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Open Ising model perturbed by classical colored noise
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We investigate the non-Markovian dynamics of an open Ising model simulated by a superconducting circuit.
The quantum many-body system is weakly coupled to a white, pink- or blue-colored environment. The relaxation
of the system in the strong interqubit interaction regime shows a metastable behavior. In comparison with the
dissipative system in the Markovian limit, the negative memory of the blue-colored noise weakens the system’s
relaxation. However, for the pink-colored noise the relaxation rate of the system is enhanced due to the positive
memory effect. The understanding of quantum many-body systems responding to different colored noise fields
is necessary for designing the environment of superconducting qubits in a large scale quantum processor.
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I. INTRODUCTION

Simulating a quantum system via another mathematically
identical system possesses wide applications in condensed-
matter physics, high-energy physics, and quantum chemistry
[1]. The successful simulation platforms range from ultracold
atoms [2], trapped ions [3], photonic systems [4], to supercon-
ducting (SC) circuits [5]. In the past, large resources have been
devoted to maximally isolate quantum physical systems from
the environment (reservoir). However, the interaction with the
environment still dictates the evolution of quantum systems.
Recently, an increasing interest has been attracted to the study
of many-body open quantum systems for the applications in
quantum computing [6], exotic state preparation [7], driven-
dissipation phase transition [8], and quantum memory [9].
In particular, more and more attention is being paid to the
theory of non-Markovian processes [10–15], where quantum
systems can receive the information and energy back from the
environment, i.e., the memory effect.

Two common approaches have been developed to treat this
memory effect. First, the memory kernel master equations
based on phenomenologically introducing a time-convolution
dynamic term

∫ t
0 dsK(t, s)ρ(s), where ρ(t ) is the system’s

density matrix operator and the two-time operator K(t, s) acts
on the system’s Hilbert space [16–18]. Second, local-in-time
master equations derived from the time-convolutionless pro-
jection operator method [19,20]. The dynamic term in mas-
ter equations is written in the form

∑
i

γi (t )
2 [2Ai(t )ρA†

i (t ) −
{A†

i (t )Ai(t ), ρ}]. Here the time-dependent decay rates γi(t )
can have temporarily negative values, which actually encode
the system-evolution history. The practical usefulness of the
former approach is limited due to the difficulty in the eval-
uation of the memory integral, and also the memory kernel
alone does not guarantee the non-Markovian character [21].
In contrast, the latter approach is mathematically simple and
has been widely applied to various non-Markovian problems
[22–25].

Studying dissipative dynamics of quantum many-body
systems in the non-Markovian limit is of much interest

currently. Conventional methods of engineering many-body
Hamiltonians [26–28] and the system-environment interac-
tion (i.e., quantum jump operators) have already provided
various avenues for understanding many-body open quantum
systems described by Lindblad-type master equations [29].
Directly tailoring the environment offers an extra opportunity
to explore the nonequilibrium behavior of quantum systems
beyond the Markov limit [7,30,31]. Nonetheless, it is still far
from clear how a noise in specific color affects the dissipative
dynamics of quantum many-body systems. The main reason
lies in the absence of effective measures to engineer the envi-
ronment. However, the situation is different for SC quantum
circuits influenced by classical colored noise fields [14].

Owing to the unique features, like flexibility, tunability and
scalability [32–37], SC quantum circuits based on Joseph-
son junctions (JJs) enable us to simultaneously engineer
the Hamiltonian, the environment, and their interaction of a
many-body system. This makes these solid-state devices also
suitable for use as the platforms simulating dissipative many-
body quantum systems. The relevant physical parameters may
be tuned from the weak-coupling to the ultrastrong-coupling
regime [38–45], where the traditional quantum gaseous and
photonic platforms have never accessed before. Meanwhile,
the noise spectrum of the environment can be altered to
a specific color via conventional signal processing tech-
niques [46]. In addition, hybridizing solid-state devices and
neutral or charged particles bridges the information com-
munication between macroscopic and microscopic quantum
systems.

