
reduced to one per access party by replacing the second
one with a homodyne measurement followed by an optical
displacement depending on the measurement result. Note that
the number of squeezers per access party in the decoding does
not scale with the number of players. This result generalizes
the result of [25] to all passive interferometers, including the
ones mixing positions and momenta, and to secrets of any
size. The generalization beyond orthogonal transformations
of the position operators is essential for the result stated in
the next section.

VI. ALMOST ANY INTERFEROMETER
CAN BE USED FOR QSS

We can now formalize our main result: the encoding and
decoding schemes outlined in the previous sections define a
secret sharing scheme for almost all passive interferometers
SL, in the sense of the Haar measure, that is the constant
measure on L(n). In other words, if SL is drawn uniformly
at random from all possible interferometers on n modes, any
group of k or more players will almost surely be able decode
a secret state of m modes, provided k � m + 	 n

2
. A sketch of
the proof, detailed in Appendix D, follows.

Let B be the set of matrices that cannot be used for secret
sharing. For SL ∈ L(n) to be in B, det (M HA) = 0 for at
least one access party A, which we denote SL ∈ BA. Because
of positivity and countable additivity, we have, for the Haar
measure of B, μH (B) � ∑

A μH (BA) and we just need to
show that each BA has zero measure. Each of them is defined
as the zero set of a polynomial function of the coefficients of
SL (the determinant of a submatrix), which, regarding U (n)
as a manifold, identifies a lower-dimensional set, which has
zero measure [42]. In other words, since L(n) is a Lie group
of dimension n2, it can be parametrized by n2 real variables
defined in an appropriate region E ⊂ Rn2

. The entries of SL

can be written as polynomials of trigonometric functions of n2

angles λ, so the det (M HA) is a real analytic function [43,44]
of λ, the zero set of which has necessarily null measure on
E [44,45]. Therefore B has zero Haar measure in L(n). Up
to a normalization factor, the Haar measure can be seen as
a uniform probability distribution over the unitary group. It
follows that if a unitary matrix Ū is chosen uniformly at
random the probability that Ū ∈ B is zero.

Note that the uniformity property of the Haar measure is not
required for the proof: we rather need it to be equivalent to the
Lebesgue measure on the domain E of Euler angles; that is, if a
set has zero measure in E , then it also has zero Haar measure.
Our results thus readily apply to any measure that does not
assign positive measure to a set of unitaries (interferometers)
of zero Haar measure. Moreover, it is not necessary to be
able to achieve all possible interferometers in order to find
good ones for QSS. To fix the ideas, let us suppose that some
experimental setup has continuous parameters u that can be
adjusted to apply one of a set of interferometers U (u). If U (u)
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spans a set of nonzero Haar measure when u is varied, then
almost all configurations will lead to a good encoding for QSS
according to our definition.

VII. QUALITY OF THE STATE RECONSTRUCTED
BY AUTHORIZED SETS

Since both encoding and decoding by any access party
require Gaussian resources only, the overall process defines
a Gaussian channel [23,46]. More specifically, as discussed in
Appendix C1, the Wigner function of the output state is the
one of the secret state convoluted with a Gaussian filter that
depends on the initial squeezing and on the interferometer
SL. Such channels are sometimes referred to as (additive)
classical noise channels [46]. In the ideal case where infinitely
squeezed states are used �psqz

j = 0, the channel coincides
with the identity channel. For finite squeezing, the protocol in-
troduces Gaussian noise that becomes smaller as squeezing is
increased. We can characterize the quality of the reconstructed
state in the realistic imperfect case by relating the amount
of input squeezing to the fidelity between the reconstructed
state and the secret. In particular, suppose for simplicity that
the secret is a single-mode coherent state, and all the input
squeezed states have the same squeezing �2 psqz

j = e−2r/2 ≡
σ 2(r). The fidelity of the reconstructed state can then be
expressed as (see Appendix C2)

FA(r) = 1/
√

1 + σ 2(r)η + σ 4(r)ζ (19)

where η = Tr(BBT ), ζ = det (BBT ), and B is defined in
Eq. (13). Clearly FA(r) → 1 for r → ∞. The same holds
for any input state, although the expression of the fidelity is
generally not as simple. Another possible way to assess the
noise added by the encoding and decoding procedure by one
access party is to compute the maximum eigenvalue νmax of
the noise matrix N = B�2BT , with � = diag(σ1, . . . , σn).
This can be interpreted as the size of the smallest features of
the secret Wigner function conserved by the channel [47,48].
Smaller structures (e.g., regions of negativity) are blurred out
by the convolution. The values 1 and 0.5 can be taken as refer-
ences. For νmax > 1 the channel is known to be entanglement
breaking [48–50], whereas for νmax < 0.5 a generalization
of the no-cloning theorem ensures that the corresponding
access party holds the best possible copy of the secret state
[51,52]. Some examples are plotted in Fig. 2. The squeezing
required to achieve a good reconstruction quality depends on
the interferometer used for the encoding and can in general
be very large (in the tens of decibels). This can be seen from
Fig. 2(a), reporting νmax and the fidelity obtained from a ran-
domly chosen interferometer as a function of input squeezing.
However, interferometers allowing for good reconstruction
with technologically achievable squeezing values [53,54] do
not seem to be rare and can be found by simple random
sampling. Figures 2(b)–2(d) were, for example, obtained from
the interferometers with the smallest νmax from samples of
103 interferometers chosen according to the Haar measure.
In general it seems that the required squeezing increases
with the number of modes involved but a more thorough
characterization of the dependence of the required squeezing
on the encoding interferometer is left for future work. The

matrices representing the interferometers used for the plots
are reported in Appendix E.

