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Quantum enhanced estimation of diffusion
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Momentum diffusion is a possible mechanism for driving macroscopic quantum systems towards classical
behavior. Experimental tests of this hypothesis rely on a precise estimation of the strength of this diffusion. We
show that quantum-mechanical squeezing offers significant improvements, including when measuring position.
For instance, with 10 dB of mechanical squeezing, experiments would require a tenth of proposed free-fall
times. Momentum measurement is better by an additional factor of three, while another quadrature is close to
optimal. These have particular implications for the space-based MAQRO proposal—where it could rule out the
spontaneous collapse theory due to Ghirardi, Rimini, and Weber—as well as terrestrial optomechanical sensing.
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I. INTRODUCTION

Finding a unified description of microscopic and macro-
scopic systems remains an enduring quest of fundamen-
tal physics. One class of proposed solutions are collapse
models [1–4] which span continuous spontaneous localiza-
tion (CSL) [5–7], Karolyhazy [8], Diósi-Penrose [9–12], and
quantum gravity [13], as well as collisional decoherence [14].
In the nonrelativistic regime, they posit spatial decoherence
due to diffusion in momentum. The outcome is a description
of the evolution in terms of a phase-space density distribution
obeying a Fokker-Planck diffusion equation [15]. Experimen-
tal advances have now made the testing of this proposition a
realistic prospect.

Mechanical systems have been used to bound the strength
of such diffusive effects. Examples include gravitational-
wave detectors [16], the LISA pathfinder experiment [16–18],
ultracold cantilevers [19], and trapped ions [20]. Proposals
for future experiments which could probe collapse models
and further study macroscopic quantum states include the
generation of macroscopic superpositions [21–26] and the
space-based MAQRO mission [27,28] which formed a key
focus of a recent ESA feasibility study [29].

One simple experiment—which forms a part of the
MAQRO mission [27,28]—to test collapse models is to let
free particles evolve and measure the expanding width of
the wave packet. Once all classical noise sources have been
ruled out, any excess wave-packet width must be attributed
to momentum diffusion associated with collapse models.
MAQRO aims to utilize ultracold nanoparticles and exploit
the nanogravity of space to observe free fall over 100 s—
enabling more precise sensing of momentum diffusion—as
represented in Fig. 1.

Quantum techniques such as squeezing allow for more pre-
cise estimation [30,31]. Optical squeezing has been identified
as valuable to fundamental physics, with squeezing-enhanced
interferometry [32] set to enhance laser-interferometric

gravitational-wave detectors [33–35] and 15 dB squeezing
of optical vacuum reported [36]. It has also found applica-
tion in photonic-force microscopy [37,38], while microwave
squeezing is being used in the search for axion dark matter
[39]. Quantum squeezing of mechanical degrees of freedom
is beginning to be explored in thermal states [40,41].

In this article, we show that quantum squeezing of the me-
chanical degree of freedom enables a more precise estimation
of the strength of momentum diffusion. This enhancement is
attainable with the currently proposed scheme of measuring
the position of a particle. We conclude that squeezing can
be used to achieve the same precision with reduced free-
fall time or center-of-mass cooling. This reduction could
be 10-fold for a squeezing of 10 dB. Thus, squeezing can
compensate for reduced free-fall times, identified as one of
the challenges for MAQRO [27,28] in a recent ESA CDF
study [29]. We further show that a momentum measurement
is thrice as precise as that of position, while measurement
of a more general quadrature is close to optimal. We briefly
discuss the potential of the heterodyne and phonon counting
measurements.

While our results will be presented in the context of
collapse models, observing similar momentum diffusion
processes could aid detection of certain dark-matter candi-
dates [42–44]. Since excess heating of wave packets is also
a consequence of momentum diffusion [20,45,46], our results
imply a quantum enhanced estimation of heating. Finally, the
ubiquitous phenomena of Brownian motion is also caused
by diffusion. Our results can thus be applied in this very
general scenario, as well as in particle tracking used to study
biological systems [47,48].

Before presenting our results, we note some recent works
that have theoretically considered continuously monitoring
a thermal state [49] or squeezing a specific optomechanical
coupling [50], with the latter providing no attainable ad-
vantage from squeezing when measuring the optical subsys-
tem. Previous works in quantum metrology have analyzed
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FIG. 1. A pictorial representation of the measurement of wave-
packet expansion which forms part of the MAQRO propos-
als [27,28]. (a) A particle is initially trapped, (b) then released, (c) the
free particle wave function expands, more rapidly with a localization
term, and (d) the localization rate can be inferred through position
measurements. Expansion as depicted in two spatial detections is
for illustrative purposes; we analyze only one independent spatial
dimension.

quantum-limited estimation of related noise parameters, in-
cluding loss [51,52], diffusion in phase shifts [53,54] and
displacements [55], and classical stochastic processes [56].