Here we study an experimentally feasible scheme for the
simulation of a quantum Ising model coupled to an artificially-
tailored environment. An ensemble of fully-coupled SC qubits
is perturbed by classical white-, pink- or blue-colored noise.
The dissipative dynamics of an open quantum system is in-
vestigated by numerically solving the master equation that has
a local-in-time form. The results indicate that in comparison
with the memoryless white-noise perturbation, the relaxation
of the time evolution of collective spin polarization is acceler-
ated in the pink-colored environment because of the positive
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FIG. 1. SC-circuit-based Ising model. (a) Multi-charge-qubit
system. Each qubit consists of a Cooper-pair box coupled to the
Cooper-pair reservoir via a JJ. All qubits have same gate capacitance
Cg and same self-capacitance of JJs Cj and interact with each other
via identical coupling capacitors Cc. A voltage source Vg,k is applied

to tune the energy spectrum of the k-th box. At
CgVg,k

2e = N0 + 1
2

with an integer N0, two qubit states |↑〉k = 1√
2
(|1〉k + |0〉k ) and

|↓〉k = 1√
2
(|1〉k − |0〉k ) form a spin. Vg,k is perturbed by an external

noise δVg,k (t ) around a central value V0. Stochastic field ηk (t ), which
is proportional to δVg,k (t ), can be tailored into different colored
noise fields. (b) Examples of correlation function Kk,k′ (t, t ′) vs. time
difference (t − t ′) for pink- and blue-colored noise fields. Kk,k′ (t, t ′)
is in units of f0. (c) Examples of PSD of white, pink- and blue-
colored noise fields Sη(2π f ) as a function of noise frequency f (solid
lines). Dashed lines indicate the expected frequency dependences,
i.e., ∝ f 0, ∝ f −1 and ∝ f 1 for white, pink- and blue-colored noise
fields, respectively.

memory, while the negative memory effect slows down the
relaxation of the system in the blue-colored environment.

II. PHYSICAL MODEL

The quantum-simulation platform for the Ising system is
composed of N identical single-JJ charge qubits (Cooper-pair
boxes) [32] [see Fig. 1(a)]. The k-th qubit is biased by a
voltage source Vg,k via a gate capacitor Cg. Identical capacitors
Cc are used to link all boxes. The charging energy for Cooper
pairs in the box is given by EC = (2e)2

2C�
with the total capaci-

tance C� = Cg + Cj + Cc, where Cj is the self-capacitance of
the JJ. The Josephson energy of Cooper pairs is EJ (� EC).
The voltage bias Vg,k is artificially perturbed by an external
weak noise,

Vg,k (t ) = V0 + δVg,k (t ). (1)

The central value V0 is set at CgV0

2e = N0 + 1
2 with an integer N0,

while the colored noise δVg,k (t ) may be tailored by filtering
a white noise signal with a Nyquist frequency π f0 [46]. We
assume that all {δVg,k (t ); k = 1, ..., N}, although independent
of each other, are in the same color and have the same
amplitude.

In the two-state approximation, where |0〉k and |1〉k repre-
sent the absence and presence of a single excess Cooper pair in
the k-th box, the Hamiltonian of many-body system is derived
as (see Appendix A)

H = Hs + h̄
√

�/2
∑

k

ηk (t )σ x
k . (2)

The system’s coherent dynamics is governed by

Hs/h̄ = −ε
∑

k

σ z
k + (λ/N )

∑
k<k′

σ x
k σ x

k′ . (3)

The x and z components of the Pauli operator for the k-
th qubit are given by σ x

k = (|↑〉〈↓|)k + (|↓〉〈↑|)k and σ z
k =

(|↑〉〈↑|)k − (|↓〉〈↓|)k with two spin states |↑〉k = 1√
2
(|1〉k +

|0〉k ) and |↓〉k = 1√
2
(|1〉k − |0〉k ). The term Hs is equivalent to

the quantum Ising model [47], except that each qubit interacts
with others equally, i.e., the fully coupled many-body system.
The term ε = EJ

2h̄ plays the role of the external magnetic field
and gives the spin-state separation in energy. The term λ =
EC
2h̄

Cc
Cg+Cj

corresponds to the interqubit coupling strength and
can be enhanced by increasing the coupling capacitance Cc.
As a result, λ is tunable in the range from the weak- (λ/ε � 1)
to the strong-coupling (λ/ε 
 1) limit.