It is worth noting that the quality of the state reconstructed
by authorized parties is not affected by the antisqueezing
contributions. This means that the same reconstruction quality
can be achieved with nonpure squeezed states as long as the
noise in one quadrature is sufficiently reduced. This particular
type of imperfect squeezed states is common in experimental
situations. Optical parametric oscillators provide a notable
example where the excess noise in the antisqueezed quadra-
ture is larger than the inverse of the noise in the squeezed
quadrature (see, for example, [55]).

If the scheme is used as an ECC, the results of the present
section assess how much squeezing is needed to make the
secret state robust to the loss of n + m − k modes. For QSS,
additional conditions on the unauthorized parties have to be
satisfied. This is discussed in the next section.

VIII. UNAUTHORIZED SETS

In QSS, unauthorized parties should get no information
about the secret. This is not strictly true in any realistic
realization of our scheme, as for any finite value of squeezing
all subsets can get some information about the secret. This
is inherent to any CV protocol, as was recently discussed in
detail in [56] for a family of single-mode CV-QSS schemes
corresponding to a special case of our scheme. As it turns
out, in the multimode case the access structure is further
complicated by the fact that some subsets of less than m + 	 n

2

players can access some of the secret quadratures even in the
infinite squeezing limit, while groups smaller than a threshold
value k∗ are prevented from accessing the secret. To see this,
let us fix n and m and choose k = m + 	 n

2
. Consider then
a set Z of k − l players, with 0 < l < k. Z can construct a
matrix MZ analogous to MA but of smaller size. Equation (10)
then implies that, for l < m, Z can almost always retrieve
2m − 2l combinations of the secret quadratures free from
the antisqueezed contributions. On the other hand, a similar
reasoning as that in Sec. VI shows that this is almost never
the case for l � m: groups of k − m players or less cannot
obtain any linear combinations free of all antisqueezing con-
tributions. This implies that they get no information about
the secret for infinite input squeezing, as the antisqueezing
contributions add white noise to their quadratures. For m = 1
our scheme defines then a (k, n) threshold scheme [19], where
the adversary structure is composed of all complements of an
authorized set. In the general case, the size of the sets that
obtain no information about the secret (for infinite squeezing)
depends on the size of the latter: any set of k or more players
can reconstruct the full secret and sets of k∗ = k − m or less
players are denied all information about it. Such schemes are
known in the DV literature as ramp schemes [57] (note that
the same term is used with a different meaning in [56], where
only single-mode secrets are considered and the focus is on
the information leakage due to finite squeezing). The amount
of information leaked to the adversaries is also constrained
by the fidelity of the state reconstructed by the access party
with the secret, since the fidelity of the states reconstructed by
disjoint sets of players is limited by optimal cloning. Notably,
as mentioned above, increasing the noise of antisqueezed
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FIG. 2. Quality of the reconstructed state for several interferometers. The blue solid (red dashed) lines correspond to the access party the
decoding of which results in the worst (best) reconstruction of the secret. In the plots of νmax, the upper white region νmax > 1 corresponds to the
encoding-decoding channel being entanglement breaking, while the dark gray region ν < 0.5 corresponds to the access party having the best
possible copy of the secret allowed by optimal cloning. The plots (a) and (b) were obtained for two different interferometers and assuming two
out of three players are trying to reconstruct a single-mode secret. The plot in (c) is for three out of five players and a single-mode secret, while
(d) is for three out of four players trying to reconstruct a two-modes state (the scheme in Fig. 1). The matrices representing the corresponding
interferometers are reported in Appendix E.

quadratures at fixed squeezing, the reconstruction by the
authorized parties is unaffected, while that of the unauthorized
party degrades.

IX. CONCLUSIONS

We have introduced a random coding scheme for shar-
ing multimode bosonic states using Gaussian resources. The
possibility of using almost any interferometer gives plenty
of room for optimization and implies that potentially any
experimental setup producing multimode squeezed states can

be used for QSS, paving the way to quantum resource sharing
across entangled networks with arbitrary topology. In partic-
ular, this may have applications for sharing resource states
in server-client architectures for optical quantum computing
[58,59], which is an increasingly studied paradigm, due to
the difficulty of producing genuinely quantum resources for
quantum supremacy [60,61]. From the perspective of error
correction [21,62], we can affirm that a Haar randomly chosen
linear interferometer acts as an optimal erasure code, since
any code tolerating the loss of a higher number of modes
would violate no-cloning.
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APPENDIX A: EQUIVALENT CONDITION
FOR INVERTIBILITY OF THE MATRIX T

The decodability conditions derived in the main paper are
readily computed once SL is known but checking whether the
matrix T [defined in Eq. (12) of the main paper] is invertible
requires the explicit calculation of a basis of the kernel of
(MA)T [see Eq. (9)], which is not very practical. We prove
here a condition equivalent to the invertibility of T in the
case that MA has full rank: rank(MA) = n − m. The condition
results in a polynomial equation in the coefficients of MA

and thus does not require computing the kernel of (MA)T

explicitly. This will be particularly useful for the proof of our
main result.

