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Tightest conditions for violating the Bell inequality when measurement independence is relaxed
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It has been believed that statistical inequalities such as the Bell inequality should be modified once
measurement independence (MI), the assumption that observers can freely choose measurement settings without
changing the probability distribution of hidden variables, is relaxed. However, we show that there exists the
possibility that the Bell inequality is still valid even if MI is relaxed. MI is only a sufficient condition to derive the
Bell inequality when both determinism and setting independence, usually called local realism, are satisfied. We
thus propose a condition necessary and sufficient for deriving the Bell inequality, called concealed measurement
dependence.
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I. INTRODUCTION

One of the most remarkable achievements of modern
physics is the discovery that quantum mechanics violates cer-
tain statistical inequalities such as the Bell inequality [1–4].
The Bell inequality is derived based upon several physical
postulates, namely, determinism, setting independence, and
measurement independence (MI). Determinism is the prop-
erty that an outcome of any physical observable has a definite
value all the time. Setting independence implies that the
probability of observing an event associated with one setting
is independent of the other setting so that it prohibits any
information from transmitting faster than light, which is called
no signaling.

MI is the assumption that measurement settings can be
chosen independently of any underlying variables describing
a system. Compared with determinism and setting indepen-
dence, MI had not been seriously considered in literatures
since it is believed that experimenters can freely choose an
experimental setup. In this regard MI is often associated with
the so-called “free will” of experimenters [5–7]. As clearly
discussed in Ref. [8], however, there are no free or random
events in a hidden-variable theory based upon truly classical
mechanics so that MI cannot be naturally ensured.

MI is also related to practical aspects of quantum infor-
mation processing tasks such as device-independent quantum
key distribution [9–13], random-number generation, and ran-
domness expansion [14–17]. Furthermore, there have been
recent experiments partially closing the MI assumption using
an astronomical source [18] and using real human choices
instead of a random number generator [19,20].
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So far considerable focus has been laid at constructing
singlet correlation, maximally violating the Bell inequality by
relaxing MI. Brans first showed that singlet correlation can be
reproduced by completely relaxing MI [8]. More quantitative
studies to obtain singlet correlation by partially relaxing MI
has been performed by introducing various measures [21–23]
or by using models [5,24–26]. In fact, singlet correlation
has also been acquired by relaxing no signaling [27,28],
determinism [29–32], or both MI and outcome independence
[33–36]. The Bell-like inequalities specifically suited for a
measurement-dependent scenario have been derived [37].

In this paper, instead of constructing singlet correlation by
relaxing MI, we focus on the question whether MI is suffi-
cient, necessary, or both a necessary and sufficient condition
to fulfill the Bell inequality when all the other conditions
such as determinism, setting independence, and others are
assumed. We show that the Bell inequality can be still valid
even if MI is relaxed. MI is only a sufficient condition
to derive the Bell inequality when determinism and setting
independence are satisfied. We thus propose a new condition
necessary and sufficient for deriving the Bell inequality, called
concealed measurement dependence (CMD). We also find that
our CMD hidden-variable model may violate no signaling
even if locality is assumed.

In Sec. II we briefly summarize three assumptions to
derive the Bell inequality. In Sec. III we introduce a concept
called as generalized correlation to define CMD. In Secs. IV
and V we discuss the relation between CMD and no signaling
and present its mathematical analyses in detail, respectively.
In Sec. VI we also present a simple example using what we
believe to be an original Bell inequality. Finally, a summary is
presented in Sec. VII.

II. BELL INEQUALITY AND MEASUREMENT
INDEPENDENCE

A quantum nonlocality test is given by a bound on the
possible values of a combination of correlations of local

2469-9926/2019/100(2)/022128(6) 022128-1 ©2019 American Physical Society

https://orcid.org/0000-0002-2465-8929
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.022128&domain=pdf&date_stamp=2019-08-29
https://doi.org/10.1103/PhysRevA.100.022128


KIM, LEE, KIM, AND KIM PHYSICAL REVIEW A 100, 022128 (2019)

observables in spacelike separated places. When Alice and
Bob with such a distance measure their spin-1/2 particles
along the X direction and along Y , respectively, the correlation
of the outcomes is given by

E (X,Y ) =
∑

α,β=±1

αβ PXY (α, β ), (1)

where PXY (α, β ) is the joint probability of obtaining the
outcomes α and β. Here we assume that each observable is
dichotomic, i.e., α and β are ±1. A quantum nonlocality test
like the CHSH inequality is given by

∑
i, j=1,2

wi jE (Ai, Bj ) � C, (2)

where C is a classical upper bound and wi j ∈ R are weight co-
efficients. When the model is a deterministic hidden-variable
model, the Bell inequalities (2) become the CHSH inequality
for C = 2 and w11 = w12 = w21 = −w22 = ±1 [38].