The real stochastic fields {ηk (t ); k = 1, ..., N} in Hamil-
tonian (2) depend on the voltage noise fields {δVg,k (t ); k =
1, ..., N} (see Appendix A) and satisfy the independent ran-
dom Gaussian processes, i.e., 〈ηk (t )〉s = 0 and the correlation
function

Kk,k′ (t, t ′) = 〈ηk (t )ηk′ (t ′)〉s. (4)

Here 〈· · ·〉s denotes averaging over stochastic realizations.
The characteristic frequency � measures the noise inten-
sity at π f0. In this work, we choose � � ε, i.e., the weak
quantum-system-environment interaction. We also set ε/� =
10, 2 f0/� = 103 and 2π f0 > λ, ε. The power spectral den-
sity (PSD) of the noise is calculated by

Sη(2π f ) =
∫ ∞

−∞
Kk,k (t, t + τ )e−i2π f τ dτ. (5)

For the white noise, Kk,k′ (t, t ′) = δk,k′δ(t − t ′) and Sη(2π f )
is independent of the noise frequency f , i.e., Sη(2π f ) ∝ f 0.

The generation of colored noise fields may be implemented
by digitally filtering a stochastic white field via four steps
[46]: (i) A continuous white-field signal is discretized into a
sequence; (ii) This finite discrete sequence is then converted
into a same-length complex-valued sequence via the discrete
Fourier transform; (iii) Each Fourier component in the se-
quence is multiplied by a frequency-dependent factor; and (iv)
Finally, the colored noise sequence in the time domain is given
by the inverse discrete Fourier transform. A more detailed
algorithm can be found in Appendix B.

Figure 1(b) depicts the dependence of Kk,k′ (t, t ′) on
the temporal difference (t − t ′) for pink- and blue-colored
noise fields, whose PSDs are Sη(2π f ) ∝ f −1 and ∝ f 1

[see Fig. 5(c)]. Here different colored noise fields have the
same PSD value at the Nyquist frequency π f0. The result
Kk,k′ �=k (t, t ′) = 0 denotes that two noise processes are inde-
pendent (uncorrelated). The pink-colored Kk,k (t, t ′) is positive
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FIG. 2. Parameters ε and λ of the Ising model. Non-Markovian
master equation (6) is only valid in the regime of ε 
 �, where
the noise fields ηk (t ) with the intensity � at the Nyquist frequency
π f0 perturb the spin states. This valid ε − λ area may be further
divided into two subareas, respectively, represented by green and
red color, according to the ratio λ/ε. Generally, in the strong-
interspin-interaction regime, i.e., λ/ε 
 1, the metastable value of
magnetization m(ms) is nonzero, while m(ms) = 0 in the rest of valid
regime. In this work, the characteristic frequency � is much larger
than the common relaxation T −1

1 and dephasing T −1
2 rates of SC qubit

and the maximum time scale of interest tmax is much shorter than T1,2.
The Nyquist frequency π f0 is set to be larger than both ε and λ.

at any time, indicating a predictable relationship in the co-
occurrence of two events in a process. In contrast, the blue-
colored Kk,k (t, t ′) is negative most of the time, meaning the
two events are unlikely to occur together.

In the absence of noise fields ηk (t ), the relaxation (T1) and
dephasing (T2) times of individual qubit are limited down
to ∼10 ns [48] because of the inevitable coupling to the
local electromagnetic (EM) fluctuation [49]. The maximum
timescale of interest in this work tmax is set to be much
shorter than T1,2, i.e., tmax = 10�−1 � T1,2. In addition, T1,2

may be extended by reducing the sensitivity of the qubit
to the local EM reservoir [34] or feedback controlling the
qubit dynamics [43,44]. The qubit-local-reservoir interaction
thereby is neglected.

According to the perturbation formalism in Ref. [14], the
dissipative process of the system is described by the non-
Markovian master equation for the density matrix ρ(t )

d

dt
ρ(t ) = − i

h̄
[Hs, ρ(t )] −

∑
k,k′

�

2

∫ t

0
Kk,k′ (t, t ′)

× [
σ x

k ,
[
Us(t, t ′)σ x

k′U †
s (t, t ′), ρ(t )

]]
dt ′, (6)

with the time-evolution operator

Us(t, t ′) = T exp[− i

h̄

∫ t

t ′
Hs(τ )dτ ], (7)

and the time-ordering operator T . In deriving Eq. (6), we have
applied the assumption ε 
 � (see Fig. 2), i.e., the intensity
� of noise fields ηk (t ) is weak enough that the noise fields
only perturb the spin states. When the noise fields become

strong, the second term on the right side of Hamiltonian (2) is
comparable to Hs in energy and Eq. (6) is no longer valid.
The non-Markovian master equation (6) may be written in
the local-in-time form (see Sec. I), though a time convolution
integral complicates the calculation.