Let us call V = Ker[(MA)T ] ⊂ R2k . If MA has full rank,

then dim(V ) = 2k − n + m = 2m, since MA always has 2k
rows and n − m columns (we assume k = m + 	 n

2
). Let us
denote by h j = HA( j) the jth column of HA and by h j |V its
projection on V [see Eq. (9) for the definition of HA]. Let us
introduce a basis of V , {v1, . . . , v2m}. We can assume without
loss of generality that these vectors are the rows of the matrix
R in the main paper. Then

h j = h j |V + h j |V ⊥ =
∑

l

(vl · h j )vl + a j =
∑

l

Tl jvl + a j

(A1)

by definition of T , with a j = h j |V ⊥ . Consider now the square
matrix

(MA|HA) = (MA|h1| . . . |h2m) (A2)

where the notation specifies the last 2m columns. Since the de-
terminant is a multilinear alternating function of the columns
we have

det(MA HA) = det(MA|h1| . . . |h2m)

= det

⎛
⎝MA

∣∣∣∣∣∣
∑

l1

Tl1,1vl1

∣∣∣∣∣∣ . . .
∣∣∣∣∣∣
∑
l2m

Tl2m,2mvl2m

⎞
⎠

=
∑

l1,...,l2m

Tl1,1 . . . Tl2m,2mdet
(
MA

∣∣vl1

∣∣ . . . ∣∣vl2m

)

=
∑

l1,...,l2m

Tl1,1 . . . Tl2m,2mεl1,...,l2m

× det(MA |v1 | . . . | v2m)

= det(T )det(MA|v1| . . . |v2m) (A3)

where εl1,...,l2m is the completely antisymmetric tensor. The
second line follows from the fact that, since MA is full rank,
V ⊥ = span({MA( j)}) [in other words, V is the space of the

vectors orthogonal to all the rows of (MA)T ]. This means that
in particular each a j is a linear combination of the rows of MA

so terms containing any of the a j give zero contribution to the
determinant. Since by hypothesis det(MA |v1 | . . . | v2m) �=
0, it follows that

det(T ) �= 0 ⇐⇒ det(MA HA) �= 0. (A4)

Since MA and HA are defined in terms of the coefficients of
SL and the determinant is a polynomial function thereof, this
is the condition we were looking for.

APPENDIX B: EXTENDING THE MATRIX D
TO A SYMPLECTIC MATRIX

We outline here an algorithm that can be used to extend the
matrix D in Eq. (13) for an access party A to a symplectic
operation SA

D corresponding to a physical unitary Gaussian
operation that the access party can implement to output a
subsystem in the secret state (apart from terms vanishing for
high enough squeezing). It is instructive to begin detailing the
case of a single-mode secret state, m = 1. The general case is
treated in Appendix B 2.

Given a subspace V ⊆ R2n, we will call symplectic com-
plement the linear space:

VJ ≡ {w ∈ R2n : 〈v,w〉 = 0 ∀ v ∈ V}. (B1)

We will reserve the notation V⊥ and the phrase orthogonal
complement to indicate the orthogonal complement with re-
spect to the Euclidean product:

V⊥ ≡ {w ∈ R2n : v · w = 0 ∀ v ∈ V}. (B2)

1. Single-mode secret state

Let us start from the rows of the matrix D defined in
Eq. (13). For m = 1, D only has two rows, which we denote
by x and y. By construction we have

x · ξA = qout = qs +
∑

j

B1 j psqz
j ,

y · ξA = pout = ps +
∑

j

B2 j psqz
j ,

(B3)

where the matrix B is also defined in Eq. (13). Our goal is to
find 2k − 2 vectors to add as rows of the matrix D such that
the resulting matrix is symplectic. To do so, first define

x1 = x
‖x‖ (B4)

and y1 = −J (k)x1. The vectors x1 and y1 are both normalized
and their symplectic product is 〈x1, y1〉 = 1, since (J (k) )

2 =
−I2k . Using Eq. (6) we see that the operators q1 = x1 ·
ξA and p1 = y1 · ξA have the correct canonical commutator
[q1, p1] = i.

Consider now V1 ≡ span{x1, y1} ⊆ R2k and a normalized
vector x2 ∈ V⊥

1 , that is,

x2 · x1 = x2 · y1 = 0, ‖x2‖ = 1. (B5)

Since (J (k) )
2 = −I2k , these conditions imply that x2 has null

symplectic product with both x1 and y1. Moreover, the vector
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y2 ≡ −J (k)x2 is also normalized, orthogonal to x1, x2, and
y1, has null symplectic product with x1 and y1 and satisfies
〈x2, y2〉 = 1. This is a consequence of V⊥

1 = VJ
1 and the fact

that each multiplication by J transforms Euclidean scalar
products into symplectic ones and vice versa, up to a sign.
The argument can be repeated for V2 ≡ span{x1, x2, y1, y2} ⊆
R2k and a normalized x3 ∈ V⊥

2 and so on, until V⊥
k = {0}.