II. BACKGROUND

A particle of mass m in a harmonic potential has Hamil-
tonian Ĥ = P̂2/2m + mω2X̂ 2/2. Dimensionless position and
momentum operators are x̂ = √

mωX̂ /
√

h̄ and p̂ = P̂/
√

h̄mω

whose commutators are given by the matrix i� where

� = −i

(
[x̂, x̂] [x̂, p̂]
[p̂, x̂] [ p̂, p̂]

)
=

(
0 1

−1 0

)
. (1)

Quantum states of such a particle have a phase-space
representation in terms of the Wigner function of an operator
defined as [57, Chap. 1]

Wρ (x, p) = 2

π
Tr

[
ρD̂

(
x + ip√

2

)
�̂D̂†

(
x + ip√

2

)]
, (2)

where D̂(α) = eαâ†−α∗â and �̂ = eiπ â†â. Gaussian states are
those whose Wigner function is Gaussian and so determined
by the averages (displacement vector �d) and covariances (co-
variance matrix σ ) of the position and momentum operators.
Examples include thermal, coherent, and squeezed states. A
thermal state has covariance matrix σ = κth1, with σ = 1
corresponding to the ground state.

We focus on the simplest setup to study momentum diffu-
sion, that of a free particle as in Fig. 1. Initially the particle is
trapped in a harmonic potential with frequency ω and cooled.
Cooling of nanoparticles has been reported to the order of 100
phonons [58,59] with theory anticipating cooling much closer
to the ground state [60,61]. After cooling the trapping poten-
tial is turned off. The particle then evolves freely under the
Hamiltonian Ĥ = P̂2/2m with Lindblad term 
[X̂ , [X̂ , ρ]],
whose strength 
 is our parameter of interest. The master
equation for momentum diffusion for this system—in terms
of the dimensionless position and momentum operators—is

∂ρ

∂τ
= − i

2
[ p̂2, ρ] − 1

4
λ[x̂, [x̂, ρ]], (3)

where τ = ωt and λ = 
/
0 are dimensionless parameters,
and 
0 = mω2/(4h̄). Being quadratic the master equation
Eq. (3) evolves Gaussian states to Gaussian states [62–64].

TABLE I. Parameter values based on Kaltenbaek et al. [28],
primarily Table 1 therein.

Localization rate 
 1010–1020 m−2 s−1

Free-fall time t 100 s
Mechanical frequency ω 105 rad s−1

Mass m 108–1010 u
Thermal occupation number nth 0.3
Thermal variance (κth = 2nth + 1) 1.6
Limiting localizationa

(

0 = mω2

4h̄

)
1.6 × 1026 m−2 s−1

Experiment timescale (τ = ωt) 6.3 × 107

aUsing m = 108 u.

Equation (3) can then be transformed to a Fokker-Planck
equation [63,65], in this case yielding

∂

∂τ
W (x, p, τ ) =

[
−p

∂

∂x
+ 1

4
λ

∂2

∂ p2

]
W (x, p, τ ), (4)

which for Gaussian W can be mapped to an equation of
motion of form [62,64]

∂ �μ
∂τ

= A�μ,
∂σ

∂τ
= Aσ + σAT + D, (5)

where �μ and σ are the Gaussian’s moments. For an initial
Gaussian state with moments �d and σ the evolved moments
under Eq. (4) become

�d (τ ) =
(

1 τ

0 1

)
�d, (6)

σ (τ ) =
(

1 τ

0 1

)
σ

(
1 0
τ 1

)
+ λ

(
τ 3/3 τ 2/2
τ 2/2 τ

)
. (7)

To estimate the strength of the momentum diffusion 
, we
begin with a single-mode Gaussian state. Such a state can be
described as a thermal state κth1 with a squeezing r � 0 of
the quadrature x̂ sin φ + p̂ cos φ giving an initial covariance
matrix

σ = κth

(
cosh 2r+ sinh 2r cos 2φ sinh 2r sin 2φ

sinh 2r sin 2φ cosh 2r− sinh 2r cos 2φ

)
,

(8)

with arbitrary displacements. The displacements do not begin
with any parameter dependence and do not gain any through
the evolution given by Eq. (6), and so their derivative with
respect to the parameter satisfies ∂
 �d = 0. We will consider
tuning φ to maximize the precision for given thermal variance
and squeezing magnitudes, with φ = 0 and φ = π/2 corre-
sponding to momentum and position squeezing, respectively.

Our results apply to estimation of diffusion in any scenario
governed by Eq. (3) for all values of λ and τ . We will highlight
special cases for λ � 1 and τ � 1, which is the regime for
MAQRO [27,28] as in Table I, and κth ∼ 1 which is around
the MAQRO regime.

An estimator is required to estimate an unknown parameter
from observed data. If limited to statistical noise the precision
of the value produced by the estimator can be taken from
the variance of that estimator. The Cramér-Rao bound (CRB)
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lower bounds the variance of an unbiased estimator as [66–69]

(�
̃)2 � 1

νF (
)
� 1

νH (
)
, (9)

where ν is the number of repetitions of an experiment, 
̃

is an estimator of the parameter 
, and F (
) and H (
)
are, respectively, the classical Fisher information (CFI) and
quantum Fisher information (QFI). The CFI is a function of
the probability distribution [66]

F (
) =
∫

d�x 1

P(��x|ρ
)

[
∂P(��x|ρ
)

∂


]2

, (10)

where the probabilities P(��x|ρ
) are derived from applying
the positive-operator valued measure � to the state ρ
. The
QFI is a function of the state alone [30,31,69]

H (
) = Tr
[
ρ
L2




]
, (11)

where L
 is the symmetric logarithmic derivative (SLD)
defined by L
ρ
 + ρ
L
 = 2∂
ρ.