Solving Eq. (6) relies on the specific noise spectrum. As
we will see below, for the memoryless white noise, the con-
ventional approaches, such as direct solving the matrix differ-
ential equation and the Monte Carlo wave-function (MCWF)
method [50], are applicable. In contrast, for the colored noise
fields, directly solving the matrix differential equation is
more favorable. In the following, we focus on the quantum
ensemble average of the single-spin magnetization observable

m(t ) = N−1
∑

k

〈
σ z

k (t )
〉
e, (8)

with the definition 〈...〉e = Tr[ρ(t )...]. An arbitrary noise
source can be decomposed into a series of independent col-
ored terms. Our aim is to explore the relaxation evolution
of m(t ) responding to different colored components. We will
focus on three typical noise fields: white, pink- and blue-
colored noise fields.

III. WHITE NOISE

We start with the quantum many-body system coupled to
the white reservoir, where the noise fields ηk (t ) follow the
memoryless processes with Kk,k′ (t, t ′) = δk,k′δ(t − t ′). In this
limit, the master equation (6) returns to the Markovian form

d

dt
ρ(t ) = L(ρ), (9)

with the dynamical generator

L(ρ) = − i

h̄
[Hs, ρ] − �

2

∑
k

(
σ x

k σ x
k ρ + ρσ x

k σ x
k − 2σ x

k ρσ x
k

)
.

The quantum jump (also called Lindblad) operators [50]
√

�σ x
k =

√
�σ−

k +
√

�(σ−
k )†, (10)

denote that the incoherent lowering σ−
k = (|↓〉〈↑|)k and rais-

ing (σ−
k )† of the |↑〉-state population occur at the same

rate �.
In general, the mean-field analysis, i.e., neglecting the

interspin correlation 〈σ x
k σ x

k′ 〉e � 〈σ x
k 〉e〈σ x

k′ 〉e for k �= k′, may
provide an instructive insight in the relevant physical mech-
anisms. Defining x = 〈σ x

k 〉e, y = 〈σ y
k 〉e, and m = 〈σ z

k 〉e, we
obtain

d

dt
x = 2εy, (11)

d

dt
y = −2�y − 2εx − 2λxm, (12)

d

dt
m = −2�m + 2λxy. (13)

Setting d
dt x = d

dt y = d
dt m = 0 leads to the trivial steady-state

(ss) solutions when t → ∞ (a time scale much longer than
�−1),

x(ss) = y(ss) = m(ss) = 0. (14)
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FIG. 3. Quantum Ising model perturbed by white, pink- and blue-colored noise fields. Relaxation dynamics of magnetization m(t ) with
λ/ε = 1 and 10 for white (left), pink-colored (middle) and blue-colored (right) noise fields. For all curves, the system is initialized in the
unpolarized state

∏
k ⊗(|↑〉 − |↓〉)k = ∏

k ⊗|0〉k . The insets show m(t ) within a long-time duration for λ/ε = 10.

This is unlike the typical driven-dissipative many-body sys-
tems composed of interacting atoms [51] or photons [52],
where the mean-field treatment predicts a dynamical first-
order phase transition. Thus, studying this open quantum
system relies on numerically solving the master equation (9).

Exploring many-body dissipative system in the thermody-
namic limit N → ∞ is mathematically impractical. The finite
amount of computer memory and computational time limit
the solvable system size. Here we consider the system with
N = 8 to capture the general features of larger systems. In
general, the master equation (9) for a small system may be
solved numerically via the exact diagonalization method [53],
the approach of direct solving the matrix differential equation
and the Monte Carlo wave-function (MCWF) method [50]. In
comparison, the MCWF approach, where the density matrix ρ

is treated as an ensemble of state vectors suffered irreversible
quantum jumps, can also be applied to compute two-time
correlation functions. Here we employ the MCWF method to
simulate the time evolution of m(t ) in the Markovian limit.
The main results are summarized in Figs. 3 (left) and 4.