The matrix O1 = (x1, . . . , xk, y1, . . . , yk)T is orthogonal and
symplectic by construction, and corresponds to a linear optics
transformation leaving the position of the first mode in the
secret position, up to a rescaling. The correct scaling can be
obtained applying a single-mode squeezer to the first mode,
with symplectic matrix K1 = ‖x‖ ⊕ Ik−1 ⊕ 1

‖x‖ ⊕ Ik−1.
We now have to ensure that the first mode’s momentum is

mapped to the secret momentum. Since the rows of K1O1 are
a basis of R2k , we can write

y = α1x +
k∑

j=2

α jx j + β1

‖x‖y1 +
k∑

j=2

β jy j . (B6)

It is easy to check that 〈x, y〉 = 1 implies β1 = 1, so

y′
1 ≡ y1

‖x‖ = y − α1x −
k∑

j=2

α jx j −
k∑

j=2

β jy j . (B7)

Our goal is achieved if we find a symplectic transformation
that maps y′

1 �→ y leaving x unchanged. This is realized in
three steps. First, a shear [39] can be applied on the first
mode to remove the x term. The transformation corresponds
to the Gaussian unitary exp(iα1q′2

1 ), where q′
1 is the position

operator of the first mode after K1O1 has been applied. The
corresponding symplectic matrix is

KS =

⎛
⎜⎜⎜⎜⎝

Ik 0k

α1 0 . . . 0
0 0 . . . 0

... Ik

0 0 . . . 0

⎞
⎟⎟⎟⎟⎠. (B8)

Next, rewrite

k∑
j=2

α jx j +
k∑

j=2

β jy j =
k∑

j=2

η j (cos θ jx j − sin θ jy j ) (B9)

and apply modewise rotations (phase shifts) that map

x j �→ x′
j = cos θ jx j − sin θ jy j,

y j �→ y′
j = sin θ jx j + cos θ jy j,

(B10)

which is a passive transformation corresponding to the sym-
plectic matrix

O2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 . . .

0 0
X2 −Y2...

...
0 0 . . . 1 0 . . .

0 0
Y2 X2...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B11)

with X2 = diag(cos θ2, . . . , cos θk ), Y2 =
diag(sin θ2, . . . , sin θk ). Finally, apply k − 1 controlled-Z
operations [39] between the first and each of the other
modes, of the form exp (iη jq′

1 ⊗ q′
j ) with q′

j = x′
j · ξA,

q′
1 = x · ξA = qout. Each of these two-mode operations acts as

e−iη j q′
1⊗q′

j

⎛
⎜⎜⎜⎜⎝

q′
1

q′
j

p′

p′
j

⎞
⎟⎟⎟⎟⎠eiη j q′

1⊗q′
j =

⎛
⎜⎜⎜⎜⎝

q′
1

q′
j

p′ + η jq′
j

p′
j + η jq′

1

⎞
⎟⎟⎟⎟⎠, (B12)

where p′ = y′ · ξA. Since [q′
j, q′

l ] = 0 the CZ operations can be
performed in any order, and the resulting symplectic matrix is

K2 =

⎛
⎜⎜⎝

Ik 0k

0 η2 η3 . . .

η2 0 0 . . . Ik
...

. . .

⎞
⎟⎟⎠. (B13)

Reconstruction of the secret state at mode 1 is then achieved
by the sequence of transformations corresponding to

SA
D = K2O2KSK1O1. (B14)

This procedure is not efficient in terms of squeezers, as each
controlled Z requires squeezing, and the overall number of
independent squeezers required for the above procedure is
only upper bounded by the number of modes: it never exceeds
k, since we could apply the Bloch-Messiah reduction (also
known as Euler decomposition) [36,63] to SA

D.
We can, however, reduce the number of squeezers by the

following strategy. Instead of K2, after O2 one could apply a
passive transformation that maps

x′
2 �→ x′′

2 ∝
k∑

j=2

η j (cos θ jx j − sin θ jy j ) =
k∑

j=2

η jx′
j . (B15)

This is always possible, as it amounts to finding a ba-
sis of Rk−1 the first element of which is proportional to
(η2, . . . , ηk )T . Since the x′

j are orthonormal, the propor-

tionality constant is η̃ = (
∑k

j=2 η2
j )

− 1
2 . A symplectic or-

thogonal transformation for the (2k − 2)-dimensional space
span(x′

2, . . . , x′
k, y′

2, . . . , y′
k ) is obtained imposing that the

vectors y′
j undergo the same orthogonal transformation. This

results in a passive transformation O3 that only acts nontriv-
ially on the last k − 1 modes and can be grouped with O2.
Defining Õ2 = O3O2 we note that Õ2K1 = K1Õ2 since the two
transformations act on different sets of modes. Reconstruction
is then achieved acting a single controlled Z between the first
two modes:

K̃2 =

⎛
⎜⎜⎜⎝

Ik 0k

0 η̃−1 0 . . .

η̃−1 0 0 . . . Ik
...

. . .

