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Criteria to detect genuine multipartite entanglement using spin measurements
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We derive conditions in the form of inequalities to detect the genuine N-partite entanglement of N systems.
The inequalities are expressed in terms of variances of spin operators and can be tested by local spin
measurements performed on the individual systems. Violation of the inequalities is sufficient (but not necessary)
to certify the multipartite entanglement and occurs when a type of spin squeezing is created. The inequalities are
similar to those derived for continuous-variable systems, but instead are based on the Heisenberg spin-uncertainty
relation �Jx�Jy � |〈Jz〉|/2. We also extend previous work to derive spin-variance inequalities that certify
the full tripartite inseparability or genuine multipartite entanglement among systems with fixed spin J , as in
Greenberger–Horne–Zeilinger (GHZ) states and W states where J = 1/2. These inequalities are derived from
the planar spin-uncertainty relation (�Jx )2 + (�Jy )2 � CJ where CJ is a constant for each J . Finally, it is shown
how the inequalities detect multipartite entanglement based on Stokes operators. We illustrate with experiments
that create entanglement shared among separated atomic ensembles, polarization-entangled optical modes, and
the clouds of atoms of an expanding spin-squeezed Bose-Einstein condensate. For each example, we give a
criterion to certify the mutual entanglement.

DOI: 10.1103/PhysRevA.100.022126

I. INTRODUCTION

Genuine multipartite quantum entanglement is a resource
required for many protocols in the field of quantum infor-
mation and computation [1–9]. N systems are said to be
genuinely N-partite entangled if the systems are mutually
entangled in such a way that the entanglement cannot be
constructed by mixing entangled states involving fewer than
N parties [9–11]. Mathematically, a tripartite system is gen-
uinely tripartite entangled if and only if the density operator
characterizing the system cannot be represented in the bisep-
arable form [9–12]
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where
∑3

k=1 Pk = 1, Pk � 0, and
∑

R η
(k)
R = 1. Here ρR

k is
an arbitrary density operator for the subsystem k, while ρR

mn
is an arbitrary density operator for the subsystems m and
n. The definition of genuine N-partite entanglement follows
similarly.

Criteria to certify genuine N-partite entanglement for con-
tinuous variable (CV) systems have been derived by Shalm
et al. [13] and Teh and Reid [14]. These criteria take the
form of variance inequalities, similar to those derived for CV
bipartite entanglement [15–17]. The work of Refs. [13,14]
extended earlier results by van Loock and Furusawa, who
developed CV criteria for the related but different concept of
full N-partite inseparability [18,19] (see also Refs. [20,21]).
Although genuine N-partite entanglement implies full
N-partite inseparability, the converse is not true, and full
N-partite inseparability is therefore a weaker form of corre-

lation. Nonetheless, for pure states, full N-partite insepara-
bility is sufficient to imply genuine N-partite entanglement.
Experiments have confirmed both full N-partite inseparabil-
ity [19,22–25] and genuine N-partite entanglement (N � 3)
for CV systems [13,26–29]. Here “continuous variable” (CV)
refers to the use of measurements that have continuous-
variable outcomes, e.g., field quadrature phase amplitudes X
and P, or position and momentum. The CV criteria are derived
from the commutation relation [X, P] = 2i and the associated
uncertainty relations.

In this paper, we derive criteria for genuine N-partite
entanglement that can be applied to discrete variable systems
involving spin degrees of freedom. In this case, measurements
correspond to spin observables, and it is the spin commutation
relation [Jx, Jy] = iJz and associated uncertainty relations that
are relevant. The criteria we derive involve variances and
apply to all physical systems, provided the measurements
correspond to operators satisfying spin commutation rela-
tions. This approach extends to N systems the treatments
of Hofmann and Takeuchi [30] and Raymer et al. [31] who
used spin-uncertainty relations to derive variance criteria
for bipartite entanglement. The question of how to detect
genuine N-partite entanglement has been studied previously,
but most work has been in the context of qubit (spin 1/2)
systems [32–42] or systems of fixed dimension [43–48].

The development of criteria to certify the genuine multi-
partite entanglement of discrete systems, as in this paper, is
motivated by the increasing number of experiments detecting
entanglement with atoms. For example, bipartite entangle-
ment has been created between atomic ensembles and sepa-
rated atomic modes [49–51], and multipartite entanglement
has been created among the separated clouds of a Bose-
Einstein condensate (BEC) [52]. It is sometimes possible to
rewrite the spin commutation relation in a form that resembles
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the position-momentum commutation relation. This is often
true where the spin observables are expressed as Schwinger
operators and justifies the use of CV entanglement criteria for
the spin system in that case. For instance, Julsgaard et al. [49]
characterize the entanglement in the collective spins between
two atomic ensembles using CV criteria. However, as pointed
out by Raymer et al. [31], this is valid only in a restricted
sense and will not give correct results in general. In other
words, the complete spin commutation relation should be used
in any derivation of criteria certifying the genuine multipartite
entanglement of spin systems.

The program of characterizing entanglement in spin sys-
tems has been largely motivated by the observation that a
spin-squeezed system exhibits quantum correlations among
the spin particles. Sørensen et al. [53] derived an N-partite
entanglement criterion that implies the presence of an N-
partite entangled state. Here, an N-partite entangled state is
a state that cannot be expressed in the form

ρS =
∑

R

PRρ
(1)
R ρ

(2)
R · · · ρ (N )

R , (2)

where
∑

R PR = 1. A host of criteria [54–59] were subse-
quently derived to certify the presence of N-partite entangle-
ment in spin systems. However, these criteria rule out only
the possibility of N-partite separable states of the form Eq. (2)
and not the more general N-partite biseparable states of the
form Eq. (1) (as extended to higher N) where all separable
bipartitions (and mixtures of them) are considered. Hence they
are not criteria for genuine N-partite entanglement, where
the entanglement is mutually shared among all N parties.
An exception is the spin-squeezing criteria of Sørensen and
Mølmer (and others like it) which imply a genuine k-particle
entanglement shared among k particles of an N-particle sys-
tem (k � N) [60]. Such criteria differ from those derived
in this paper, however, being based on collective spin mea-
surements made on the composite system, rather than local
measurements made on separated subsystems, and thus cannot
directly test nonlocal models (as described in Ref. [61]).

The task of characterizing genuine multipartite entangle-
ment in spin systems was carried out by Korbicz et al. [62,63].
Korbicz and co-workers used the positivity of the partial trans-
pose (PPT) criterion or the Peres-Horodecki criterion [12,64]
as the starting point to derive entanglement criteria and
showed genuine tripartite entanglement for symmetric states.
The PPT criterion, however, is less useful for N-partite separa-
bility when N is large [12]. In this paper, we derive criteria for
genuine multipartite entanglement for spin systems by ruling
out the possibility of the state in a biseparable form as in
Eq. (1).

The remainder of the paper is structured as follows. In
Sec. II we derive criteria for the detection of the genuine tri-
partite entanglement using spin measurements. The general-
ization to genuine N-partite entanglement is given in Sec. IV.
These criteria are derived using methods similar to those
developed by van Loock and Furusawa [18], Shalm et al. [13],
and Teh and Reid [14] for CV systems. In Sec. III we extend
criteria derived by He and Reid [42], pointing out that these
inequalities apply to certify genuine tripartite entanglement
as well as Einstein-Podolsky-Rosen (EPR) steering, which
is a form of entanglement closely connected with the EPR

paradox [61,65,66]. The criteria are derived using planar spin-
uncertainty relations [67–71] and apply to subsystems with a
fixed spin J . We show that the criteria may be used to detect
the genuine tripartite entanglement of Greenberger–Horne–
Zeilinger (GHZ) states and the full tripartite inseparability
of W states. Finally, in Sec. V we explain how to generate
genuinely entangled spin systems based on Stokes operators.
We then demonstrate using three examples the application of
the criteria derived in Secs. II and IV to certify the genuine
N-partite entanglement.

II. CRITERIA FOR GENUINE TRIPARTITE
ENTANGLEMENT

The criteria derived in this section involve variances of the
sum of spin observables defined for each subsystem. These
criteria require only the statistics of a set of observables and,
in this sense, are state independent. In this work, all the caret
symbols that denote the spin operators are dropped, unless
specified otherwise, and we use the symbol �2x to denote the
variance of x.