As shown in Fig. 3 (left), in the medium λ/ε ∼ 1 (also,
weak λ/ε ∼ 0) interaction regime, m(t ) approaches the sta-
tionary state mss = 0 after a timescale of �−1. In the steady
state, the number of quantum jumps reducing the |↑〉-
population matches that of the jumps increasing the |↑〉-
population [see Fig. 4(a)], i.e., reaching a balance between
incoherent lowering and raising events. Indeed, the number
of incoherent lowering (raising) events is given by the |↑〉
population (|↓〉 population) times the corresponding quantum-
jump rate. Since the incoherent lowering and raising quantum-
jump rates are both equal to � [see Eq. (10)], the popula-
tions in |↓〉 and |↑〉 states are the same, leading to mss = 0.
In contrast, for the system in the strong coupling regime
(λ/ε 
 1), m(t ) relaxes rapidly to states with metastable (ms)
characteristics where mms �= 0 and then decays slowly to the
true stationary state mss. Interestingly, during the metastable
period the number of incoherent-raising events is apparently
larger than that of incoherent-lowering events [see Fig. 4(a)],
which indicates that the |↓〉 population must be higher than
the |↑〉 population, resulting in mms < 0 [see Fig. 4(b)]. This
metastability may be interpreted from the spectral structure of
the generator L, where a large gap separates a few eigenvalues
with the real parts equal or close to zero from the others [54]
(see Appendix B).

To quantitatively evaluate the metastability of the dissipa-
tive system, we define the single-spin magnetization at the
maximum timescale of interest in this work as the metastable
value mms,

mms = m(tmax). (15)

The dependence of mms on the spin-spin interaction λ is
plotted in Fig. 4(b). As λ/ε is raised from zero, the mean
value of the trajectory ensemble of mms stays at zero, i.e., non-
metastability, while the spread of the statistical distribution of
mms is strongly narrowed, indicating the build up of interspin
correlations. When λ/ε is further increased, the ensemble
average of mms starts to be negative and |mms| grows fast.
However, the trajectory-distribution width of mms becomes
larger because the quantum jumps cause the strong fluctuation
in the enhanced spin-spin interaction term in Hs. Generally,
the metastable behavior mms �= 0 for the open quantum system
in the Markovian limit occurs in the strong interaction regime
(see Fig. 2).

By means of the MCWF method, we further consider auto-
and cross-correlation functions

Ca(τ ) = N−1
∑

k

〈
σ z

k (t + τ )σ z
k (t )

〉
e, (16)

Cc(τ ) = [N (N − 1)]−1
∑
k �=k′

〈
σ z

k (t + τ )σ z
k′ (t )

〉
e. (17)

The term σ z
k (t ) denotes the operator σ z

k in the Heisenberg
picture. The PSD of a single spin’s relaxation dynamics is
given by the Fourier transform of Ca(τ ),

Sσ (ω) =
∫ ∞

−∞
Ca(τ )e−iωt dt, (18)

while Cc(τ ) measures the similarity between the dynamics of
two spins. As illustrated in Fig. 4(c), the spin-spin interaction
λ strongly controls the behaviors of Ca,c(τ ). For a small λ,
e.g., λ/ε = 1, Ca,c(τ ) are mostly overlapped with each other
and decay to zero at a rate of �. As λ is increased, Ca,c(τ ) are
much enhanced over the time duration of interest. For λ/ε 

1, Ca(τ ) displays two distinct temporal regimes. When τ <

(ln 10)/�, Ca(τ ) is higher than Cc(τ ) and decays at a rate of
�/(ln 10). In contrast, after (ln 10)/� the decay of Ca(τ ) is
much slower and overlapped with Cc(τ ).
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(a) (b)
(c)

(d)

FIG. 4. Results derived from the MCWF method for a white-noise-perturbed system. (a) Quantum jumps recorded in an ensemble of
trajectories. Filled-square markers correspond to the incoherent raising events (|↓〉 → |↑〉), i.e., the jumps increase m(t ), while filled-triangle
markers denote the incoherent lowering events (|↑〉 → |↓〉), i.e., m(t ) is reduced after the jumps. (b) Metastable value mms = m(tmax) as a
function of λ/ε. As the system enters the strong interaction regime λ/ε 
 1, mms becomes negative and |mms| is increased. The inset lists
statistical distribution of trajectories of mms for several different λ/ε. (c) Auto- and cross-correlation functions Ca,c(τ ) with λ/ε = 1 and 10.
The corresponding power spectral densities Sσ (ω) are shown in (d).