These CFI and QFI provide the CRB and quantum CRB
(QCRB), the first and second inequalities of Eq. (9), respec-
tively. The equalities in Eq. (9) are obtained by an optimal
measurement, where it exists, and an efficient estimator; we
identify such a measurement and the maximum likelihood
estimator is asymptotically efficient [66].

For a Gaussian state (where ∂
 �d = 0) the QFI can be
evaluated explicitly as [70,71]

H (
) = 1
2 (∂
σ |(σ ⊗ σ − � ⊗ �)−1|∂
σ ), (12)

where the inner product is (A|B) = Tr[AT B].

III. RESULTS

Using Eqs. (7) and (8), the QCRB can be calculated
through Eq. (12) to be

(�
̃)2 � 
2
0

[(
κ2

th + τκthλZ + τ 4

12λ2
)2 − 1

]
τ 4

12

(
1 − κ2

th + τκthλZ + τ 4

12λ2
) + τ 2

2 κ2
thZ2

, (13)

where Z = (1 + τ 2/3) cosh 2r + [(1 − τ 2/3) cos 2φ +
τ sin 2φ] sinh 2r. The bound in Eq. (13) behaves as (�
̃)2 �

2 to leading order in 
.

The QCRB in Eq. (13) is minimized by squeezing or
antisqueezing (squeezing the orthogonal quadrature) with
squeezing angle (see Appendix A)

φ = arctan

(
−3 + τ 2 − √

9 + 3τ 2 + τ 4

3τ

)
, (14)

which tends to 0 for τ � 1, corresponding to squeez-
ing of position or momentum. When squeezing at this

angle in the regime of τ � 1, with κth = 1, the QCRB
simplifies to

(�
̃)2 � 
2
0

8λ
(
e−2r + τ

4 λ
)(

1 + τ 3

6 e−2rλ + τ 4

24λ2
)

2τ 3

3 e−4r + τ 4

3 e−2rλ + τ 5

12λ2
,

with the squeezing r not necessarily positive as antisqueezing
may be preferable (see Appendix A).

Measurement of the particle’s position is a special case of
homodyne detection, which involves measuring a linear com-
bination of the position and momentum quadratures [64,72].
Heterodyne allows for the simultaneous measurement of posi-
tion and momentum, but with added noise [73,74]. The QCRB
can be reached through projection onto eigenstates of the
SLD [75], which, for a Gaussian system, entails performing
some squeezing and displacement followed by measurement
of Fock states [51,64,70]. This additional squeezing is a
resource applied to the system after the evolution as part of the
measurement and does not improve the precision as an initial
squeezing can. Further, in a mechanical system this involves
measuring the number of phonons, which remains experimen-
tally demanding [76,77]. In the following, we calculate the
performance of all these measurements for estimating 
.

Homodyne detection at an angle θ measures the quadrature
q̂θ = x̂ cos θ + p̂ sin θ . When performed on a Gaussian state
the homodyne statistics are Gaussian [72], and the moments
are the appropriate marginal of the Wigner function. For a
homodyne angle θ the variance of the marginal is

� = κth

(
[(1 + τ 2) cos2 θ + τ sin 2θ + sin2 θ ] cosh 2r

+{[(1 − τ 2) cos2 θ − τ sin 2θ − sin2 θ ] cos 2φ

+ [2τ cos2 θ + sin 2θ ] sin 2φ} sinh 2r

+ λ

(
τ 3

3
cos2 θ + τ 2

2
sin 2θ + τ sin2 θ

))
, (15)

and as the Wigner function’s mean is parameter-independent,
so is the marginal’s. The choices θ = 0 and θ = π/2 corre-
spond to measurement of position and momentum, respec-
tively. We will consider the optimization of θ , which more
generally requires measuring a linear combination of the
position and momentum operators.

For a Gaussian probability distribution with a parameter-
independent mean, the CFI is [66, Chap. 3]

F (
) = 1
2 Tr

[
�−1∂
��−1∂
�

]
, (16)

where � is the variance of the Gaussian distribution. Using
Eqs. (15) and (16), the CRB for homodyne along an angle θ

is

(�
̃)2 � 2
2
0

[
λ + κth

(
τ 2 cos2 θ + τ sin 2θ + 1

τ 3

3 cos2 θ + τ 2

2 sin 2θ + τ sin2 θ
cosh 2r

− (τ 2 cos2 θ + τ sin 2θ − cos 2θ ) cos 2φ − (
2τ cos2 θ + sin 2θ

)
sin 2φ

τ 3

3 cos2 θ + τ 2

2 sin 2θ + τ sin2 θ
sinh 2r

)]2

. (17)
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To leading order in 
 this is (�
̃)2 � 2
2, which occurs when the first term in the square dominates, whereas when that can be
neglected the bound is a 
-independent constant. The bound on estimating the diffusion 
 from position (θ = 0) measurement
is

(�
̃)2 � 2
2
0

[
λ + κth

(
[1 + τ 2] cosh 2r + {[1 − τ 2] cos 2φ + 2τ sin 2φ} sinh 2r

τ 3/3

)]2

, (18)

which behaves as

(�
̃)2 � 2
2
0

[
λ + κth

cosh 2r − sinh 2r cos 2φ

τ/3

]2

, (19)

for τ � 1. Instead, for measuring the momentum (θ = π/2)
the bound on estimating the diffusion 
 is

(�
̃)2 � 2
2
0

[
λ + κth

cosh 2r − sinh 2r cos 2φ

τ

]2

, (20)

which (neglecting squeezing) matches the large τ limit of
position measurements when λ � κth/τ and is a factor of 9
better when λ � κth/τ .