A. The sum inequalities

1. Sum of two variances

Consider the sum of �2u and �2v where

u = h1Jx,1 + h2Jx,2 + h3Jx,3,

v = g1Jy,1 + g2Jy,2 + g3Jy,3, (3)

and hk and gk (k = 1, 2, 3) are real numbers. Here Jx,k, Jy,k ,
Jz,k are the spin operators for subsystem k, satisfying the
commutation relation [Jx,k, Jy,k] = iJz,k . We derive the bound
for �2u + �2v such that the violation of the bound implies
genuine tripartite entanglement in the spin degree of freedom.
This leads us to the following criterion.

Criterion 1. Violation of the inequality

�2u + �2v � min{|g1h1〈Jz,1〉| + |g2h2〈Jz,2〉 + g3h3〈Jz,3〉|,
|g2h2〈Jz,2〉| + |g1h1〈Jz,1〉 + g3h3〈Jz,3〉|,
|g3h3〈Jz,3〉| + |g1h1〈Jz,1〉 + g2h2〈Jz,2〉|} (4)

is sufficient to confirm genuine tripartite entanglement.
Proof. First, we assume that the spin state is in

a biseparable mixture state ρBS = P1
∑

R η
(1)
R ρR

1 ρR
23 +

P2
∑

R′ η
(2)
R′ ρR′

13ρ
R′
2 + P3

∑
R′′ η

(3)
R′′ ρ

R′′
12 ρR′′

3 as in Eq. (1). For
any mixture of type ρmix = ∑

R PRρR, the variance �2u
satisfies [30]:

�2u �
∑

R

PR�2uR. (5)

Hence the biseparable mixture would imply

�2u + �2v � P1

∑
R

η
(1)
R [�2uR + �2vR]

+ P2

∑
R′

η
(2)
R′ [�2uR′ + �2vR′ ]

+ P3

∑
R′′

η
(3)
R′′ [�2uR′′ + �2vR′′ ]. (6)

022126-2



CRITERIA TO DETECT GENUINE MULTIPARTITE … PHYSICAL REVIEW A 100, 022126 (2019)

To proceed, we consider �2uζ + �2vζ that corresponds to an
arbitrary bipartition ρ

ζ

k ρ
ζ

lm:

�2uζ + �2vζ � |gkhk〈Jz,k〉| + |glhl〈Jz,l〉 + gmhm〈Jz,m〉|.
(7)

The lower bound given in this inequality is derived in the
Appendix A 1, using the uncertainty relations for spin. We
can always choose for the lower bound the smallest value
of �2uζ + �2vζ in Eq. (6). Hence, Eq. (6) becomes Eq. (4),
where we use the fact that

∑
η

(1)
R = 1 and

∑
Pk = 1. In

Eq. (4), the first term in the bracket {} is implied by the
biseparable state ρ1ρ23, the second term is implied by the
biseparable state ρ2ρ13, and the final term is implied by the
biseparable state ρ3ρ12. �

The optimal values for gk, hk depend on the specific spin
state. The criterion given by Eq. (4) is a general result that
allows us to derive a host of other criteria. Examples of
optimal choices for different types of spin states will be given
in Sec. V.

2. Van Loock-Furusawa inequalities for spin

We can also derive the spin version of a set of inequalities
derived by van Loock and Furusawa [18]. The quantities BI ,
BII , and BIII are defined as

BI ≡ �2(Jx,1 − Jx,2) + �2(Jy,1 + Jy,2 + g3Jy,3),

BII ≡ �2(Jx,2 − Jx,3) + �2(g1Jy,1 + Jy,2 + Jy,3),

BIII ≡ �2(Jx,1 − Jx,3) + �2(Jy,1 + g2Jy,2 + Jy,3). (8)

By choosing the coefficients gk and hk in Eq. (4), we obtain a
set of inequalities satisfied by BI , BII , and BIII . For example,
the left side of the criterion in Eq. (4) is equal to BI when h1 =
1, h2 = −1, h3 = 0 and g1 = g2 = 1. The set of inequalities
is

BI � (|〈Jz,1〉| + |〈Jz,2〉|), BII � (|〈Jz,2〉| + |〈Jz,3〉|),
BIII � (|〈Jz,1〉| + |〈Jz,3〉|). (9)

We point out that BI � (|〈Jz,1〉| + |〈Jz,2〉|) is implied by
both the biseparable states ρ1ρ23 and ρ2ρ13, while BII �
(|〈Jz,2〉| + |〈Jz,3〉|) is implied by the biseparable states ρ2ρ13

and ρ3ρ12. Finally, BIII � (|〈Jz,1〉| + |〈Jz,3〉|) is satisfied by the
biseparable states ρ1ρ23 and ρ3ρ12. Using the inequalities in
Eq. (9), we obtain a criterion that confirms genuine tripartite
entanglement.

Criterion 2. Full tripartite inseparability is observed if any
two of the inequalities (9) are violated. For a pure state,
this is sufficient to imply genuine tripartite entanglement. For
arbitrary states, genuine tripartite entanglement is observed if
the inequality

BI + BII + BIII � |〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉| (10)

is violated.
Proof. Full tripartite inseparability is observed if each

one of the inequalities (9) is violated, because this certifies
entanglement across all bipartitions. Following van Loock and
Furusawa [18], in fact we see that tripartite inseparability
is confirmed if any two inequalities are violated. This is so
because BI � |〈Jz,1〉| + |〈Jz,2〉| is implied by ρ1ρ23 and ρ2ρ13,

BII � |〈Jz,2〉| + |〈Jz,3〉| is implied by ρ2ρ13 and ρ3ρ12, and
BIII � |〈Jz,1〉| + |〈Jz,3〉| is implied by ρ1ρ23 and ρ3ρ12. For
pure states, the proof of full tripartite inseparability confirms
genuine tripartite entanglement. Now we prove the second
condition that applies to all states including mixed states.
For brevity, we index the biseparable states ρ1ρ23, ρ2ρ13, and
ρ3ρ12 by k = 1, 2, 3, respectively. Let BI,1 be the quantity BI

that is evaluated using the biseparable state ρ1ρ23. Then

BI �
∑

k

PkBI,k � P1BI,1 + P2BI,2

� (P1 + P2)(|〈Jz,1〉| + |〈Jz,2〉|).
Similarly, BII � (P2 + P3)(|〈Jz,2〉| + |〈Jz,3〉|) and BIII �
(P1 + P3)(|〈Jz,1〉| + |〈Jz,3〉|). In order to include all possible
mixtures, we take the sum of BI , BII , and BIII and use
the expansion in Eq. (1). The inequality they satisfy,
derived below, provides Criterion 2 for genuine tripartite
entanglement:

BI + BII + BIII � (P1 + P2 + P3)(|〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉|)
+ P1|〈Jz,1〉| + P2|〈Jz,2〉| + P3|〈Jz,3〉|

� (P1 + P2 + P3)(|〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉|)
= (|〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉|),

where
∑

k Pk = 1. �
The number of moment measurements in the criterion

given by Eq. (10) can be reduced by using a criterion that
involves only two of the three quantities BI , BII , and BIII .
Setting g1 = g2 = g3 = 1, we see that the sum

BI + BII � |〈Jz,1〉| + 2|〈Jz,2〉| + |〈Jz,3〉| (11)

is satisfied by any mixture of all tripartite biseparable states.
The violation of the inequality in Eq. (11) then implies gen-
uine tripartite entanglement. This is also true for other com-
binations BI + BIII � 2|〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉| and BII +
BIII � |〈Jz,1〉| + |〈Jz,2〉| + 2|〈Jz,3〉|.

B. The product inequalities

1. Product of two variances

Criteria involving products rather than sums
can also be derived. Again, we consider the two
quantities �2u = �2(h1Jx,1 + h2Jx,2 + h3Jx,3) and �2v =
�2(g1Jy,1 + g2Jy,2 + g3Jy,3).

Criterion 3. Genuine tripartite entanglement is observed if
the inequality

�u�v � 1

2
min{|g1h1〈Jz,1〉| + |g2h2〈Jz,2〉 + g3h3〈Jz,3〉|,

|g2h2〈Jz,2〉| + |g1h1〈Jz,1〉 + g3h3〈Jz,3〉|,
|g3h3〈Jz,3〉| + |g1h1〈Jz,1〉 + g2h2〈Jz,2〉|} (12)

is violated.
Proof. The product of two variances �2u and �2v satisfies

the inequality

�2u�2v �
[∑

R

PR�2uR

][∑
R

PR�2vR

]

�
∑

R

PR�2uR�2vR, (13)
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where the Cauchy-Schwarz inequality is used. For an arbi-
trary bipartition ρ

ζ

k ρ
ζ

lm, �2uζ �
2vζ satisfies the inequality (see

Appendix A 2)

�2uζ�
2vζ � 1

4 [|gkhk〈Jz,k〉| + |glhl〈Jz,l〉 + gmhm〈Jz,m〉|]2.