⎞
⎟⎟⎟⎠. (B16)

The whole decoding corresponds then to the symplectic ma-
trix

S̃A
D = K̃2Õ2KSK1O1. (B17)
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Note that Õ2 can be commuted through KSK1 and incorpo-
rated in O1 to form a global passive transformation. All the
squeezing required for the decoding is contained in K̃2KSK1

which acts trivially on all but the first two modes, and hence
Bloch-Messiah factorization can be applied to factor it as a
passive transformation, followed by two independent single-
mode squeezers, followed by another passive transformation.
In the end, this would lead to a decomposition

S̃A
D = V2�V1 (B18)

where V1 is a passive transformation on all k modes, �

consists of independent squeezers on the first two modes, and
V2 is a passive transformation on the first two modes.

Finally, we note that the number of squeezers can be further
reduced to one by replacing the controlled Z with a homodyne
measurement on the second mode followed by a displacement
on the first mode depending on the measurement outcome.
Indeed, after KSO2K1O1 has been applied, the position quadra-
ture of the first mode is already x · ξA, whereas the momentum
operator is y · ξA − η̃−1q′′

2 where q′′
2 = x′′

2 · ξA is the position
quadrature of the second mode. If the latter is measured, e.g.,
by homodyne detection, the operator q′′

2 is effectively replaced
by a real number γ and the transformation y · ξA − η̃−1γ �→
y · ξA can be achieved by a displacement on the first mode.

2. Multimode secret state

In the case of a m-mode secret state, the matrix D has 2m
rows and 2k columns, with k the number of players in the
access party A. Recall that

DJ (k)DT = J (m), (B19)

DξA = ξs + Bpsqz. (B20)

The goal is again to extend the matrix D, adding 2k − 2m
rows, in such a way that the resulting matrix is symplectic
and maps the quadratures of the first m modes of A to
the secret quadratures, apart from distortions due to finitely
squeezed quadratures. In general the resulting matrix will
involve squeezing. We aim at minimizing the number of
squeezers. To this end, let us consider a matrix D̃, obtained
by a partial extension of D; that is, D̃ is obtained adding
2l � 2k − 2m to D in such a way that

D̃J (k)D̃T = J (m+l ). (B21)

If we manage to write D̃ = SV for some symplectic ma-
trix S ∈ Sp(2m + 2l,R) and V such that VV T = I2m+2l ,
V J (k+l )V T = J (m+l ) then decoding can be completed without
adding more squeezers to those contained in S, the number
of which is necessarily smaller than or equal to m + l (as
can be seen applying Bloch-Messiah factorization to S). In
fact, VV T = I2m+2l means the rows of V are orthonormal,
and since D̃J (k)D̃T = J (m+l ) the orthogonal and symplectic
complements of V ≡ span({D̃( j)}), where {D̃( j)} denotes the
rows of D̃, coincide: VJ = V⊥. We can thus find an orthonor-
mal basis of VJ the elements of which are also orthogonal to
each vector in V by the same procedure used in the previous
subsection to construct an orthonormal basis of V1.

Let us now show that for a general D at most 2m rows
have to be added. Indeed � = DDT and �′ = D̃D̃T are both

symmetric positive-definite matrices. Apart from a possi-
ble rescaling, they are covariance matrices corresponding to
physical states. Requiring that D̃ = SV and simultaneously
VV T = I2m+2l implies

�′ = SVV T ST = SST , (B22)

which means �′ is proportional to the covariance matrix of a
pure state. It follows that �′ is (proportional to) a covariance
matrix that purifies �. It is known that m ancillas are sufficient
to purify a Gaussian state of m modes [23], so l � m. Since
we have no a priori information about the structure of �, m
ancillary modes are necessary in the worst case.

Suppose we compute S and V from the purification of
DDT . As anticipated, we can extend V to a symplectic
orthogonal matrix O with the same procedure used in the
previous subsection. We then extend S to a symplectic matrix
S̃ that acts trivially on all but the first 2m modes. We can
apply Bloch-Messiah reduction to S̃ and decompose it into a
passive transformation that can be absorbed in O, a matrix K
consisting of 2m independent squeezers on the first 2m modes,
and a final passive transformation V acting on the first 2m
modes, so in the end SA

D has the form SA
D = V KO.

APPENDIX C: EFFECT OF FINITE SQUEEZING
NOISE ON THE DECODED STATE

We first show that for general input states the Wigner
function of the reconstructed state can be represented as the
Wigner function of the input state convoluted with a Gaussian
filter function depending on the input squeezing. We then
restrict to Gaussian secrets and derive the expression reported
in Eq. (19) of the reconstruction fidelity for single-mode
coherent input (secret) states.

1. General input states

We now show that for any input state ρs, with Wigner
function Ws(ξ), not necessarily Gaussian, the Wigner function
Wout (ξ) of the state reconstructed by an access party is given
by a convolution of Ws with a Gaussian filter function. This
function is related to the input squeezing, the encoding SL, and
the decoding SA

D and becomes narrower for larger squeezing,
eventually converging to a Dirac delta. In this limit, the
convolution outputs exactly the secret Wigner function Ws,
meaning that the reconstruction is perfect.