The inset of Fig. 4(d) display two examples of the power
spectral density Sσ (ω) of the quantum system coupling to
the white environment. In the weak λ/ε ∼ 0 and medium
λ/ε ∼ 1 interaction regimes, a single peak is located at the
central position with the full width at half maximum (FWHM)
of ∼�, which denotes that the system relaxation timescale
approximates �−1. In contrast, Sσ (ω) of the strong coupling
system (λ/ε 
 1) exhibits two features: (i) The FWHM
of the central peak is much smaller than �, indicating the
existence of metastable state; and (ii) Multiple side peaks
split off the central peak, which is similar to the Mollow
triplet spectrum in quantum optics [55]. Indeed, this multi-
plet lineshape arises from the spin-spin interaction term in
Hs modulating the system’s relaxation dynamics. Since the
interspin coupling can only induce the transition between two
states with the |↑〉-number difference of 0 or 2n with n ∈ N,
the positions of side peaks are estimated to be ±( λ

4N − 2ε) and
±2n( λ

4N − 2ε).

IV. COLORED NOISES

So far we have only considered the quantum system per-
turbed by the memoryless white noise field. For the colored
perturbations, the effect of memorizing historical events may
lead to a different time evolution of the dissipative system for
a given initial state. The Markovian master Eq. (9) is no longer
valid and one has to solve the non-Markovian master Eq. (6).
We choose the eigenstates {|α〉; α = 0, 1, ..., 2N } of Hs to
span the Hilbert space, i.e., Hs|α〉 = h̄ωα|α〉 with the corre-
sponding eigenvalue ωα and ωα � ωα+1. Equation (6) is then

rewritten as
d

dt
ρ(t ) = − i

h̄
[Hs, ρ(t )] −

∑
k

∑
α,α′

�

2

× [
σ x

k ,
[〈α|σ x

k |α′〉Kαα′
k (t )|α〉〈α′|, ρ(t )

]]
, (19)

where Kαα′
k (t ) = ∫ t

0 Kk,k (t, t ′)e−i�ωαα′ t ′
dt ′ with �ωαα′ =

ωα − ωα′ , under the new basis. Here we have also used the
fact that Kk,k′ (t, t ′) = 0 for k �= k′.

Equation (19) can be expressed in the local-in-time form
(see Sec. I). The earlier numerical treatment of the local-in-
time master equation relies on extending the Hilbert space of
the quantum system [56] or the stochastic system state evo-
lution conditioned on the environment hidden variable [57].
However, the needed large computer memory restricts the sys-
tem size that can be studied. In addition, the time convolution
in Eq. (19) makes it difficult to utilize the improved MCWF
method developed in Ref. [22]. Thus, we directly compute the
non-Markovian Eq. (19) via treating it as a differential matrix
equation. This approach is not applicable to derive two-time
correlation functions. Here we only consider the single-spin
magnetization m(t ).

Figure 3 (middle) depicts the time-evolution examples of
the pink-colored-noise-perturbed quantum system. The sys-
tem relaxation is apparently accelerated in comparison with
the Markovian results shown in Fig. 3 (left). Even in the
strong coupling regime λ/ε 
 1, the metastable period is
shortened and the dissipative system nearly arrives at the
true stationary state m(ss) = 0 within tmax. The reason lies in
the fact that Kk,k (t, t ′) > 0 for the pink-colored noise field
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[see Fig. 1(b)]. To give an intuitive explanation, we make a
rough approximation by neglecting the difference among the
sampling components in Kαα′

k (t ), i.e., replacing e−i�ωαα′ t by 1.
Then, the master equation is further simplified as

d

dt
ρ(t ) = − i

h̄
[Hs, ρ(t )] −

∑
k

�̃k (t )

2

[
σ x

k ,
[
σ x

k , ρ(t )
]]