(14)

Identical to the proof for Criterion 1, we can always choose
the bipartition that gives us the smallest value of �uζ �vζ in
Eq. (13). Hence, Eq. (13) becomes (12). �

2. Van Loock-Furusawa product inequalities

The product version of the van Loock-Furusawa inequal-
ities can be obtained, using the criterion in Eq. (12). The
quantities involved are SI , SII , and SIII :

SI ≡ �(Jx,1 − Jx,2)�(Jy,1 + Jy,2 + g3Jy,3),

SII ≡ �(Jx,2 − Jx,3)�(g1Jy,1 + Jy,2 + Jy,3),

SIII ≡ �(Jx,1 − Jx,3)�(Jy,1 + g2Jy,2 + Jy,3). (15)

By choosing the coefficients gi and hi in Eq. (12), we obtain
a set of inequalities satisfied by SI , SII , and SIII . For example,
the left side of the criterion in Eq. (12) is equal to SI when
h1 = 1, h2 = −1, h3 = 0 and g1 = g2 = 1. From Eq. (12),
SI , SII , and SIII satisfy the following inequalities:

SI � 1
2 (|〈Jz,1〉| + |〈Jz,2〉|),

SII � 1
2 (|〈Jz,2〉| + |〈Jz,3〉|),

SIII � 1
2 (|〈Jz,1〉| + |〈Jz,3〉|). (16)

Criterion 4. Full tripartite inseparability is observed if any
two of the inequalities (16) are violated. Genuine tripartite
entanglement is present if the following inequality is violated:

SI + SII + SIII � 1
2 (|〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉|). (17)

Proof. The first result follows as for Criterion 2. Using
the same notation as in the proof for Criterion 2, we index
the biseparable states ρ1ρ23, ρ2ρ13, and ρ3ρ12 by k = 1, 2, 3,
respectively. Let SI,1 be the quantity SI that is evaluated using
the biseparable state ρ1ρ23. Then

SI �
∑

k

PkSI,k � P1SI,1 + P2SI,2

� 1

2
(P1 + P2)(|〈Jz,1〉| + |〈Jz,2〉|).

Similarly, SII � (P2 + P3)(|〈Jz,2〉| + |〈Jz,3〉|)/2 and SIII �
(P1 + P3)(|〈Jz,1〉| + |〈Jz,3〉|)/2. In order to include all possible
mixtures, we take the sum of SI , SII , and SIII . The inequality
they satisfy, derived below, provides a criterion for genuine
tripartite entanglement:

SI + SII + SIII � (P1 + P2 + P3)(|〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉|)
2

+ 1

2
(P1|〈Jz,1〉| + P2|〈Jz,2〉| + P3|〈Jz,3〉|)

� (P1 + P2 + P3)(|〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉|)
2

= 1

2
(|〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉|),

where
∑

k Pk = 1. �

III. INEQUALITIES INVOLVING PLANAR SPIN
UNCERTAINTY RELATIONS

The inequalities in the previous two sections used the
canonical spin uncertainty relations. For certain quantum
states such as the multipartite spin GHZ state, the right side of
these inequalities might be zero, giving the trivial relation that
a sum or product of variances should be positive. Here we con-
sider the planar uncertainty relation, where the sum of uncer-
tainties in two of the orthogonal spin observables has a lower
bound that is a function of the spin value of the state. The
planar uncertainty relation was obtained for spin J = 1/2 [72]
and J = 1 [30] and was later calculated for an arbitrary spin J
by He et al. [67]. In that work, they minimized �2Jx + �2Jy

for a general quantum state written in the spin-z basis as

|ψ〉 = 1√
n

J∑
m=−J

Rme−iφm |J, m〉. (18)

Here Rm, φm are real numbers characterizing the amplitude
and phase of the basis state |J, m〉, while n is the normalization
factor given by n = ∑J

m=−J R2
m. He et al. found the lower

bound CJ (CJ > 0) such that for a given J ,

�2Jx + �2Jy � CJ . (19)

Also in that work [67], a criterion that verifies N-partite
inseparability was derived. Since the total N-partite separable
state is a probabilistic sum of the tensor product of N density
operators, the planar uncertainty relation can be used. This is
not so straightforward for genuine multipartite entanglement
where a biseparable state contains partitions that cannot be
expressed as a product state of those particles or modes in
those partitions.

Nevertheless, the planar uncertainty relation can be used to
detect genuine tripartite entanglement, if we use an inference
variance method [15,73].

Criterion 5. Consider the inequality given by

B1 + B2 + B3 � CJ , (20)

where

B1 = �2
(
Jx,1 − O(1)

23

) + �2
(
Jy,1 − P(1)

23

)
,

B2 = �2
(
Jx,2 − O(2)

13

) + �2
(
Jy,2 − P(2)

13

)
,

B3 = �2
(
Jx,3 − O(3)

12

) + �2
(
Jy,3 − P(3)

12

)
,

and O(k)
lm , P(k)

lm are observables defining measurements that can
be made on the combined subsystems that we denote by l and
m. The violation of this inequality suffices to confirm genuine
tripartite entanglement of the three systems denoted 1, 2, and
3. Full tripartite inseparability is observed if

Bk � CJ (21)

for each k = 1, 2, 3.
Proof. Consider �2(Jx,1 − O(1)

23 ) and �2(Jy,1 − P(1)
23 ) where

O(1)
23 and P(1)

23 are operators for systems 2 and 3. We derive the
following inequality that holds for an arbitrary pure state with
a separable bipartition ρ

ζ
1 ρ

ζ
23:

B1 = �2
(
Jx,1 − O(1)

23

) + �2
(
Jy,1 − P(1)

23

)
� �2(Jx,1) + �2(Jy,1) � CJ . (22)
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This holds also for all mixtures of separable bipartitions
ρ

ζ
1 ρ

ζ
23. Similarly, the inequalities

B2 � �2
(
Jx,2 − O(2)

13

) + �2
(
Jy,2 − P(2)

13

)
� CJ (23)

and

B3 � �2
(
Jx,3 − O(3)

12

) + �2
(
Jy,3 − P(3)

12

)
� CJ (24)

follow from the separable bipartitions ρ
ζ
2 ρ

ζ
13 and ρ

ζ
3 ρ

ζ
12,

respectively. For a pure state, if all three inequalities are
violated, we can conclude that the three systems are gen-
uinely tripartite entangled. For a mixed state the conditions
change. We require falsifying an arbitrary biseparable mixed
state given by ρBS = P1

∑
R η

(1)
R ρR

1 ρR
23 + P2

∑
R′ η

(2)
R′ ρR′

2 ρR′
13 +

P3
∑

R′′ η
(3)
R′′ ρ

R′′
3 ρR′′

12 , as defined by Eq. (1). We give a proof
similar to those given for Criteria 2 and 4. For brevity, we
index the biseparable states

∑
R η

(1)
R ρR

1 ρR
23,

∑
R′ η

(2)
R′ ρR′

2 ρR′
13,

and
∑

R′′ η
(3)
R′′ ρ

R′′
3 ρR′′

12 by k = 1, 2, 3, respectively. Thus, we
denote B1,1 to be the quantity B1 that is evaluated using
the biseparable state

∑
R η

(1)
R ρR

1 ρR
23. Then, for the biseparable

mixture,

B1 �
∑

k

PkB1,k � P1B1,1 � P1CJ .