The optimal input squeezing angle φ can in general be
found by minimizing the coefficient of sinh 2r in Eq. (17),
which gives

φ = − arctan

(
1

τ + tan θ

)
. (21)

For momentum measurements (θ = π/2) this squeezing an-
gle is φ = 0 (squeezing of momentum), whereas for position
measurements (θ = 0) this is φ = − arctan(1/τ ) tending to
φ = −π/2 for τ � 1, and φ = 0 for τ � 1.

In general the squeezing angle in Eq. (21) produces a
precision

(�
̃)2 � 2
2
0[λ + κthe−2rχ (τ, θ )]2, (22)

from which the unsqueezed case (r = 0) can also be extracted,
where

χ (τ, θ ) = τ 2 cos2 θ + τ sin 2θ + 1
τ 3

3 cos2 θ + τ 2

2 sin 2θ + τ sin2 θ
. (23)

One effect of squeezing is equivalent to an effective reduction
of κth by e−2r . Unlike reducing the center-of-mass motion—
which reaches κth = 1 at absolute zero—this squeezing allows
an unlimited reduction in the second term. For τ � 1 (as χ ∼
1/τ ) the same squeezing could instead be considered as an
effective increase in τ by a factor of e2r to obtain the same
precision from a much shorter free-fall time.

When the quadrature given by Eq. (21) is squeezed, the
homodyne angle which minimizes the bound in Eq. (22) is

θ = − arctan

(
3 + 2τ 2 + √

9 + 3τ 2 + τ 4

3τ

)
, (24)

which tends to θ ≈ −π/2 + 1/τ for τ � 1. Measuring the
quadrature given by Eq. (24) with squeezing as Eq. (21) gives
a precision

(�
̃)2 � 2
2
0

[
λ + κthe−2r 3 + τ 2 − √

9 + 3τ 2 + τ 4

τ 3/2

]2

.

(25)

Performing homodyne on the quadrature of Eq. (24) does
not in general attain the QCRB. When λ dominates, the QCRB
behaves as 
2 while any homodyne terms tend to 2
2. In
the τ � 1 regime, one could improve on the precision by
no more than a factor of 2 using heterodyne detection (see
Appendix B). Figure 6 suggests that heterodyne otherwise
shows little promise.

Phonon counting—in combination with displacement and
squeezing operations—can in principle attain the QCRB for
all λ and τ as the SLD is a quadratic operator in the quadrature
operators [64,70] and so has eigenstates which are squeezed-
displaced Fock states. The additional squeezing required to
attain the QCRB is derived in full generality in Appendix C.
For MAQRO, this squeezing seems nugatory, with 79 dB
required to attain the QCRB for 
 = 1020 m−2 s−1, which
would improve precision only by a factor of

√
2, to 158 dB

for 
 = 1010 m−2 s−1, where the improvement on position
measurements would be more pronounced. In other scenarios,
however, this could be worthwhile. For τ � 1 and λτ 2 � 1
the squeezing needed is only e2z ≈ 1 + τ ≈ 1, while for τ �
1 and λτ � 1 this goes to e2z ≈ 2τ/

√
3.

IV. DISCUSSION

Figure 2 shows the potential improvement in precision
for estimating diffusion via momentum or general quadrature
measurements, or through squeezing, for MAQRO parameters
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FIG. 2. Precision of estimating momentum diffusion from wave-
packet expansion for MAQRO parameters (Table I). Dashed lines de-
note a squeezing of 10 dB. The optimal homodyne and fundamental
limit lines overlap until around 
 ∼ 1020 m−2 s−1. Three years’ data
collection with t = 100 s yields ν ∼ 106 repetitions.
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as given in Table I. For reference, position measurement is the
present proposal. We propose squeezing of the momentum
quadrature, which offers a substantial improvement across
much of the pertinent 
 range for both measurement of
position and momentum, with 10 dB enabling an order of
magnitude higher resolution of 
. Measuring the quadrature
described by Eq. (24) allows further improvement, keeping
within a factor of two of the QCRB across the whole regime.

Our bounds can be mapped to the wealth of diffusive pro-
cesses whose parameters enter into the observed diffusion rate

. In the case of (mass-proportional) CSL the two parameters
of interest are λCSL and rC, the time and length scales in the
model. The observed diffusion rate 
 for a free sphere of
mass m and radius rs is—as a function of λCSL and rC—given
by [28,45]


 = λCSL

4r2
C

(
m

m0

)2

f

(
rs

rC

)
, (26)

where m0 is a reference (nucleon) mass and f (x) =
6
x4 [1 − 2

x2 + (1 + 2
x2 )e−x2

]. From this bounds on λCSL as a
function of rC can be calculated using

�λCSL = 4r2
C

[(
m

m0

)2

f

(
rs

rC

)]−1

�
. (27)

To describe the minimal discernible λCSL for measurement
of a mechanical quadrature we take the limit of the single-
shot CRB λCSL

0 = limλCSL→0 �λCSL. Allowing for ν indepen-
dent repetitions the uncertainty can be reduced to �λCSL ≈√

1
ν

(√
1
ν

+ 1
)
λCSL

0 at λCSL ≈ λCSL
0 /

√
ν. To ensure any devia-

tion can be recognized with statistical significance we take the
minimum detectable collapse rate λCSL

min to be λCSL
min ∼ 2√

ν
λCSL

0 .
Thus, for a quadrature measurement we take the minimum
resolvable λCSL to be given by λCSL

min = 2√
ν

limλCSL→0 �λCSL in
Eq. (17).