Let us start from Eq. (13), which we recall here for conve-
nience:

ξout = Bpsqz + ξs (C1)

where ξout ≡ DξA as in the main text. If the matrix B were
the zero matrix, then the outcomes of the measurement of
any quadrature of the output state would follow the same
probability distribution as if the same measurement had been
performed on the input state. It follows that the output Wigner
function Wout (ξ) would be equal to the input Wigner func-
tion Ws(ξ). If the matrix B is not zero, the output state is
obtained by tracing out all squeezed modes. This amounts
to averaging over all possible measurement outcomes for the
squeezed quadratures psqz

j . By assumption, the input modes
are independently squeezed, so each psqz

j will contribute with
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a random shift distributed according to a Gaussian probability
density with zero mean and variance σ 2

j = e−2r j /2. Since the
map that associates a Wigner function to each density matrix
is linear, the output Wigner function is

Wout (ξ) =
∫ ⎛

⎜⎜⎝
n∏

j=1

dy j
e
− y2

j

2σ2
j

σ j

√
2π

⎞
⎟⎟⎠Win(ξ − By)

= 1

det �(2π )
n
2

∫
dny exp

(
−1

2
yT �−2y

)
Win(ξ − By)

(C2)

with � = diag(σ1, . . . , σn). Equation (C2) is valid for arbi-
trary input states. The case of a Gaussian Win is discussed in
the following.

2. Gaussian input states

Since the protocol only involves Gaussian (squeezed) an-
cillary states, Gaussian operations (passive interferometers,
squeezers), and Gaussian measurement (homodyne), the pro-
cedure of encoding and then decoding can be described as a
Gaussian channel. If the input states are also Gaussian, they
are fully specified by the quadratures’ mean values ξ0 and
covariance matrix �:

(ξ0) j = 〈ξ j〉, � jl = 〈{ξ j, ξl}〉. (C3)

The action of a Gaussian channel can then be described as
[23]

ξ0 �→ T ξ0 + d,

� �→ T �T T + N , (C4)

where d ∈ R2m, T and N = N T � 0 are 2m × 2m real ma-
trices such that N + iJ (m) − iT J (m)T T � 0.

Let us focus on a single access party A. By construction, the
quadratures of the reconstructed mode are related to the secret
quadratures by Eq. (C1) [Eq. (13)]. We directly see that T =
I and d = 0. In order to characterize the channel defined by
decoding and reconstruction by A we just need to find N . This
is easily accomplished remembering that the input squeezed
and secret modes are not correlated, so that〈

psqz
j psqz

l

〉 = 〈
ξ s

a psqz
l

〉 = 0 (C5)

for any l, a and j �= l , whence

1

2

〈{
ξ out

a , ξ out
b

}〉 = 1

2

∑
l

Bal Bbl�
2 psqz

l + 1

2

〈{
ξ s

a, ξ
s
b

}〉
. (C6)

Denoting �2 = Diag(�2 psqz
1 , . . . , �2 psqz

n ) and comparing
with Eq. (C4) we arrive at

N = B�2BT . (C7)

For the rest of this section, we restrict for simplicity to the
case where all the modes are squeezed by the same parameter
r, so that

N = N (r) = e−2r

2
BBT . (C8)

Suppose furthermore that the secret is a single-mode coherent
state ρs = |α〉〈α|, the covariance matrix of which is propor-
tional to the 2 × 2 identity matrix � = I2/2. To compute the
fidelity F (α, r) as a function of the squeezing parameter for
an arbitrary input coherent state |α〉 we use the fact that for a
pure input state the fidelity reduces to a trace, which is just an
overlap integral, in our case between two Gaussian functions,
in the Wigner function formalism [37]:

F (α, r) = 〈α|ρout (r)|α〉

= 2π

∫
dq d p Wα (q, p)W (r)

out (q, p). (C9)

The Wigner functions of the two states are given by

Wα (ξ) = 1

π
exp{−(ξ − ξ0)T (ξ − ξ0)}, (C10)

W (r)
out (ξ) = det[I + 2N (r)]−

1
2

π
exp{−(ξ − ξ0)T

× [I + 2N (r)]−1(ξ − ξ0)} (C11)

so that F (α, r) reduces to the Gaussian integral

F (α, r) = 2

π
det[I + 2N (r)]−

1
2

×
∫

d2ξexp(−ξT {I + [I + 2N (r)]−1}ξ) (C12)

where we used the fact that the integral does not change
with the change of variable ξ → ξ + ξ0. Standard integration
techniques lead to

F (α, r) = 2

π
2π{det[I + 2N (r)]}− 1

2

× [det(2{I + [I + 2N (r)]−1})]−
1
2

= 4{det[I + 2N (r)]}− 1
2

× 1

2
(det{I + [I + 2N (r)]−1})−

1
2

= 2det{I + 2N (r) + I}− 1
2

= 1√
det[I + N (r)]

(C13)

where we used the fact that for a real number x and an l × l
matrix M one has det(xM ) = xldet(M ) and Binet’s formula to
go from the second to the third line.