Similarly, for a biseparable mixture, B2 � P2CJ and B3 �
P3CJ . In order to include all possible biseparable mixtures, we
consider

B1 + B2 + B3 � (P1 + P2 + P3)CJ = CJ

using
∑

k Pk = 1. Thus, all biseparable mixtures are excluded
when this inequality is violated. �

This inequality has been derived in Ref. [42] in a similar
context to give a condition for genuine tripartite steering.
Steering is a form of entanglement linked to the Einstein-
Podolsky-Rosen paradox, and hence a steering criterion will
also be a criterion for entanglement [65]. The entanglement
criterion might be made stronger, if one can make use of
uncertainty relations for the operators O(k)

lm and P(k)
lm once these

are established for a given scenario.
It is straightforward to see that the inequality is violated for

the GHZ state [74], defined as

|ψ〉 = 1√
2

(|↑↑↑〉 − |↓↓↓〉), (25)

where |↑↑↑〉 (| ↓↓↓〉) is the state with z-spins up (down) for
all subsystems k = 1, 2, 3. This is because, as is well known
for the GHZ state, the z-spin, x-spin, and y-spin of any of
the three subsystems can be inferred by joint measurements
made on the other two subsystems. This result is clear for
inferring the value of Jz,k . The inequality (20) applies for all
spin pairs, and if we replace Jy,i with Jz,i, it is clear that by
taking P(k)

lm = J (l )
z , one can achieve �2(Jz,k − P(k)

lm ) = 0 for
each k. For inferring Jx,k , it is also clear, since the GHZ
state is an eigenstate of Jx,1Jx,2Jx,3 with eigenvalue −1. Thus,
O(k)

lm is the measurement given as follows: Measure the spin
Jx of each of the other subsystems l and m, and assign the
value of the measurement by multiplying the spins values
together. If the product is +1, then the outcome of O(k)

lm is
−1. If the product is −1, then the outcome of O(k)

lm is +1.
In this way, we see that �2(Jx,k − O(k)

lm ) = 0, for each k =

1, 2, 3 with l 	= m 	= k. Hence, the inequality (20) is violated,
giving a simple method to detect the genuine tripartite en-
tanglement of GHZ states (or approximate GHZ states) in an
experiment.

We may ask whether the inequality is also violated for the
W state [75] given by

|W 〉 = 1√
3

(|↑↓↓〉 + |↓↑↓〉 + |↓↓↑〉). (26)

Here we will use the criterion expressed in Pauli spins, so that
Bi = �2(σz,i − O(1)

jk ) + �2(σx,i − P(1)
jk ) where i 	= j 	= k. The

conditions then utilize CJ = 1 since J = 1/2 [72]. The spin σz

of system 1 can be inferred by measuring the spin product of
2 and 3. We find that �2(σz,1 − O(1)

23 ) = 0. Now consider that
the spins σx of systems 2 and 3 are simultaneously measured.
We consider the measurement P(1)

23 to have an outcome of 1
if both spins are measured as +1, an outcome −1 if the spins
are measured as −1, and zero otherwise. Simple calculation
tells us that �2(σx,1 − P(1)

23 ) = 1
2 . By symmetry of the W state,

this result holds for all permutations of the subsystems. Thus
we see that we are able to confirm entanglement across each
bipartition, since the condition (22) for Pauli spins reduces
to B1 � 1. Since we find B1 = B2 = B3 = 1

2 , the condition
for tripartite inseparability is satisfied. If in an experiment
we are able to verify a pure state, then this implies gen-
uine tripartite entanglement. We note the above condition
for mixed states, B1 + B2 + B3 < 1 is not satisfied. The W
state (26) is genuinely tripartite entangled. That the condition
is not satisfied merely reflects that the criteria we derive
are sufficient, but not necessary, to certify genuine tripartite
entanglement.

Svetlichny derived conditions to detect the genuine tripar-
tite entanglement of three spin 1/2 systems in the form of
Bell inequalities [32]. Further criteria for the certification of
the genuine tripartite entanglement of GHZ, W and cluster
states have been derived in Refs. [20,35,63]. The method
given above is not necessarily advantageous over these earlier
methods. It can be readily extended [by applying uncertainty
relation (19)], however, to conditions for higher J .

IV. CRITERIA FOR GENUINE N-PARTITE
ENTANGLEMENT

The method used in Sec. II to derive criteria for genuine
tripartite entanglement can be extended to N-partite systems.
The complication arises in that the set of possible bipartitions
scales as (2N−1 − 1), and every bipartition has to be taken into
account in the derivation of these criteria that certify genuine
N-partite entanglement.

Here, we generalize the criterion in Eq. (4) for N-partite
spin systems.

Criterion 6. We denote each bipartition by Sr − Ss, where
Sr and Ss are two sets of modes in the partitions in a specific
bipartition. Then the violation of the inequality

�2u + �2v � min{SB} (27)

implies genuine N-partite entanglement, where
SB is the set of values of the quantity
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(| ∑m
kr=1 hkr gkr 〈Jz,kr 〉| + | ∑n

ks=1 hks gks〈Jz,ks〉|) defined for each
partition Sr − Ss, the indices kr and ks summing over the m
modes in Sr and the n modes in set Ss respectively. The proof
for this inequality follows from the proof for the inequality in
Eq. (4).

Criterion 7. Similarly, the violation of the corresponding
product inequality

�u�v � 1
2 min{SB} (28)

implies genuine N-partite entanglement.

A. Criteria for genuine four-partite entanglement

1. Sum and product inequalities

Criterion 8. For N = 4, there will be 24−1 − 1 = 7 bipartitions. They are, using the Sr − Ss notation, 1 − 234, 2 − 134,
3 − 124, 4 − 123, 12 − 34, 13 − 24, and 14 − 23. The sum inequality in Eq. (27) is then

�2u + �2v � min{|g1h1〈Jz,1〉| + |g2h2〈Jz,2〉 + g3h3〈Jz,3〉 + g4h4〈Jz,4〉|,
|g2h2〈Jz,2〉| + |g1h1〈Jz,1〉 + g3h3〈Jz,3〉 + g4h4〈Jz,4〉|,
|g3h3〈Jz,3〉| + |g1h1〈Jz,1〉 + g2h2〈Jz,2〉 + g4h4〈Jz,4〉|,
|g4h4〈Jz,4〉| + |g1h1〈Jz,1〉 + g2h2〈Jz,2〉 + g3h3〈Jz,3〉|,
|g1h1〈Jz,1〉 + g2h2〈Jz,2〉| + |g3h3〈Jz,3〉 + g4h4〈Jz,4〉|,
|g1h1〈Jz,1〉 + g3h3〈Jz,3〉| + |g2h2〈Jz,2〉 + g4h4〈Jz,4〉|,
|g1h1〈Jz,1〉 + g4h4〈Jz,4〉| + |g2h2〈Jz,2〉 + g3h3〈Jz,3〉|} ≡ min{SB,4}. (29)

Criterion 9. Similarly, the product inequality for genuine four-partite entanglement is given by

�u�v � 1
2 min{SB,4}, (30)

where SB,4 is defined in Eq. (29). The violation of the inequality in Eq. (29) or Eq. (30) implies the presence of genuine four-
partite entanglement.

2. Criteria involving van Loock-Furusawa inequalities

Van Loock and Furusawa [18] derived a set of six inequalities to rule out four-partite inseparability. We can derive similar
inequalities to certify genuine four-partite entanglement. The six spin inequalities are given by

BI ≡ �2(Jx,1 − Jx,2) + �2(Jy,1 + Jy,2 + g3Jy,3 + g4Jy,4) � (|〈Jz,1〉| + |〈Jz,2〉|),
BII ≡ �2(Jx,2 − Jx,3) + �2(g1Jy,1 + Jy,2 + Jy,3 + g4Jy,4) � (|〈Jz,2〉| + |〈Jz,3〉|),

BIII ≡ �2(Jx,1 − Jx,3) + �2(Jy,1 + g2Jy,2 + Jy,3 + g4Jy,4) � (|〈Jz,1〉| + |〈Jz,3〉|),
BIV ≡ �2(Jx,3 − Jx,4) + �2(g1Jy,1 + g2Jy,2 + Jy,3 + Jy,4) � (|〈Jz,3〉| + |〈Jz,4〉|),
BV ≡ �2(Jx,2 − Jx,4) + �2(g1Jy,1 + Jy,2 + g3Jy,3 + Jy,4) � (|〈Jz,2〉| + |〈Jz,4〉|),

BV I ≡ �2(Jx,1 − Jx,4) + �2(Jy,1 + g2Jy,2 + g3Jy,3 + Jy,4) � (|〈Jz,1〉| + |〈Jz,4〉|). (31)

Criterion 10. The violation of any three of the above inequalities implies that the four-partite system is not in any biseparable
states and thus signifies four-partite inseparability (refer Ref. [18] for the proof). Genuine four-partite entanglement is verified if
the inequality

6∑
J=1

BJ � |〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉| + |〈Jz,4〉| (32)

is violated. These criteria are sufficient but not necessary conditions for four-partite inseparability or genuine four-partite
entanglement.