For MAQRO such bounds can be seen in Fig. 3 for the
position, momentum, and optimal quadratures. For position
or momentum measurements with up to 10 dB squeezing the
bounds are competitive across 10−8–10−5 m; below 10−8 m
x-ray emission data begin to provide a tighter bound [78],
while above 10−5 m LISA Pathfinder data are tighter [16,18].
Additional squeezing can of course further reduce the un-
certainty, with 20 dB of squeezing sufficient to match the
theoretical minimum collapse rate to above 10−7 m. This
would include testing the original parameters suggested by
Ghirardi et al. [15].

The optimal quadrature identified in Eq. (24) meanwhile
could yield a conclusive test of the conventional CSL model
at a precision of six orders of magnitude more than the
theoretical lower bound on CSL [7]. Attaining the QCRB can
offer further improvements; however, this would be of little
value to MAQRO if the optimal homodyne sensitivity can be
reached.

In conclusion, we have shown that squeezing could be used
to compensate for reduced free-fall times, an aspect which
a recent ESA CDF study [29] has identified as one of the
more demanding of the original proposals [27,28]. As, for
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FIG. 3. Minimum detectable collapse rate for three years of
observation with a 100 nm radius sphere of mass 5.5 × 109 u, with
other parameters as Table I. The minimum required collapse rate
given is based on the criteria of Ref. [7] to ensure macroscopic ob-
jects rapidly collapse to classical states. The magenta dot represents
the values originally proposed by Ghirardi et al. [15].

both Eq. (19) and Eq. (20), the precision is constant for e2rτ

being constant, longer effective free-fall times can be gener-
ated through mechanical squeezing. We have also shown the
efficacy of momentum and general quadrature measurements
over the proposed position measurement.
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APPENDIXES

Appendix A calculates the necessary squeezing angle to
maximize precision for the fundamental limit and quadra-
ture measurements. Appendix B calculates the CRB of het-
erodyne measurements. Appendix C derives the necessary
squeezing required to then project onto the eigenstates of
the SLD by phonon counting. Appendix D compares perfor-
mance of the fundamental limit, optimal homodyne quadra-
ture, and heterodyne measurements. Appendix E translates
the bounds on the observed diffusion rate 
 to the parameters
of CSL.
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APPENDIX A: OPTIMAL SQUEEZING

1. Fundamental limit

The QCRB is

(�
)2 � B = 
2
0

(
κ2

th + τκthλZ + τ 4

12λ2
)2 − 1

τ 4

12

(
κ2

th + τκthλZ + τ 4

12λ2
) + τ 4

12

(
1 − 2κ2

th

) + 1
2κ2

thτ
2Z2

, (A1)

where

Z =
(

1 + τ 2

3

)
cosh 2r +

[(
1 − τ 2

3

)
cos 2φ + τ sin 2φ

]
sinh 2r. (A2)

Minima with respect to the squeezing angle of the bound in Eq. (A1) are either solutions of ∂B
∂Z = 0 or ∂Z

∂φ
= 0 as

∂B

∂φ
= ∂B

∂Z

∂Z

∂φ
, (A3)

and the second derivative

∂2B

∂φ2
= ∂2B

∂Z2

(
∂Z

∂φ

)2

+ ∂B

∂Z

∂2Z

∂φ2
, (A4)

distinguishes minima and maxima. The stationary points of B(Z ) are

Z± =
144

(
1 − κ4

th

) + 24λ2τ 4
(
1 − 2κ2

th

) + λ4τ 8 ± ∣∣12
(
1 − κ2

th

) + λ2τ 4
∣∣√[

12
(
1 + κ2

th

) + λ2τ 4
]2 − 48λ2κ2

thτ
4

288λκ3
thτ

, (A5)

where the negative root is not possible with r > 0 and for the positive root ∂2B
∂Z2 < 0, and this means that the minimum of B is

found for ∂Z
∂φ

= 0. The stationary points of Z (φ) are

φ± = arctan

(
−3 + τ 2 ± √

9 + 3τ 2 + τ 4

3τ

)
, (A6)

where we have

(φ+ − φ−) mod π = π

2
(A7)

as tan(φ+) tan(φ−) = −1. Hence we recognize that squeezing the quadrature x̂φ+ is equivalent to antisqueezing of the orthogonal
quadrature x̂φ− = x̂φ++ π

2
. This follows as r > 0 and φ ∈ [0, π ], and r ∈ R and φ ∈ [0, π/2] are equivalent parametrizations of

the same squeezings; squeezing a quadrature x̂φ is equivalent to antisqueezing the quadrature x̂φ+π/2.
As B(Z+) is a maximum and Z− < 0 is outside the range of Z (φ) at least one of φ± is a minimum of B(φ). We therefore find

the global minimum of B(φ) by finding the smaller of B(φ+) and B(φ−). For Z (φ±),