Hidden variable theories assume that the joint probability
distribution is given by

PXY (α, β ) =
∑

λ

PXY (α, β|λ)PXY (λ), (3)

where λ denotes the hidden variables [39]. However, it fails
to correctly describe the subtle assumptions of MI, setting
independence, and outcome independence. MI implies the
hidden-variable distribution has nothing to do with any exper-
imental setting. The setting independence implies the proba-
bility distribution of an outcome of a physical variable related
to a local setting, for example, X , has nothing to do with the
other local setting, for example, Y . The outcome indepen-
dence implies the probability distribution of an outcome, for
example, α, has nothing to do with that of another outcome,
for example, β. Here we accept both the setting and outcome
independences as usual [5] while MI is relaxed. To precisely
express all of them one may explicitly introduce dependence
on experimental settings X and Y as conditions:

P(α, β|X,Y ) =
∑

λ

P(α, β|λ, X,Y )P(λ|X,Y ). (4)

Locality assumes that physical properties cannot be influ-
enced by spacelike-separated events in a superluminal way.
This implies the joint probabilities conditioned by hidden
variable is factorizable, which results in

P(α, β|λ, X,Y ) = P(α|λ, X )P(β|λ,Y ). (5)

Here both the setting and outcome independences are in-
corporated. Based on a Bayesian rule, P(α, β|λ, X,Y ) =
P(α|β, λ, X,Y )P(β|λ, X,Y ), the setting independence for-
bids instantaneous change of a local setting from affect-
ing the probability distribution in the other local setting
separated (possibly) in a spacelike manner: P(β|λ, X,Y ) =
P(β|λ, X ′,Y ) = P(β|λ,Y ) and similarly, P(α|β, λ, X,Y ) =
P(α|β, λ, X,Y ′) = P(α|β, λ, X ). Furthermore, the outcome
independence forbids the fact that one obtains a particular out-
come β from affecting the probability distribution of another
outcome α: P(α|β, λ, X ) = P(α|λ, X ).

MI is the assumption that what measurement setting is
chosen does not influence the probability distribution of

hidden variables, so that Alice and Bob can freely choose their
measurement settings with the hidden-variable distribution
P(λ|X,Y ) unchanged:

P(λ|X,Y ) = P(λ). (6)

MI differs from the setting independence in that the former
deals with the dependence of the hidden variable on the sets
of measurement setting, namely, {X,Y }, while the latter is
related to the interdependence among the local measurement
settings, namely, X and Y , for the probability distribution of a
physical variable.

If one of the assumptions is relaxed, the Bell inequality
is modified such that the bound increases. It thus becomes
more difficult to violate it in quantum mechanics. However,
we emphasize that the bound does not always increase even
if MI is relaxed. Interestingly there exists a certain condition
that the bound remains unchanged so that the Bell inequality
still holds with the same bound. We call such conditions
concealed measurement dependence (CMD), the main theme
of this paper.

III. GENERALIZED CORRELATION AND CONCEALED
MEASUREMENT DEPENDENCE

MI is characterized by the conditional probability dis-
tribution P(λ|X,Y ). Once we relax MI, we immediately
have more than one hidden-variable distribution depend-
ing on the settings labeled by X and Y . For example, we
have four distributions, in CHSH inequality case, namely,
P(λ|X,Y ) with X ∈ {A1, A2} and Y ∈ {B1, B2}. Even when
we obtain the correlation of A1 and B1, we need consider
not only P(λ|A1, B1) but also the other three distributions,
P(λ|A1, B2), P(λ|A2, B1), P(λ|A2, B2). In order to investigate
such models, we introduce a modified correlation which we
call generalized correlation:

EX ′Y ′ (X,Y ) =
∑

λ

α(λ, X )β(λ,Y )P(λ|X ′,Y ′).

EX ′Y ′ (X,Y ) is the correlation between X and Y calculated by
using the hidden-variable distribution conditioned on a mea-
surement setting X ′ and Y ′ incorporating measurement de-
pendence. For one measurement setting, namely, X = A1 and
Y = B1, we have the hidden-variable distribution P(λ|A1, B1)
from which we obtain the correlation between X and Y , i.e.,
EA1B1 (X,Y ). For another setting, namely, A1 and B2, however,
we now have P(λ|A1, B2) from which we also obtain the cor-
relation between X and Y , EA1B2 (X,Y ). In general, one finds
EA!B1 (X,Y ) �= EA1B2 (X,Y ) due to P(λ|A1, B1) �= P(λ|A1, B2)
once the MI assumption is relaxed.