Proof. For brevity, we index the biseparable states ρ1ρ234, ρ2ρ134, ρ3ρ124, ρ4ρ123, ρ12ρ34, ρ13ρ24, and ρ14ρ23 by k =
1, 2, . . . , 7, respectively. Let BI,1 be the quantity BI that is evaluated using the biseparable state ρ1ρ234. Then

BI �
∑

k

PkBI,k � P1BI,1 + P2BI,2 + P6BI,6 + P7BI,7 � (P1 + P2 + P6 + P7)(|〈Jz,1〉| + |〈Jz,2〉|). (33)

Similarly, BII � (P2 + P3 + P5 + P6)(|〈Jz,2〉| + |〈Jz,3〉|), BIII � (P1 + P3 + P5 + P7)(|〈Jz,1〉| + |〈Jz,3〉|), BIV � (P3 + P4 +
P6 + P7)(|〈Jz,3〉| + |〈Jz,4〉|), BV � (P2 + P4 + P5 + P7)(|〈Jz,2〉| + |〈Jz,4〉|), and BV I � (P1 + P4 + P5 + P6)(|〈Jz,1〉| + |〈Jz,4〉|). In
order to include all possible mixtures, we take the sum of BI , BII , BIII , BIV , BV , and BV I . The inequality they satisfy, derived
below, provides a criterion for genuine four-partite entanglement. The violation of the following inequality implies genuine
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four-partite entanglement:

6∑
J=1

BJ � (P1 + P2 + P3 + P4 + P5 + P6 + P7)(|〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉| + |〈Jz,4〉|) + (2P1 + P5 + P6 + P7)|〈Jz,1〉|
+ (2P2 + P5 + P6 + P7)|〈Jz,2〉| + (2P3 + P5 + P6 + P7)|〈Jz,3〉| + (2P4 + P5 + P6 + P7)|〈Jz,4〉|

� (P1 + P2 + P3 + P4 + P5 + P6 + P7)(|〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉| + |〈Jz,4〉|) = |〈Jz,1〉| + |〈Jz,2〉| + |〈Jz,3〉| + |〈Jz,4〉|,
(34)

where
∑

k Pk = 1. �

V. APPLICATIONS

We now show how one may create N-partite entangled
states satisfying the criteria derived in Secs. II and IV. In
Sec. V A we outline optical experiments involving polariza-
tion entanglement, where the measured observables at each
site are the Stokes operators for two polarization modes. We
then consider in Sec. V B experiments that entangle spatially
separated atomic ensembles. In Sec. V C we analyze recent
experiments that generate entanglement between spatially
separated clouds of atoms formed from a spin-squeezed Bose-
Einstein condensate. Here, for each separated subsystem, the
measured observable is a Schwinger operator involving two
internal atomic levels. The Schwinger and Stokes operators
satisfy the same commutation relation as spin operators, and
hence all the criteria derived in Secs. II–IV are applicable.

A. Polarization entanglement

The polarization of a quantum state can be characterized
by the Stokes operators defined as [76]

Sx = a†
H aH − a†

V aV , Sy = a†
H aV eiθ + a†

V aH e−iθ ,

Sz = ia†
V aH e−iθ − ia†

H aV eiθ , (35)

where aH and aV are the annihilation operators of the hori-
zontal and vertical polarization modes, respectively, and θ is
the phase difference between these polarization modes. In the
work of Bowen et al. [76], bipartite polarization entanglement
was created by first generating CV bipartite entanglement in

FIG. 1. Generation of the tripartite-entangled CV Greenberger–
Horne–Zeilinger (GHZ) state. The configuration uses three
squeezed-vacuum inputs and two beam splitters (BS) with reflectiv-
ities R1 = 1/3 and R2 = 1/2. The xi and pi are the two orthogonal
quadrature-phase amplitudes of the spatially separated optical modes
i (i = 1, 2, 3).

the quadrature degree of freedom, and then transferring the
entanglement into the polarization degree of freedom.

This scheme can be extended to generate genuine tripartite
polarization entanglement. Genuine CV tripartite entangle-
ment in the quadratures is first created in an optical setup
involving squeezed vacuums and beam splitters, as shown in
Figs. 1 and 2. The three entangled modes from the outputs of
these beam splitters are horizontally polarized. Each of these
modes is subsequently mixed with a bright coherent beam
with vertical polarization using a polarizing beam splitter.
At each site i = 1, 2, 3 prior to mixing, one can define pairs
of orthogonally polarized modes (with annihilation operators
aHi, aV,i). The choice of polarizer angle determines which
Stokes observable is measured, after a number difference
is taken. The final readout is given as a difference current.
After the mixing, the genuine CV entanglement has been
transformed into genuine tripartite polarization entanglement,
as illustrated in Fig. 3.

To verify the tripartite polarization entanglement, we con-
sider the sum inequality of Criterion 1 (Eq. (4)):

�2[Sy,1 + h(Sy,2 + Sy,3)] + �2[Sz,1 + g(Sz,2 + Sz,3)]

� 2min
{
α2

v + 2|gh|α2
v , |gh|α2

v + α2
v |1 + gh|}, (36)

where αv is the coherent amplitude of the vertically polarized
coherent beam. The variances are

�2[Sy,1 + h(Sy,2 + Sy,3)] = α2
v�

2[PH,1 + h(PH,2 + PH,3)],

�2[Sz,1 + g(Sz,2 + Sz,3)] = α2
v�

2[XH,1 + g(XH,2 + XH,3)].
(37)

FIG. 2. Generation of the tripartite entangled CV Einstein–
Podolsky–Rosen (EPR)-type state. The configuration uses two
squeezed-vacuum inputs, a coherent-vacuum input, and two beam
splitters (BS) with reflectivities R1 = R2 = 1/2. xi and pi are the two
orthogonal quadrature-phase amplitudes of the spatially separated
optical modes i (i = 1, 2, 3).
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FIG. 3. The experimental setup to generate genuine tripartite po-
larization entanglement from genuine tripartite CV entanglement. In
this schematic diagram, an EPR-type genuine tripartite-entanglement
is generated as shown in Fig. 2. The outputs are mixed with coherent
fields, as described in the text. The Si,k denotes the polarization Sx,k ,
Sy,k , or Sz,k for the site k (k = 1, 2, 3). The (gk, hk ) are the gains used
in the criteria (1 and 3) and are introduced in the final currents. By
using a third squeezed input state at the second beam splitter instead
of the vacuum input, the CV GHZ genuine tripartite entanglement
(refer to Fig. 1) can be transformed into an equivalent genuine
tripartite polarization entanglement. Alternatively, by using only one
squeezed input, one can transfer the genuine tripartite entanglement
depicted in Fig. 4.

Here Sx,k , Sy,k , and Sz,k are the Stokes operators defined
in (35) for each mode pair at site k. XH,k and PH,k are the X
and P quadratures for beam k, and h and g are gain factors
defined in the criteria of Eq. (4), where we take h1 = 1, h2 =
h3 = h and g1 = 1, g2 = g3 = g. Note that the commutation
relations satisfied by these Stokes operators are [Si, S j] =
2iεi jkSk , which differ from the spin commutation relations by
a factor of 2. As a result, the sum and product inequalities
below have an extra factor of 2 compared to the sum and
product inequalities in Eqs. (4) and (12), respectively. With
these variances (Eq. (37)), the sum inequality Eq. (4) and the
product inequality Eq. (12) are, respectively, transformed into
a continuous-variable genuine tripartite entanglement sum
and product criterion given in Ref. [14], according to

�2[Sy,1 + h(Sy,2 + Sy,3)] + �2[Sz,1 + g(Sz,2 + Sz,3)]

2α2
vmin{1 + 2|gh|, |gh| + |1 + gh|}

= �2[XH,1+g(XH,2+XH,3)]+�2[PH,1+h(PH,2+PH,3)]

2min{1 + 2|gh|, |gh| + |1 + gh|}
� 1 (38)

and
�[Sy,1 + h(Sy,2 + Sy,3)]�[Sz,1 + g(Sz,2 + Sz,3)]

min
{
α2

v + 2
∣∣gh

∣∣α2
v ,

∣∣gh
∣∣α2

v + α2
v

∣∣1 + gh
∣∣}

= �[XH,1 + g(XH,2 + XH,3)]�[PH,1 + h(PH,2 + PH,3)]

min{1 + 2|gh|, |gh| + |1 + gh|}
� 1. (39)

TABLE I. Values of the gains g and h that minimize the variance-
sum and variance-product terms in Criteria 1 and 3 for each config-
uration, CV GHZ and CV EPR. Here, r is the squeezing parameter.
Each squeezed vacuum input has a quadrature variance of �x = e∓r

and �p = e±r (the sign depends on the orientation of the squeezing).
For simplicity, we take all the squeezed vacuum inputs to have the
same squeezing strength r. The CV GHZ and CV EPR configurations
are depicted in Figs. 1 and 2 respectively.