Z (φ±) =
[(

1 + τ 2

3

)
cosh 2r ±

√
9 + 3τ 2 + τ 4

3
sinh 2r

]
, (A8)

where we note that exchanging φ+ → φ− is equivalent to r → −r.
For these squeezing angles (φ±) the bound [Eq. (A1)] is

(�
)2 � 
2
0

⎛⎝{
κ2

th + τκthλ

[(
1 + τ 2

3

)
cosh 2r ±

√
9 + 3τ 2 + τ 4

3
sinh 2r

]
+ τ 4

12
λ2

}2

− 1

⎞⎠
×
(

τ 4

12

{
κ2

th + τκthλ

[(
1 + τ 2

3

)
cosh 2r ±

√
9 + 3τ 2 + τ 4

3
sinh 2r

]
+ τ 4

12
λ2

}

+ τ 4

12

(
1 − 2κ2

th

) + τ 2

2
κ2

th

[(
1 + τ 2

3

)
cosh 2r ±

√
9 + 3τ 2 + τ 4

3
sinh 2r

]2
⎞⎠−1

, (A9)
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which can be written as

(a ± b)2 − 1

c ± d
, (A10)

where

a = κ2
th + κthλτ

(
1 + τ 2

3

)
cosh 2r + τ 4

12
λ2, (A11)

b = κthλτ

√
9 + 3τ 2 + τ 4

3
sinh 2r, (A12)

c = τ 4

12

[
1 − κ2

th + κthλτ

(
1 + τ 2

3

)
cosh 2r + τ 4

12
λ2

]
+ τ 2

2
κ2

th

[(
1 + τ 2

3

)2

cosh2 2r +
(

1 + τ 2

3
+ τ 4

9

)
sinh2 2r

]
, (A13)

d = κthλ
τ 5

12

√
9 + 3τ 2 + τ 4

3
sinh 2r + κ2

thτ
2

(
1 + τ 2

3

)√
9 + 3τ 2 + τ 4

3
cosh 2r sinh 2r, (A14)

where we have a, b, c, and d all positive as well as a > b + 1 and c > d . The squeezing angle φ+ therefore offers a better
precision for

c < d

(
a2 + b2 − 1

2ab

)
, (A15)

which in this case is

0 > λτ

[
−κ4

th

(
1 + 3

τ 2

4
+ τ 4

9

)
+ τ 2

12

(
1 + λ2τ 4

12

)2

+ κ2
th

τ 2

6

(
1 − λ2τ 4

12

)]

+ κth

(
1 + τ 2

3

)[
1 − κ4

th + λ2τ 4

6
(1 − 2κ2

th) +
(

λ2τ 4

12

)2
]

cosh 2r − τ 3

6
κ4

thλ cosh 4r. (A16)

2. Homodyne detection

The CRB for homodyne measurement of the quadrature x̂ cos θ + p̂ sin θ is

(�
)2 � 2
2
0

[
λ + κth

(
[1 + τ 2] cos2 θ + τ sin 2θ + sin2 θ
1
3τ 3 cos2 θ + 1

2τ 2 sin 2θ + τ sin2 θ
cosh 2r

+ {[1 − τ 2] cos2 θ − τ sin 2θ − sin2 θ} cos 2φ + {2τ cos2 θ + sin 2θ} sin 2φ
1
3τ 3 cos2 θ + 1

2τ 2 sin 2θ + τ sin2 θ
sinh 2r

)]2

. (A17)

a. Optimal squeezing

The bound is minimized with respect to the squeezing angle φ by minimizing the coefficient of sinh 2r,

[(1 − τ 2) cos2 θ − τ sin 2θ − sin2 θ ] cos 2φ + [2τ cos2 θ + sin 2θ ] sin 2φ, (A18)

which has minima

φ = − arctan

(
1

τ + tan θ

)
, (A19)

for which squeezing angle the CRB becomes

(�
)2 � 2
2
0

[
λ + e−2rκth

(
[1 + τ 2] cos2 θ + τ sin 2θ + sin2 θ
1
3τ 3 cos2 θ + 1

2τ 2 sin 2θ + τ sin2 θ

)]2

. (A20)

The optimal homodyne detection can then be recognized as the angle θ

θ = − arctan

(
3 + 2τ 2 + √

9 + 3τ 2 + τ 4

3τ

)
, (A21)

and when this homodyne angle is used the optimal squeezing angle is

ϕ = arctan

(
3τ

3 − τ 2 + √
9 + 3τ 2 + τ 4

)
. (A22)
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b. Position and momentum squeezing

Squeezing of position and momentum can be evaluated with φ = 0, with r > 0 corresponding to squeezing of momentum
while r < 0 is a squeezing |r| of position. For φ = 0 the CRB [Eq. (A17)] becomes

(�
)2 � 2
2
0

[
λ + κth

(
e2r cos2 θ + e−2r (τ 2 cos2 θ + τ sin 2θ + sin2 θ )

1
3τ 3 cos2 θ + 1

2τ 2 sin 2θ + τ sin2 θ

)]2

. (A23)

The optimal homodyne quadrature is then

θ = − arctan

(
3e4r + 2τ 2 + √

9e8r + 3e4rτ 2 + τ 4

3τ

)
, (A24)

which gives a precision

(�
)2 � 2
2
0

[
λ + κth

(
2(3e2r + e−2rτ 2 − √

9e4r + 3τ 2 + e−4rτ 4)

τ 3

)]
, (A25)

where squeezing of position (r < 0) is beneficial for τ <
√

3 while squeezing of momentum (antisqueezing of position, r > 0)
is beneficial for τ >

√
3.