We say a local deterministic hidden-variable model satis-
fies CMD if

E (X,Y ) = EXY (X,Y ) = EA1B1 (X,Y ) (7)

is satisfied for all the possible settings X ∈ {A1, A2} and Y ∈
{B1, B2} with respect to reference observables A1 and B1 [40].
Even though the probability distribution of the CMD model,
P(λ|X,Y ), is different from that of the hidden-variable model
satisfying MI, P(λ), the CMD condition guarantees that one
still finds an appropriate P(λ|X,Y ) exhibiting at least the
equivalent expectation value obtained from the corresponding
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P(λ). Hence, the CMD model, the relaxing MI condition, can
still have the bound of a MI model:∑

i, j=1,2

wi jEAiB j (Ai, Bj ) =
∑

i, j=1,2

wi jEA1B1 (Ai, Bj ) � C,

(8)

where the classical upper bound is given by the MI determin-
istic hidden-variable model. The CMD condition is weaker
than MI since it restricts only correlations rather than the
distributions of hidden variables.

It is worth noting that the existence of CMD does not
contradict Fine’s proof [41], which requires the correlations
of the CMD model to be simulated by a certain MI deter-
ministic hidden-variable model. Again, this is the case since
EA1B1 (X,Y ) are averaged over a single hidden-variable dis-
tribution P(λ|A1, B1) like the usual MI deterministic hidden-
variable models.

IV. RELATION BETWEEN CONCEALED MEASUREMENT
DEPENDENCE AND NO SIGNALING

Even though locality is assumed, CMD models may violate
no-signaling constraints [42,43] expressed as

P(α|X,Y ) = P(α|X,Y ′) and P(β|X,Y ) = P(β|X ′,Y ), (9)

where P(α|X,Y ) = ∑
β P(α, β|X,Y ) and similarly for

P(β|X,Y ). Using Eq. (4), the conditional probabilities of
Eq. (9) are rewritten as

P(α|X,Y ) =
∑

β

∑
λ

P(α, β|λ, X,Y )P(λ|X,Y ). (10)

Here locality, setting independence, and outcome indepen-
dence are all associated with P(α, β|λ, X,Y ) but have nothing
to do with P(λ|X,Y ). Thus, P(α|X,Y ) may still depend on X
or Y once the MI defined as Eq. (6) is relaxed; this implies
that a signal can be instantaneously transmitted by altering
measurement settings violating the no-signaling condition.
We can also explain it in a slight different way. In CMD
models MI is relaxed in a very specific form [Eq. (7)]; CMD
includes a restriction not on local expectations E (X ) and E (Y )
but only on the correlations E (X,Y ). CMD models do not
guarantee EXY (X ) = EXY ′ (X ) and EXY (Y ) = EX ′Y (Y ), where
EXY (Z ) = ∑

λ α(λ, Z ) P(λ|X,Y ). Therefore, no signaling (9)
may be violated since probabilities are directly related to
their expectations, i.e., P(α|X,Y ) = [1 + α EXY (X )]/2 and
P(β|X,Y ) = [1 + β EXY (Y )]/2 [44]. It is remarkable that
satisfying the Bell inequalities of MI deterministic hidden-
variable models is not sufficient for no signaling in CMD
models.

Now we find the relationships among the sets of hidden-
variable models satisfying CMD, the Bell inequalities, and
no signaling when MI is relaxed, while locality and deter-
minism still hold. First, CMD implies Bell inequalities by
definition. We will show below that the Bell inequalities also
imply CMD, which implies that the set of CMD models is
equivalent to that of the Bell inequalities. Second, as discussed
above, CMD does not guarantee no signaling. However, the
MI model should exist if both the Bell inequalities and no
signaling are satisfied due to Fine’s proof [41]. It implies that

FIG. 1. Schematic diagram for the sets of hidden-variable distri-
butions satisfying the Bell inequalities (BI), no signaling (NS), and
CMD when determinism (D) and locality (L) are assumed but MI is
relaxed. “MI” denotes the set representable with a MI deterministic
hidden-variable model.

not only does there exist a nonzero intersection between the
set of CMD models satisfying the Bell inequalities and that
of the no-signaling models, but also the intersection should
contain the set of MI models. The intersection is larger than
the set of the MI deterministic hidden-variable model since the
CMD model deals with the correlation of only two variables.
The relations discussed here are schematically summarized in
Fig. 1. We emphasize that CMD models are not distinguish-
able from MI deterministic hidden-variable models by only
testing the Bell inequalities.