CV GHZ CV EPR

r g h g h

0 0 0 0 0
0.25 0.36 −0.27 0.33 −0.33
0.50 0.68 −0.40 0.54 −0.54
0.75 0.86 −0.46 0.64 −0.64
1.00 0.95 −0.49 0.68 −0.68
1.50 0.99 −0.50 0.70 −0.70
2.00 1.00 −0.50 0.70 −0.70

Hence, any CV genuine tripartite quadrature entanglement of
the original fields then implies genuine tripartite polarization
entanglement of the final output fields.

There are two types of states that show genuine tripartite
entanglement in the quadratures. These are the CV GHZ-
and CV EPR-type states, defined in Refs. [18] and [14], and
illustrated in Figs. 1 and 2, respectively. It has been shown
previously that these two states violate both the quadrature
sum inequality of Eq. (38) and the product inequality of
Eq. (39) with specific values for the gains, g1 = h1 = 1 and
gi>1 = g, hi>1 = h [14]. The gains g, h are chosen such that
the variance sum and product are minima, and are given in
Table I. With these gain values, as shown in Ref. [14], in-
equalities (38) and (39) (and hence Inequalities (4) and (12) of
Criteria 1 and 3) are always violated for any nonzero squeez-
ing of the squeezed vacuum inputs, implying the presence of
genuine tripartite entanglement. By the same transformation
of quadrature into polarization entanglement, the inequalities
of Criteria 2 and 4 are also useful in showing genuine tripartite
entanglement. The optimal gains for these inequalities can be
found in Ref. [14].

Genuine tripartite entanglement is also created using a
third configuration involving only one squeezed input, as
shown in Fig. 4. Often, strong Einstein–Podolsky–Rosen
(EPR) correlations are created between output modes by
combining two squeezed vacuum inputs across a beam split-
ter [19,73]. It is also possible to create EPR-entangled
modes using only one squeezed vacuum input [15]. While
the EPR correlations are weaker, the entanglement is suffi-
ciently strong that a subsequent beam-splitter interaction with
a nonsqueezed vacuum input can create genuine tripartite
entanglement. A summary of this calculation is given in
Appendix A 3, where we show how the entanglement that is
generated can be detected by Criterion 5 of Ref. [14] with
the gains h = −1/2 and g = 1/2. This tripartite entanglement
is not sufficiently strong to generate tripartite EPR-steering
correlations, but can be transformed into genuine tripartite
polarization-entanglement using the configuration of Fig. 3.
The spin sum inequality given by Criterion 1 is then useful to
detect the genuine tripartite entanglement.
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FIG. 4. Generation of tripartite entanglement using a squeezed
vacuum beam with squeezing along the P (or X ) quadrature. All
other beam-splitter ports have vacuum inputs. The reflectivities for
the first and second beam splitters are R1 = 1/3 and R2 = 1/2,
respectively. A calculation of the genuine tripartite entanglement
generated from this configuration is given in Appendix A 3.

B. Tripartite entanglement of atomic ensembles

Tripartite entanglement can also be created among three
atomic ensembles by successively passing polarized light
through the ensembles. Here we outline a generalization of the
scheme of Julsgaard et al. that creates bipartite entanglement
between two atomic ensembles [49]. The observables for the
atomic ensembles are the collective Schwinger spins defined
by the following operators:

Jx = 1
2 (a†

+a+ − a†
−a−), Jy = 1

2 (a†
+a−eiθ + a†

−a+e−iθ ),

Jz = 1
2 (ia†

−a+e−iθ − ia†
+a−eiθ ), (40)

which satisfy the commutation relations [Ji, Jj] = iεi jkJk .
Here a+, a− are the (destruction) boson operators for atomic
states corresponding to “spin-up” and “spin-down” along the
spin-x axis, respectively. We label the operators for each
ensemble by the subscript k (k = 1, 2, 3).

First, three atomic ensembles are prepared such that the
mean collective spins for these atomic ensembles are pointing
along the x axis: Jx1 = −2Jx2 = −2Jx3 = Jx. Following [49],
an off-resonant polarized pulse of light (described by the
Stokes operators of Eq. (35)) is transmitted through the atomic
ensembles. The light-spin interaction is given by the Hamilto-
nian Hint = ωSzJz123, where Jz123 = Jz1 + Jz2 + Jz3. The light
variable then evolves in terms of the inputs to give an output
of

Sout
y = Sin

y + αJz123, (41)

while the spin variables evolve as

Jout
y1 = J in

y1 + βSz, Jout
y2 = J in

y2 − 1
2βSz, Jout

y2 = J in
y2 − 1

2βSz.

(42)

By measuring Sout
y , Jz1 + Jz2 + Jz3 can be inferred. Also, Jy1 +

Jy2 + Jy3 can be measured using another light pulse without
affecting the measured value of Jz1 + Jz2 + Jz3. This is possi-
ble because [Jz1 + Jz2 + Jz3, Jy1 + Jy2 + Jy3] = 0. Hence,
the quantity �2(Jz1 + Jz2 + Jz3) + �2(Jy1 + Jy2 + Jy3)
can be arbitrarily small. Using the sum inequality
Eq. (4) and product inequality Eq. (12) with gain
values gi = hi = 1, (i = 1, 2, 3), a genuine tripartite
entanglement is certified among the atomic ensembles if

�2(Jz1 + Jz2 + Jz3) + �2(Jy1 + Jy2 + Jy3) < 2Jx for the sum
inequality and �(Jz1 + Jz2 + Jz3)�(Jy1 + Jy2 + Jy3) < Jx for
the product inequality.

C. Entangled Bose-Einstein condensate clouds

In the experiment of Kunkel et al. [52], a 87Rb Bose-
Einstein condensate is first generated in the magnetic sub-
state mF = 0 of the F = 1 hyperfine manifold, before a
spin-squeezing operation coherently populates the mF = ±1
atomic states and entangles all the atoms in the condensate.
The condensate is then released from the trap and expands
during a time-of-flight. After a time, N spatially separated
regions (partitions) of the atomic cloud are identified. The
N-partite entanglement among these partitions is verified by
measuring F0,k and Fπ/2,k for each partition k, where Fφ,k =
[(a†

+1 + a†
−1)a0eiφ + H.c.]/

√
2, a†

j is the creation operator for
a state mF = j (H.c. refers to hermitian conjugate). These op-
erators satisfy the commutation relation [F0,k, Fπ/2,k] = 2iN̂k ,
where N̂k is the number operator for the partition k [52].
By applying π/2 pulses and rotations, these observables are
measured by reading out the population difference between
the states mF = ±1. If the number of atoms in group mF =
0 is large, then the measurement becomes similar to a ho-
modyne detection of the amplitudes [(a†

+1 + a†
−1)eiφ + H.c.]

associated with the atoms of each of the partitions, carried out
with the second larger group of atoms (given by a0) acting as
the local oscillator, as explained in Refs. [77,78]. More gen-
erally, spin relations must be used. In the atomic experiment
of Kunkel et al., the genuine N-partite entanglement (up to
N = 5) mutually shared among the N clouds is certified using
criteria similar to that derived in Ref. [14], for quadrature
phase amplitudes, but properly accounting for the spin and
number operators that apply in this case.

In another experiment based on the two hyperfine states
|1〉 = |F = 1, mF = −1〉 and |2〉 = |F = 2, mF = 1〉 of a
87Rb BEC, Fadel et al. [50] prepare the system in an
atomic spin-squeezed state and allow the condensate to ex-
pand into two well-separated partitions (which we denote
A and B). This creates a bipartite entanglement between
the two clouds, which is detected using the entanglement
criterion [17,50]:

�(gzSz,A+Sz,B)�(gySy,A+Sy,B)< 1
2 (|gzgy||〈Sx,A〉|+|〈Sx,B〉|).