APPENDIX B: HETERODYNE DETECTION

Heterodyne detection is the projection onto the overcomplete basis of Gaussian states, which amounts to sampling from the
Husimi Q function [73,74]. The Q function can be extracted from the Wigner function as [57]

Q(x, p) = 1

π

∫
dx′d p′W (x′, p′) exp[−(x − x′)2 − (p − p′)2], (B1)

which is a convolution, and so for a Gaussian Wigner function with moments �d and σ the Q function will be Gaussian with
moments �d and σ + 1 [64, Chap. 5].

The mean of the distribution again contains no parameter dependence, and so Eq. (16) can also be applied here. The
covariances from heterodyne detection are

�(τ ) =
(

1 + �xx + 2τ�xp + τ 2�pp + 1
3λτ 3 �xp + τ�pp + 1

2λτ 2

�xp + τ�pp + 1
2λτ 2 1 + �pp + λτ

)
, (B2)

giving a CRB of

(�
)2 � 12
2
0|�(τ )|2

τ 4|�(τ )| + 6τ 2
(
1 + �xx + τ�xp + τ 2

3 �pp
)2 + 2τ 4

[
1 + �xx − �pp − �xx�pp + �2

xp + τ 2

3 (1 − �pp)
] , (B3)

where |�| is the determinant, and �xx, �xp, and �pp are the initial variances and covariance of the position and momentum
operators. Without mechanical squeezing (r = 0) this is

(�
)2 � 6
2
0

[
(1 + κth)2 + κthτ

2 + λ(1 + κth)τ
(
1 + τ 2

3

) + τ 4

12λ2
]2

τ 2

3

[(
1 + κ2

th

)
(9 + 3τ 2 + τ 4) + κth(18 + 6τ 2 − τ 4)

] + τ 4

2

[
(1 + κth)2 + κthτ 2 + λ(1 + κth)τ

(
1 + τ 2

3

) + τ 4

12λ2
] .

(B4)

APPENDIX C: OPTIMAL MEASUREMENT

For a Gaussian system the SLD is a Hermitian operator, quadratic in the quadrature operators [64,70]. Any such Hermitian
operator, quadratic in the quadrature operators, can be transformed through some squeezing and displacement to an operator
diagonal in the Fock basis [64,70].

The SLD is primarily defined through identification of L(2), which is given by [64,70]

σL(2)σ + �L(2)� = ∂σ, (C1)
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which for a state with constant zero displacements �d = 0 then gives the SLD [64,70]

Lρ

= (x̂ p̂)L(2)

(
x̂
p̂

)
− 1

2
Tr[L(2)σ ]. (C2)

The covariance matrix which we wish to solve for Eq. (C1) is Eq. (7), which gives L(2) as

L(2) = 1


0(|σ (τ )|2 − 1)

(
l (2)
xx l (2)

xp

l (2)
xp l (2)

pp

)
, (C3)

where

l (2)
xx = τ + τσxp(τ )2 − τ 2σxp(τ )σpp(τ ) + τ 3σpp(τ )2, (C4)

l (2)
xp = −τσxx(τ )σxp(τ ) + τ 2

2
[σxx(τ )σpp(τ ) + σxp(τ )2 − 1] − τ 3

3
σxp(τ )σpp(τ ), (C5)

l (2)
pp = τσxx(τ )2 − τ 2σxx(τ )σxp(τ ) + τ 3

3
[1 + σxp(τ )2]. (C6)

Then L(2) has eigenvalues

α ±
√

α2 − τ 2

[
σxx(τ ) − τσxp(τ ) + τ 2

3
σpp(τ )

]2

− τ 4

12
(|σ (τ )| − 1)2, (C7)

with

α(τ ) = τ

2

{
1 + σxx(τ )2 − σxp(τ )[σxx(τ ) + σpp(τ )]τ + τ 2

3
[1 + σpp(τ )2] + σxp(τ )2

(
1 + τ 2

3

)}
. (C8)

In order for phonon-number-resolving detection to become optimal we then seek the symplectic transformation which gives
the Williamson normal form of L(2). For a single-mode system this can be recognized by first diagonalizing L(2) with a phase
shift ( cos ψ sin ψ

− sin ψ cos ψ ), followed by a squeezing diag(ez, e−z ). The phase shift diagonalizes L(2), which has eigenvalues D1 and

D2. The symplectic eigenvalue of L(2) is then
√

D1D2, and so the squeezing z required to bring L(2) into its normal form is
e2z = e

1
2 | ln D1−ln D2|.