, (20)

where the memory of the colored noise history is involved in
the effective characteristic decay rate �̃k (t ) = Kk (t )� with the
time-dependent enhancement factor Kk (t ) = ∫ t

0 Kk,k (t, t ′)dt ′.
The positive memory of the pink-colored noise leads to
Kk (t ) > 1, thereby accelerating the system relaxation. In con-
trast, the relaxation of the quantum system interacting with
the blue-colored reservoir is slowed down compared to the
Markovian results [see Fig. 3 (right)]. Especially in the strong
coupling limit (λ/ε 
 1), the system does not even reach
the metastable state within tmax. Again, following the rough
approximation, the negative memory of the blue noise leads
to 0 < Kk (t ) < 1 [see Fig. 1(b)] and �̃k (t ) < �.

Such an acceleration or slowing down of the system re-
laxation may also be interpreted from the noise PSDs [see
Fig. 1(c)]. All transition frequencies |�ωαα′ | are smaller than
the Nyquist frequency π f0 due to π f0 > ε and λ. Since
the PSD of the pink-colored (blue-colored) noise is higher
(lower) than that of white noise for f < f0, the colored-noise
perturbation on the quantum system is enhanced (weakened).

We further consider the lifetime of the many-body sys-
tem’s ground state |α = 0〉. In the limit of λ/ε � 1, all
qubits are close to independent and |α = 0〉 approximates
the fully polarized state �k ⊗ |↑〉k . For λ/ε 
 1, one has
〈α = 0| (

∑
k σ x

k )2|α = 0〉 � 0. We assume that the system
is initialized at |α = 0〉. The dissipation operators {σ x

k ; k =
1, ..., N} mix |α = 0〉 with |α > 0〉, reducing its weight in the
wave function

w(t ) = 〈α = 0|ρ(t )|α = 0〉. (21)

The ground-state lifetime τG is defined as the timescale at
which w(t ) decreases to 1/e. As displayed in Fig. 5(a), τG

is shortened (extended) for the quantum system interacting
with the pink-colored (blue-colored) reservoir in comparison
with that of the white-noise-perturbed quantum system. In-
terestingly, Fig. 5(a) illustrates that τG rarely depends on the
spin-spin interaction λ, especially for the white and pink-
colored noise fields. This is because the metastable behavior
of the system also relies on the initial state of the system
(see Appendix B). It is unfair to compare the lifetimes of two
different (initial) ground states. The von Neumann entropy

S = −Tr(ρ ln ρ), (22)

shown in Fig. 5(b) is commonly employed to quantify the
departure of the system from a pure state. S starts from zero
because |α = 0〉 is also an eigenstate of ρ at t = 0. Then,
S rises sharply, indicating that the system rapidly evolves
to a mixed state. Finally, S asymptotically approaches the
maximum value ln 2N . In comparison with the white noise,
the slope of S vs. t raises (degrades) for the pink-colored
(blue-colored) noise.

FIG. 5. Ground state of many-body quantum system. Ground-
state weight w(t ) (a) and entropy S(t ) (b) for the system perturbed by
the white, pink- and blue-colored noise fields. The solid and dashed
lines correspond to λ/ε = 1 and 10, respectively. For all curves, the
system is initially prepared in the ground state |α = 0〉.

V. SUMMARY

In conclusion, we have studied the dissipative Ising model
based on a SC-circuit platform. The exceptional flexibility of
quantum circuits enables designing of quantum jump opera-
tors and arbitrary tailoring of the environmental noise, whose
implementations are not straightforward in quantum gaseous
or photonic platforms. Unlike the common Ising system with
short-range (e.g., nearest-neighbor and next-nearest-neighbor)
interparticle interactions, each qubit is equally coupled to
others in the many-body system. We focus on the relaxation
of magnetization observable m(t ), which is numerically sim-
ulated based on the non-Markovian master equation in the
perturbation approximation [14].