(43)

Here, Sz,A/B and Sy,A/B are the collective Schwinger spin
operators [79,80] along the z axis and y axis, respectively, for
partition A/B. Explicitly the collective spin operator Sz,A/B is
given as the number difference

Sz,A/B = 1
2

(
N1

z,A/B − N2
z,A/B

)
, (44)

where N1
z,A/B and N2

z,A/B are the number of atoms in the internal
spin states |1〉 and |2〉, respectively, along the spin z axis, for
partition A/B. The collective spin operators along the y axis
Sy,A/B are defined accordingly following Eq. (40), but noting
the switching of the labels x, y, z. Other proposals exist to
create a similar bipartite entanglement that can be detected
using a similar spin criterion [81–83].
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The experiment of Fadel et al. observed bipartite entan-
glement and EPR steering but did not investigate tripartite
entanglement. It is likely, however, that one could detect
a genuine tripartite entanglement for clouds generated by
further splitting the BEC. This would seem possible, given
the result obtained in the Appendix A 3 and depicted in Fig. 4,
where tripartite entanglement is generated using only one
squeezed input, followed by a sequence of “splitting” of the
modes using beam-splitter interactions. This works, because
entangled modes can be created from a beam splitter with only
one squeezed vacuum input [15]. The tripartite entanglement
created in the three modes of Fig. 4 can be detected using
Criterion 5 of Ref. [14] with the gains h = −1/2 and g = 1/2.
If one considers transforming into an equivalent tripartite
entanglement in the Schwinger operators, then the suitable
criterion would be Criterion 3 in Eq. (12) with the gains
h = −1/2 and g = 1/2.

A realization of a beam-splitter interaction for the BEC
can be obtained in several ways. An analogy of optical beam
splitters with the splitting of a condensate (which is envisaged
to be a realization of the final beam splitter of Fig. 4) is
explained by Killoran et al. [84]. The splitting into two modes
is described by the interaction Hamiltonian

HI+ = eiφa†
+1a+2 + e−iφa+1a†

+2, (45)

where a+1, a+2 are the annihilation operators for modes la-
beled A+,1 and A+,2 respectively, and φ is the phase difference
between these two modes. The transformation is equivalent to
the beam splitter relations

a+1,out = a+1 cos τ − ieiφa+2 sin τ,

a+2,out = a+2 cos τ − ie−iφa+1 sin τ, (46)

where τ is the interaction time and a+1,out = a+1(τ ), a+2,out =
a+2(τ ). One can adjust the effective transmission to reflec-
tion ratio by adjusting the interaction time between the two
modes.

We thus consider two separated clouds A and B that show
spin entanglement with respect to the difference operators
gzSz,A + Sz,B and gySy,A + Sy,B so that the criterion of Eq. (43)
is satisfied. These two clouds are analogous to the entangled
outputs after the first beam splitter BS of the configuration
shown in Fig. 4. Each cloud is identified with Schwinger spin
observables. For example, Sz,A and Sy,A are measurements that
can be made on cloud A, where Sz,A = 1

2 (a†
+a+ − a†

−a−) and
a+, a− correspond to the two atomic hyperfine states, of atoms
in the cloud A. To generate the tripartite entanglement, the
system A is transformed (split into two) according to a beam-
splitter interaction modeled as Eq. (45). Since the splitting is
insensitive to the internal spin degrees of freedom, there is a
similar independent interaction for a−. We denote operators
for the outputs (given according to the transformation (46))
by a±1 and a±2, dropping the subscript “out” for simplicity.
The output fields a±1 and a±2, associated respectively with
A1 and A2, are spatially separated, so that three separate
clouds are created, labeled A1, A2, and B, these being anal-
ogous to the three outputs of the configuration of Fig. 4.
The final Schwinger operators at A1 and A2 are defined by
the a±1 at A1, and the a±2 at A2. The different Schwinger
components can be measured using Rabi rotations or equiv-
alent [50,78]. The calculation carried out in Appendix A 5
predicts a tripartite entanglement between the three clouds
that could be detected by Criteria 1 and 3. Using Eqs. (A8)
and (A9) in Appendix A 5, the inequality of Criterion 3
is then

�[gz(Sz,A1 + Sz,A2) + Sz,B]�[gy(Sy,A1 + Sy.A2) + Sy,B]

� 1

2
min{|gzgy||〈Sx,A1〉 + 〈Sx,A2〉| + |〈Sx,B〉|, |(gzgy〈Sx,A1〉 + 〈Sx,B〉)| + |gzgy||〈Sx,A2〉|}. (47)

The violation of this inequality implies genuine tripartite
entanglement. We show in Appendix A 5 that, assuming the
number of atoms is large, Sz,A1 + Sz,A2 ≈ Sz,A, Sy,A1 + Sy,A2 ≈
Sy,A, and Sx,A1 + Sx,A2 ≈ Sx,A. The criterion for genuine tri-
partite entanglement will therefore be satisfied if there is
sufficient entanglement as measured by the bipartite criterion
given in Eq. (43). Assuming Sx,A and Sx,B correspond to
the Bloch vectors, with the directions of axes being chosen
to ensure 〈Sx,A〉 and 〈Sx,B〉 are positive, we see that the
beam-splitter transformation (refer to Appendix A 5) ensures
the signs of Sx,A1 and Sx,A2 are also positive. The right-side
of the inequality is then either precisely that given by the
right-side of Eq. (43) (if gzgy > 0) or is less than this value
(if gzgy < 0).

We note from the results reported in Refs. [14,18,24]
that we can generate N-partite entangled states (N > 3) by
successive use of beam splitters with vacuum inputs, once an
initial entangled state is created from two squeezed inputs or
some other means. This has been implemented for a BEC (for
N = 5) [52]. We show in Appendix A 4 that one can also

create genuinely four-partite entangled states from a single
squeezed input (refer to Fig. 5), followed by multiple beam-
splitter combinations and vacuum inputs (with no squeezing).
This may provide an avenue (using successive splittings) for
the generation of multipartite entanglement in experiments
such as reported in Ref. [50].

VI. CONCLUSION

In summary, we have derived several different criteria for
certifying genuine N-partite entanglement using spin mea-
surements. The criteria are inequalities expressed in terms
of variances of spin observables measured at each of the N
sites.

In Secs. II and IV, we derive criteria based on the standard
spin uncertainty relation, involving |〈Jz〉|. These criteria are
valid for any systems, provided at each site the outcomes
are reported faithfully, as results of accurately calibrated
quantum measurements [9,85]. We present in Sec. V three
examples of application of these criteria. In these examples,
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FIG. 5. Generation of four-partite entanglement using a
squeezed beam along the P (or X ) quadrature. All other beam-splitter
ports have vacuum inputs. The reflectivities for the first, second,
and third beam splitters are R1 = 1/4, R2 = 1/3, and R3 = 1/2,
respectively.

entanglement is created that can be detected using Stokes or
Schwinger operators defined at each site. These observables
arise naturally in atomic ensembles, where the creation and
detection of multipartite entanglement is important for testing
the quantum mechanics of massive systems. The criteria we
develop may be useful for this purpose. In particular, we
specifically propose how to extend the experiments of Juls-
gaard et al. [49] and Fadel et al. [50], to generate three or more
genuinely entangled spatially-separated ensembles of atoms.
The experiment of Kunkel et al. [52] succeeded in generating
genuine five-partite entanglement.

Where Stokes operators are defined for atomic systems,
it is possible to introduce a normalization with respect to
total atom number. This concept was introduced by He
et al. [68,81] and Żukowski et al. [86–89]. These authors
show how the detection of entanglement and nonlocality can
be enhanced using such a normalization. It is likely that
the criteria derived in Secs. II and IV may also be further
improved using this technique.