V. MATHEMATICAL ANALYSES

The measurement dependence of a hidden variable can be
conveniently analyzed by introducing a variable ξXY λ as

P(λ|X,Y ) = P(λ|A1, B1) + ξXY λ � 0, (11)
∑

λ

ξXY λ = 0, (12)

where the second equation is the normalization condition.
ξXY λ expresses the difference of the probability distribution
from the reference distribution, that is, P(λ|A1, B1). There-
fore, ξA1B1λ = 0 is trivially satisfied. With Eq. (11), the CMD
conditions [Eq. (7)] can be written as

∑
(X,Y )�=(A1,B1 )

∑
λ

MX ′Y ′η
XY λ ξXY λ = 0, (13)

where MX ′Y ′η=1
XY λ = α(λ, X )β(λ,Y )δXX ′δYY ′ for the CMD con-

ditions (η = 1) and MX ′Y ′η=2
XY λ = δXX ′δYY ′ for the normaliza-

tion conditions (η = 2). The CMD condition is compactly
described as

Mξ = 0. (14)

Here ξ is a vector of 48(=3 × 16) dimensions, 0 a null vector,
and M a 6 × 48 matrix. The 48 dimensions of ξ come
from three measurement settings of XY (XY �= A1B1) and
24 hidden variables of λ, and the six rows of M come from
three measurement settings of X ′Y ′ and two conditions of
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η. Equation (14) implies that ξ belongs to the kernel of M
denoted as ker(M). All six row vectors of M are mutually
orthogonal so that the dimension of ker(M), or the nullity of
M is 42. Note that the MI corresponds to ξ = 0, which forms a
zero-dimensional kernel. Even if MI is relaxed, i.e., ξ �= 0, the
Bell inequalities could remain intact as long as ξ ∈ ker(M) is
satisfied (see Sec. VI for a simple example of CMD).

We show that if a measurement-dependent model satisfies
the Bell’s inequality with a bound C, it also satisfies the CMD
condition. Using Eq. (11), the weighted combination of the
generalized correlation is written as

∑
i, j=1,2

wi jEAiB j (Ai, Bj ) = C + γ , (15)

where

γ =
∑

(i, j)�=(1,1)

wi j

∑
(X,Y )�=(A1,B1 )

∑
λ

M
AiBjη=1
XY λ ξXY λ

≡ w · ξ̃ . (16)

Here w = (w12,w21,w22)T , and ξ̃ = Mη=1ξ = Mη=1ξ⊥ with
ξ⊥ = ξ − ξ ‖ and ξ ‖ ∈ ker(M) according to Mη=1ξ ‖ = 0. The
maximum increase of the bound is given by

γM = sup
w∈R3

w · Mη=1ξ⊥, (17)

which is determined by ξ⊥. It is worth noting that the classical
bound defined as min{2 + 3M, 4} with

M ≡ sup
X,X ′,Y,Y ′

∑
λ

|ξXY λ − ξX ′Y ′λ| (18)

has been proposed in Ref. [22], but this differs from γM .
According to Eq. (16) the fact that the Bell inequalities are

satisfied implies γ = 0, or equivalently

w · Mη=1ξ = 0. (19)

As far as every Bell inequality represented by all pos-
sible w are concerned, Eq. (19) is fulfilled if and only
if Mη=1ξ = 0. Together with the normalization condition
Mη=2ξ = 0, we reach Mξ = 0. Therefore, we conclude that
any measurement-dependent model satisfying the Bell in-
equalities satisfies the CMD condition, while the converse
proposition is given by the definition of the CMD condition.
Therefore, the sets of the hidden-variable models satisfying
CMD is equal to the set satisfying the Bell inequalities.

In a similar way, we analyze no-signaling conditions. We
set the measurement settings of Alice and Bob as (Ai, Bj )
(i, j = 1, 2). Using P(α|X,Y ) = [1 + α EXY (X )]/2 in the no-
signaling condition [Eq. (9)] we obtain the following set of
equations:

Nξ ≡
∑

(X,Y )�=(A1,B1 )

∑
λ

N jη
XY λξXY λ = 0, (20)

where N jη=1
XY λ = α(λ, X )δXAj (δY B1 − δY B2 ) and N jη=2

XY λ =
β(λ,Y )(δXA1 − δXA2 )δY Bj for no signaling, and N jη=3

XY λ =
δXAj δY B1 and N jη=4

XY λ = δXAj δY B2 for normalization. Taking
jη as the row index and XY λ as the column index, N is
represented by a 7 × 48-dimensional matrix. All the row

vectors of N are mutually orthogonal, similarly in the CMD
matrix M, so that ker(N) is a 41-dimensional subspace.