Now, by construction N (r) = N (r)T � 0 and N (r) → 0
for r → ∞, so F (α, r) → 1 for r → ∞. Moreover, we can
derive the simple expression of Eq. (19) by noting that there
always exists an orthogonal matrix O such that OBBT OT =
diag(μ, ν) and since the determinant and the trace are in-
variant under orthogonal transformations we have, after some
algebra,

det[I + N (r)] = 1 + e−2r

2
(μ + ν) + e−4r

4
μν

= 1 + e−2r

2
Tr(BBT ) + e−4r

4
det(BBT ),

(C14)

which plugged into Eq. (C13) leads to the desired expression.
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APPENDIX D: PROOF THAT THE HAAR MEASURE
OF B IS ZERO

We outline here a proof of the fact that the set B of
matrices that cannot be used for secret sharing has zero Haar
measure. We first note that integration with respect to the Haar
measure of a function defined on U (n) can be written as an
ordinary integral over some real variables. We then recall a
parametrization of U (n) providing a realization of said vari-
ables. Finally, we conclude the proof linking the decodability
conditions to the zero set of real analytic functions.

1. Haar measure in terms of real variables

Although the treatment could apply to more general sit-
uations, let us consider directly the case of U (n). Since the
unitary group is a real Lie group of dimension n2, we can find
an atlas, that is, a family of pairs {(Vj, γ j )} such that the open
sets Vj ⊆ U (n) cover U (n) and each map γ j : Vj → Rn2

is a
homeomorphism. For any function f defined on U (n) we can
define a function g on E = ⋃

j γ j (Vj ) ⊆ Rn2
as

g(λ) = f [γ −1
j (λ)] (D1)

for all λ ∈ E ∩ γ j (Vj ). Using the theorem of change of vari-
able, we can then find real valued functions � j (λ) such that
we can write any integral with respect to the Haar measure,
which we denote by dμH , as an integral over a region
of Rn2

:∫
Vj

f (α)dμH (α) =
∫

γ j (Vj )
f
[
γ −1

j (λ)
]
� j (λ)dn2

λ. (D2)

The integral over the whole unitary group can be defined
appropriately gluing together the charts {(Vj, γ j )} [42].

2. Parametrization of U (n)

Instead of an atlas, we consider here a single chart which
covers almost all of U (n) (we will not prove this). This is
sufficient for our goals.

In particular, we will consider the parametrization in terms
of Euler angles that was used in [64] to numerically generate
Haar distributed unitary matrices. It relies on the fact that any
unitary matrix α ∈ U (n) can be obtained as the composition
of rotations in two-dimensional subspaces. Each elementary
rotation is represented by a n × n matrix E ( j,k) the entries of
which are all zero except for

E ( j,k)
ll = 1 for l = 1, 2, . . . , n − 1 l �= j, k,

E ( j,k)
j j = cos(φ jk )eiψ jk ,

E ( j,k)
jk = sin(φ jk )eiχ jk ,

E ( j,k)
k j = − sin(φ jk )e−iχ jk ,

E ( j,k)
kk = cos(φ jk )e−iψ jk . (D3)

From these elementary rotations one can construct the n − 1
composite rotations

E1 = E (1,2)(φ12, ψ12, χ1),

E2 = E (2,3)(φ23, ψ23, 0)E (1,3)(φ13, ψ13, χ2),

E3 = E (3,4)(φ34, ψ34, 0)E (2,4)(φ24, ψ24, 0)

×E (1,4)(φ14, ψ14, χ3)
...

En−1 = E (n−1,n)(φn−1,n, ψn−1,n, 0)

× E (n−2,n)(φn−2,n, ψn−2,n, 0) . . .

× E (1,n)(φ1n, ψ1n, χn−1) (D4)

and finally any matrix α ∈ U (n) can be written as

α = eiηE1E2 . . . En−1. (D5)

This can be seen as a function defined in the region E ⊂ Rn2

that takes n2 angles

0 � φ jk <
π

2
for 1 � j < k � n,

0 � ψ jk < 2π for 1 � j < k � n,

0 � χl < 2π for 1 � l < n,

0 � η < 2π (D6)

and outputs a n × n unitary matrix. In summary we defined a
map γ −1 : E → V ⊂ U (n) which is one-to-one and the image
of which is the whole U (n), except for a set of zero Haar
measure. In practice, given any λ ∈ E we can construct the
matrix α = γ −1(λ). So for any function f : U (n) → R we
can define g : Rn2 → R such that g(λ) = f [γ −1(λ)]. If f is
measurable with respect to the Haar measure, we can write∫

U (n)
f (α)dμH (α) =

∫
V

f (α)dμH (α)

=
∫
E

f [γ −1(λ)]�(λ)dn2
λ (D7)

with

�(λ) = 1∏n
k=1 Vol(S2k−1)

⎛
⎝ ∏

1� j<k�n

sin2 j−1(φ jk )

⎞
⎠ (D8)

where Vol(S2k−1) is the hypersurface of the 2k − 1-
dimensional sphere in 2k dimensions2 and

dn2
λ =

⎛
⎝ ∏

1� j<k�n

dφ jk

⎞
⎠

⎛
⎝ ∏

1� j<k�n

dψ jk

⎞
⎠

⎛
⎝ ∏

1�l<n

dχl

⎞
⎠dη.

(D9)

The normalization included in the function � ensures that∫
V

dμH (α) =
∫
E
�(λ)dn2

λ = 1. (D10)

Now, since 0 � �(λ) � 1 ∀λ ∈ E we have∫
U (n)

f (α)dμH (α) =
∫
E

f [γ −1(λ)]�(λ)dn2
λ

�
∫
E

f [γ −1(λ)]dn2
λ. (D11)

2For example, for k = 1, Vol(S2k−1) = 2π is the length of the circle
in the plane.