Thus the required squeezing is

e2z =

√√√√√1 +
√

1 − 1
α2

{
τ 2

[
σxx(τ ) − τσxp(τ ) + τ 2

3 σpp(τ )
]2 + τ 4

12 [|σ (τ )| − 1]2
}

1 −
√

1 − 1
α2

{
τ 2

[
σxx(τ ) − τσxp(τ ) + τ 2

3 σpp(τ )
]2 + τ 4

12 [|σ (τ )| − 1]2
} . (C9)
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FIG. 4. Ratio of quantum Fisher information against
classical Fisher information for optimal homodyne quadrature
[F (
; θopt )/H (
)], plotted for κth = 1 and r = 0. The red rectangle
is representative of the MAQRO parameter regime.
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FIG. 5. Ratio of quantum Fisher information against classical
Fisher information for heterodyne detection [F (
)/H (
)], plotted
for κth = 1 and r = 0. The red rectangle is representative of the
MAQRO parameter regime.
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APPENDIX D: OPTIMALITY OF DETECTION
SCHEMES

Our bounds cover a range of settings with 
2
0 prefac-

toring the bounds and their ratios being a function of only
λ, τ , κth, and squeezing reiφ (with parameters such as ho-
modyne angle θ representing different measurement choices
rather than properties of the system). This allows compar-
ison of our bounds in terms of these parameters alone,
perhaps the simplest case being where we assume trapping
allows us to take κth = 1 and that no external squeezing is
applied.

1. Homodyne

For κth = 1 and r = 0 we can easily compare the QCRB
with the optimal homodyne CRB numerically across the λ

and τvariables in Fig. 4. The analytic form of the ratio
is

10−40 10−20 1 1020 1040

10−40

10−20

1

1020

1040

τ

λ

0

0.5

1

1.5

2

FIG. 6. Ratio of classical Fisher information for heterodyne de-
tection against classical Fisher information for homodyne detection
of the optimal quadrature, plotted for κth = 1 and r = 0. The red
rectangle is representative of the MAQRO parameter regime.

R = τ 4
{[

λτ
(
1 + τ 2

3 + τ 3

12λ
) + 1

]2 − 1
}

72
(
1 + τ 2

3 + τ 3

6 λ −
√

9+3τ 2+τ 4

3

)2[(
1 + τ 2

3 + τ 3

12λ
)2 − 1

2

(
1 + τ 2

3

)(
1 + τ 2

3 + τ 3

6 λ
)] . (D1)
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FIG. 7. Bounds plotted for a rs = 100 nm sphere of mass 5.5 × 109 u with values otherwise as Table I. The minimum required collapse
rate given is based on the criteria of Ref. [7]. The magenta dot represents the values originally proposed by Ghirardi et al. [15].
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FIG. 8. Bounds plotted for a rs = 100 nm sphere of mass 5.5 × 109 u with values otherwise as Table I. The minimum required collapse
rate given is based on the criteria of Ref. [7]. The magenta dot represents the values originally proposed by Ghirardi et al. [15].

2. Heterodyne

For κth = 1 and r = 0 we can easily compare the QCRB with the heterodyne CRB numerically across the λ and τ variables
in Fig. 5. The analytic form of the ratio is

R =
{[

λτ
(
1 + τ 2

3 + λ τ 3

12

) + 1
]2 − 1

}[(
1 + τ 2

3 + λ τ 3

12

)2 + (
1 + τ 2

6

)2]
16

(
1 + τ

2 λ
)2(

1 + τ 2

4 + λτ 3

24

)2[(
1 + τ 2

3 + λτ 3

12

)2 − 1
2

(
1 + τ 2

3

)(
1 + τ 2

3 + λτ 3

6

)] . (D2)

3. Homodyne and heterodyne

In the same κth = 1 and r = 0 case we can compare the optimal homodyne CRB against the heterodyne CRB numerically
across the λ and τ variables in Fig. 6. This demonstrates no more than a factor of two advantage for heterodyne in the τ � 1
and λ � 1, while in the λ � 1 regime the homodyne has a near unbounded advantage.

The analytic form of the ratio [which can be seen from Eqs. (D1) and (D2)] is

R = 9
[(

1 + τ 2

3 + λ τ 3

12

)2 + (
1 + τ 2

6

)2](
1 + τ 2

3 + τ 3

6 λ −
√

9+3τ 2+τ 4

3

)2

2τ 4
(
1 + τ

2 λ
)2(

1 + τ 2

4 + λτ 3

24

)2 . (D3)

APPENDIX E: TESTS OF CONTINUOUS SPONTANEOUS
LOCALIZATION

For MAQRO the minimum resolvable λCSL for position
and momentum can be seen in Fig. 7, plotted for a rs =
100 nm sphere of mass 5.5 × 109 u with values otherwise as
Table I, where the black line is based on the minimum required
CSL strength proposed in Toroš et al. [7]. This plot shows the
potential improvements; with MAQRO already competitive

in 10−8–10−5 m, squeezing allows a test down to the lower
bound for rC < 10−7 m and significant improvement on re-
ported results up to rC = 10−5 m.

This is plotted in Fig. 8, plotted again for a rs = 100 nm
sphere of mass 5.5 × 109 u with values otherwise as Table I.
As might be guessed from the significant gap in Fig. 2 the
optimal quadrature allows for a categorical test of CSL. This
bound can be reduced through squeezing, and the fundamental
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limit given by the QCRB will further allow a superior preci-
sion through a saturating measurement. Such improvements,

however, offer little significance, as the QCRB will give a
lower bound no less than that of the optimal quadrature.
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