Our results can be summarized by using the kernels of M
and N as follows:

(S1) If and only if ξ ∈ ker(M) and ξ ∈ ker(N), there
exists a MI deterministic hidden-variable model.

(S2) If ξ ∈ ker(M), there exists a CMD model. Further-
more, if ξ ∈ ker(M) but ξ /∈ ker(N), no MI deterministic
hidden-variable model exists.

(S3) If ξ /∈ ker(M), there exists a measurement-dependent
model satisfying the Bell inequalities with the increased clas-
sical bound determined by ξ⊥.

(S4) If ξ /∈ ker(M) and ξ ∈ ker(N), there exists a
measurement-dependent and no-signaling model satisfying
the Bell inequalities with the increased classical bound de-
termined similarly in (S3).

VI. A SIMPLE EXAMPLE: CONCEALED MEASUREMENT
DEPENDENCE IN THE BELL INEQUALITY

The original Bell inequality [1] is expressed as

|E (A, B) − E (A,C)| � 1 + E (B,C), (21)

where E (A, B) denotes the average of the spin correlation
when Alice and Bob measure the spin of the correlated
particles along the directions A and B, respectively. Alice and
Bob are separated in space and the particles are perfectly
anticorrelated to form the singlet state. E (B,C) and E (A,C)
are similarly defined with the directions B and C and A and C,
respectively.

CMD is defined as

EAB(B,C) = EBC (B,C), EAB(A,C) = EAC (A,C). (22)

We consider only a perfect anticorrelation case and assume
determinism and locality. In this case, Table I can represent all
possible hidden variable distributions.

The probabilities of the hidden variables are represented
as Pi, P′

i , and P′′
i for the settings {A, B}, {B,C}, and {A,C},

respectively. Without loss of generality, P′
i and P′′

i can be
expressed as Pi + xi and Pi + yi with appropriate xi and
yi, respectively. xi and yi should satisfy the normalization

TABLE I. The probability distributions of the outcomes α and
β in terms of the hidden variable λ for three different settings. The
state is anticorrelated so that αβ = −1 for the same measurement
direction.

α(Alice) β(Bob)

λ A B C A B C P(λi|A, B) P(λi|B,C) P(λi|A,C)

λ1 1 1 1 −1 −1 −1 P1 P′
1 P′′

1

λ2 1 1 −1 −1 −1 1 P2 P′
2 P′′

2

λ3 1 −1 1 −1 1 −1 P3 P′
3 P′′

3

λ4 1 −1 −1 −1 1 1 P4 P′
4 P′′

4

λ5 −1 1 1 1 −1 −1 P5 P′
5 P′′

5

λ6 −1 1 −1 1 −1 1 P6 P′
6 P′′

6

λ7 −1 −1 1 1 1 −1 P7 P′
7 P′′

7

λ8 −1 −1 −1 1 1 1 P8 P′
8 P′′

8
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∑
i xi = ∑

i yi = 0. Together with the normalization conditions, the two CMD conditions are expressed as
⎛
⎜⎝

+1 +1 +1 +1 +1 +1 +1 +1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 +1 +1 +1 +1 +1 +1 +1 +1
−1 +1 +1 −1 −1 +1 +1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 +1 −1 +1 +1 −1 +1 −1

⎞
⎟⎠�ξ = �0,

with �ξ = (x1, x2, . . . , x8, y1, . . . , y8), �0 = (0, 0, . . . , 0), and
the 4 × 16 matrix, which is called MB corresponds to M in
the CHSH inequality. ker(MB) is 12-dimensional since all row
vectors are orthogonal to each other. It means that the CMD
is constructed in a 12-dimensional space of �ξ , represented
as ker(MB). Note that the conventional MI forms a zero-
dimensional space of �ξ since it is achieved by �ξ = �0. Even
if the MI is relaxed so that �ξ no longer lies at �0, the Bell
inequality is still valid if �ξ lies on ker(MB).

VII. CONCLUSION

In conclusion, we have shown that the Bell inequalities
still can be valid even if MI is relaxed. The necessary and
sufficient condition for satisfying the Bell inequalities is given
as CMD if both determinism and locality are assumed. The

MI assumption is too strict for a local deterministic hidden
variable model satisfying the Bell inequality. We also find that
our CMD models may violate the no-signaling condition even
if locality is assumed. In fact, the CMD model satisfying no
signaling is not equivalent to the MI model. Furthermore, we
characterized the CMD condition by introducing parameters
describing measurement dependence of a model, and we
obtained how the classical bound varies depending on the
parameters.
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