022303-11



ARZANI, FERRINI, GROSSHANS, AND MARKHAM PHYSICAL REVIEW A 100, 022303 (2019)

What we want to prove is that the integral of the indicator
function IB of B,

IB(α) =
{

1 α ∈ B
0 α /∈ B , (D12)

over U (n) with respect to the Haar measure is equal to zero.
This will be achieved if we manage to prove that∫

E
IB[γ −1(λ)]dn2

x = 0, (D13)

which is equivalent to ∫
γ (B)

dn2
λ = 0, (D14)

namely, that the image of B under γ has zero measure in
E . This is proven in the next section leveraging the fact that
through γ −1 the coefficients of any unitary matrix are written
as real analytic functions of the angles.

3. Real analytic functions

Our main result then follows from the observation that B
is the union of the zero sets of real analytic functions. Real
analytic functions are defined analogously to their complex

counterpart: a function f : RN → R is analytic on an open set
D if it can be represented as the sum of a converging power
series in a neighborhood of any point x0 ∈ D [43]. As in the
complex case, a real analytic function is either identically zero
or its zero set has zero measure [43,44] (see also [45] for a
self-contained proof).

The parametrization of unitary matrices introduced in the
previous subsection gives the coefficients of any unitary ma-
trix as a product of trigonometric functions and complex
exponentials of the angles. The coefficients of any symplectic
orthogonal matrix are real or imaginary parts of a unitary
matrix, so they are trigonometric functions of the angles. As
it is well known, sine and cosine can always be written as
power series. The set of real analytic functions F is closed
under linear combinations with real coefficients and pointwise
multiplication.3 F is also closed under quotient as long as the
denominator is not equal to zero.4 The coefficients (SL ) jl (λ)
are real analytic functions defined on E . For each access
party A, det(M HA) is a polynomial in the entries of SL and
thus defines a real analytic function of the angles in E . It
follows that, for all A, γ −1(BA) has zero Lebesgue measure
on E This implies that the Haar measure of each BA is zero.
Positivity and countable additivity of the Haar measure imply
0 � μH (B) � ∑

A μH (BA), so the Haar measure of B is also
zero. This concludes the proof.

APPENDIX E: INTERFEROMETERS FOR FIG. 2

We report here the X and Y blocks of the matrices SL corresponding to the interferometers used for the plots in Fig. 2. Apart
from that used for Fig. 2(a), the matrices were obtained choosing the interferometer that would lead to the lowest value of νmax

out of 103 chosen from the Haar measure.

1. Figure 2(a)

X =
⎛
⎝−0.293099 −0.803506 −0.311073

0.128259 −0.376779 0.463209
−0.633935 −0.0662967 0.145639

⎞
⎠, Y =

⎛
⎝0.0921935 0.16507 0.368724

0.650109 −0.23828 −0.384196
−0.254222 0.352131 −0.619594

⎞
⎠. (E1)

2. Figure 2(b)

X =
⎛
⎝0.596667 0.175214 0.100266

0.108915 0.458534 −0.680759
0.426961 −0.608681 −0.134113

⎞
⎠, Y =

⎛
⎝−0.0698255 0.405573 0.658688

−0.457902 0.174213 −0.272814
−0.485058 −0.440131 0.0151496

⎞
⎠. (E2)

3. Figure 2(c)

X =

⎛
⎜⎜⎜⎝

0.300365 0.29053 −0.291467 0.497589 −0.0499837
0.0193436 −0.0889674 −0.576899 0.216171 −0.181089
0.068743 −0.627185 0.0456175 0.267772 0.488823
0.313121 −0.292716 0.202423 −0.254404 −0.472559
0.591341 0.0132897 −0.118776 −0.45464 0.0190248

⎞
⎟⎟⎟⎠,

Y =

⎛
⎜⎜⎜⎝

0.312353 −0.285854 0.469979 0.285289 −0.0937025
0.0839586 −0.117954 −0.320784 −0.442078 0.509978
0.445916 −0.00774418 −0.243163 0.0854139 −0.15446
0.382669 0.26366 0.163123 0.252382 0.425447

−0.0840343 −0.513083 −0.339929 0.121405 −0.16842

⎞
⎟⎟⎟⎠. (E3)

3If f (x), g(x) ∈ F , then h(x) = f (x)g(x) ∈ F .
4If f (x), g(x) ∈ F , then the function h is defined wherever f and g are both defined and g(x) �= 0 as h(x) = f (x)/g(x) ∈ F .
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4. Figure 2(d)

X =

⎛
⎜⎝

−0.17138 0.363352 0.220969 0.0345219
0.158628 −0.268691 0.342882 −0.0159773
0.478503 −0.474253 −0.255255 0.12308

−0.435812 −0.0371908 0.0669927 −0.343434

⎞
⎟⎠,

Y =

⎛
⎜⎝

−0.529669 −0.40525 0.435797 0.392287
0.460908 0.266619 0.628541 0.325934

−0.130468 −0.312016 −0.235265 0.544141
−0.128694 0.486635 −0.351609 0.556099

⎞
⎟⎠. (E4)
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