In Sec. III we outlined criteria derived from the planar spin
uncertainty relation �2Jx + �2Jy � CJ valid for a system of
fixed spin J . This is useful for states where 〈Jz〉 = 0, such
as the GHZ states. Such criteria were developed previously
for genuine tripartite steering. Although genuine tripartite
steering implies genuine tripartite entanglement, we have
extended the results of the earlier work by giving details of
the application of these criteria to certify the genuine tripartite
entanglement and the full tripartite inseparability of the GHZ
and W states, respectively. While other methods exist to
detect the genuine tripartite entanglement of these states (for
example, Refs. [33,35,63]), the criteria we present in Sec. III
are readily extended to higher spin J .
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APPENDIX

1. Lower bound of the sum inequality for an arbitrary bipartition

We derive the inequality in Eq. (7) for an arbitrary pure state bipartition ρ
ζ

k ρ
ζ

lm:

�2uζ + �2vζ = �2(hkJx,k ) + �2(hlJx,l + hmJx,m) + �2(gkJy,k ) + �2(glJy,l + gmJy,m)

� |gkhk[Jx,k, Jy,k]| + |glhl [Jx,l , Jy,l ] + gmhm[Jx,m, Jy,m]|
= |gkhk〈Jz,k〉| + |glhl〈Jz,l〉 + gmhm〈Jz,m〉|. (A1)

Here the uncertainty relation �2(hJx ) + �2(gJy) � 〈|gh[Jx, Jy]|〉 is used to obtain the first inequality in Eq. (A1). The spin
commutation relation [Jx, Jy] = iJz is used in the last line.

2. Lower bound of the product inequality for an arbitrary bipartition

We derive the inequality in Eq. (14) for an arbitrary bipartition ρ
ζ

k ρ
ζ

lm:

�2uζ �
2vζ = [�2(hkJx,k ) + �2(hlJx,l + hmJx,m)][�2(gkJy,k ) + �2(glJy,l + gmJy,m)]

= �2(hkJx,k )�2(gkJy,k ) + �2(hlJx,l + hmJx,m)�2(glJy,l + gmJy,m)

+ �2(hlJx,l + hmJx,m)�2(gkJy,k ) + �2(hkJx,k )�2(glJy,l + gmJy,m)

� �2(hkJx,k )�2(gkJy,k ) + �2(hlJx,l + hmJx,m)�2(glJy,l + gmJy,m)

+ 2�(hlJx,l + hmJx,m)�(gkJy,k )�(hkJx,k )�(glJy,l + gmJy,m)

= [�(hkJx,k )�(gkJy,k ) + �(hlJx,l + hmJx,m)�(glJy,l + gmJy,m)]2

�
[ |gkhk〈Jz,k〉|

2
+ |glhl〈Jz,l〉 + gmhm〈Jz,m〉|

2

]2

. (A2)
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In going from the second equality to the first inequality, the inequality for two real numbers x and y, x2 + y2 � 2xy, is used.
The uncertainty relation in the final line is �(hJx )�(gJy) � 〈|gh[Jx, Jy]|〉/2.

3. Generating genuine tripartite entangled states using three beam splitters and one squeezed input

Here we consider the configuration of Fig. 4. The output mode operators aout, bout, and cout are

aout = 1√
3

ain +
√

2

3
bin, bout = 1√

2

(√
2

3
ain − 1√

3
bin

)
+ 1√

2
cin, cout = 1√

2

(√
2

3
ain − 1√

3
bin

)
− 1√

2
cin. (A3)

Now we consider Xa,out − (Xb,out + Xc,out)/2 and Pa,out + (Pb,out + Pc,out )/2. Their variances are

�2

[
Xa,out − (Xb,out + Xc,out )

2

]
= 3

2
�2Xb,in = 3

2
, �2

[
Pa,out + (Pb,out + Pc,out )

2

]
= 2

3
�2Pa,in + 1

6
�2Pb,in = 2

3
e−2r + 1

6
,

(A4)

and their sum is

�2

[
Xa,out − (Xb,out + Xc,out)

2

]
+ �2

[
Pa,out + (Pb,out + Pc,out)

2

]
= 10

6
+ 2

3
e−2r, (A5)

giving a minimum of 10/6 = 1.6667 for large squeezing parameter r. The sum inequality for those variances is
�2[Xa,out − (Xb,out + Xc,out )/2] + �2[Pa,out + (Pb,out + Pc,out)/2] � 2, as shown in Criterion 5 of Ref. [14] with the gains h =
−1/2 and g = 1/2. This inequality is violated, and hence the final output state in Fig. 4 is genuinely tripartite entangled. We can
also consider the input to be squeezed along X , in which case the gains g and h will have an opposite sign.

4. Generating genuine four-partite entangled states using four beam splitters and one squeezed input

Here we consider the configuration of Fig. 5. The output mode operators aout, bout, cout, and dout are

aout = 1√
4

ain +
√

3

4
bin, bout = 1√

3

(√
3

4
ain − 1√

4
bin

)
+

√
2

3
cin, cout = 1√

3

(√
3

4
ain − 1√

4
bin

)
− 1√

6
cin + 1√

2
din,

dout = 1√
3

(√
3

4
ain − 1√

4
bin

)
− 1√

6
cin − 1√

2
din. (A6)

Now we consider Xa,out − (Xb,out + Xc,out + Xd,out )/3 and Pa,out + (Pb,out + Pc,out + Pd,out)/3. Their variances are

�2

[
Xa,out − (Xb,out + Xc,out + Xd,out )

3

]
= 4

3
�2Xb,in = 4

3
,

�2

[
Pa,out + (Pb,out + Pc,out + Pd,out )

3

]
= �2Pa,in + 1

3
�2Pb,in = e−2r + 1

3
, (A7)

and their sum is 5/3 + e−2r , giving a minimum of 5/3 = 1.6667 for large squeezing parameter r. The sum inequality for those
variances is �2[Xa,out − (Xb,out + Xc,out + Xd,out )/3] + �2[Pa,out + (Pb,out + Pc,out + Pd,out )/3] � 16/9, as shown in Criterion 8
of Ref. [14] for N = 4 and with the gains h = −1/3 and g = 1/3. This inequality is violated, and hence the final output state
in Fig. 5 is genuinely four-partite entangled. We note we can also consider the input to be squeezed along X , in which case the
gains g and h will have an opposite sign.

5. Beam splitter operation as a model for splitting BEC clouds

We define the mode operators a+ = (a+1 − ia+2)/
√

2 and a− = (a−1 − ia−2)/
√

2, and their corresponding auxiliary mode
operators avac+ = (a+1 − ia+2)/

√
2 and avac− = (a+1 − ia+2)/

√
2. This allows us to model the splitting of a BEC cloud with the

beam-splitter operations where the mode operators a+, avac+ are the operators for inputs of a beam splitter. Since the different
spin species do not interact, the mode operators a−, avac− are also the operators for inputs of a beam splitter, these inputs being
split independently of the other spin species. With these mode operators, the Schwinger spin operators after splitting are

Sz,A1 = 1
2 (a†

+1a+1 − a†
−1a−1) = 1

4 (a†
+a+ − a†

−a−) + F (avac+, avac−), (A8)

Sz,A2 = 1
2 (a†

+2a+2 − a†
−2a−2) = 1

4 (a†
+a+ − a†

−a−) + G(avac+, avac−). (A9)

Here we take the orientation of x, y, z so that Sz corresponds to the number difference. Sz,A1 and Sz,A2 are the Schwinger spin
operators along the z axis for clouds A1 and A2, respectively, and F and G are terms containing avac+, a†

vac+, avac−, a†
vac−. Similar

Schwinger spin operators along the x and y axes have the same expressions as Eqs. (A8) and (A9), but the spin up and down
are relative to their respective axis. From Eqs. (A8) and (A9), we see that Sz,A1 + Sz,A2 = Sz,A + F + G ≈ Sz,A. Here we assume
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the terms F and G involving the incoming unoccupied modes can be neglected in the calculation of the variances, relative to the
leading terms which come from the incoming modes with a high occupation (the number of atoms being assumed large). Using
a similar argument, we consider Sθ = 1

2 (a†
+a−eiθ + a†

−a+e−iθ ):

Sθ,A1 = 1
2 (a†

+1a−1eiθ + a†
−1a+1e−iθ ) = 1

4 (a†
+a−eiθ + a†

−a+e−iθ ) + F (avac+, avac−),

Sθ,A2 = 1
2 (a†

+2a−2eiθ + a†
−2a+2e−iθ ) = 1

4 (a†
+a−eiθ + a†

−a+e−iθ ) + G(avac+, avac−).

Thus, for large numbers of atoms, Sy,A1 + Sy,A2 = Sy,A + F + G ≈ Sy,A and similarly Sx,A1 + Sx,A2 ≈ Sx,A.
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95, 042113 (2017).

[89] J. Ryu, B. Woloncewicz, M. Marciniak, M. Wieśniak, and M.
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