For the quantum system coupled to the memoryless white
reservoir, the metastable behavior (m(ms) �= 0) unaccompanied
by the first-order phase transition is predicted in the strong
spin–spin coupling regime (λ/ε 
 1). The corresponding
PSD of the system’s dissipative dynamics exhibits multiple
peaks, among which the central one possesses a narrow
linewidth (� �). This metastability arises entirely from the
strong interspin interaction. The system relaxation in two spe-
cific colored, pink and blue, noise fields are compared with the
white-noise case. It is found that the pink-colored perturbation
accelerates the system approaching the true stationary state
while the relaxation process of the system becomes slow in
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the blue-colored environment. This can be understood from
the correlation functions Kk,k (t, t ′) of different colored noise
fields. For the pink-colored noise field, Kk,k (t, t ′) is positive
at any time difference (t − t ′), enhancing the effective charac-
teristic decay rate. By contrast, Kk,k (t, t ′) of the blue-colored
noise stays at a negative value except when (t − t ′) = 0,
reducing the system’s effective decay rate. Following a similar
way, one may study open quantum systems perturbed by other
colored noise fields.
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APPENDIX A: HAMILTONIAN OF MANY-BODY
SYSTEM H

The amount of charge Qi,k in the k-th Cooper-pair box is
given by

Qi,k = Qg,k + Qj,k + Qc,k, (A1)

where Qg,k, Qj,k , and Qc,k represent, respectively, the charges
on the plates of gate capacitor Cg, self-capacitor Cj and
coupling capacitor Cc that are linked to the box. The gate
voltage is then equal to

Vg,k = −Qg,k

Cg
+ Qj,k

Cj
. (A2)

In addition, the electric charge conversion leads to∑
k

Qc,k = 0, (A3)

and we further have

−Qc,1

Cc
+ Qj,1

Cj
= −Qc,2

Cc
+ Qj,2

Cj
= · · · . (A4)

The charges Qg,k, Qj,k , and Qc,k may be expressed in terms of
Qi,k and Vg,k ,

Qg,k = Cg

C�

(CgVg,k + Qi,k + CcVc) − CgVg,k, (A5)

Qj,k = Cj

C�

(CgVg,k + Qi,k ) + Cj

C�

CcVc, (A6)

Qc,k = Cc

C�

(CgVg,k + Qi,k ) − Cg + Cj

C�

CcVc, (A7)

where Vc is defined as Vc =
∑

k (CgVg,k+Qi,k )
N (Cg+Cj )

. Combining the total
electrostatic and tunneling energies of Cooper pairs in the
boxes, one obtains the Hamiltonian of the multi-charge-qubit
system

H =
∑

k

[EC (Ng,k − Nk )2 − EJ cos φk]

+
[∑

k

EC√
NV

(Ng,k − Nk )

]2

. (A8)

The operator φk corresponds to the phase difference of Cooper
pairs across the k-th junction. The operator Nk = −Qi,k

2e counts
the number of Cooper pairs in the k-th box. The operator

Ng,k = CgVg,k

2e is the gate-charge bias. The ratio E2
C

V with V =
(2e)2

2Cc
(1 − Cc

C�
) measures the interqubit coupling. In the charge-

number representation, the operators Nk and cos φk are written
as

Nk =
∑

nk

nk|nk〉〈nk|, (A9)

cos φk = 1

2

∑
nk

(|nk〉〈nk + 1| + |nk + 1〉〈nk|), (A10)

where nk ∈ Z denotes the number of excess Cooper pairs
in the box. We divide the gate voltage Vg,k into two parts,
Vg,k = V0 + δVg,k (t ), for which the gate charge bias is re-
expressed as Ng,k = (N0 + 1

2 ) − δNg,k (t )
2 = CgV0

2e + CgδVg,k (t )
2e with

N0 ∈ Z. δVg,k (t ) is the external voltage noise and δNg,k (t ) is
the corresponding gate-charge-bias fluctuation.

In the two-state approximation, the Hamiltonian H is sim-
plified as

H =
∑

k

[
δNg,k (t ) + EC

NV

∑
k′

δNg,k′ (t )

]
EC

2
sz

k

−
∑

k

EJ

2
sx

k + E2
C

2NV

∑
k<k′

sz
ksz

k′ , (A11)

with the operators sx
k = (|1〉〈0|)k + (|0〉〈1|)k and

sz
k = (|1〉〈1|)k − (|0〉〈0|)k . Defining two spin states

|↑〉k = 1√
2
(|1〉k + |0〉k ) and |↓〉k = 1√

2
(|1〉k − |0〉k ), sx,z

k

should be replaced by σ z,x
k , and we arrive at

H = −EJ

2

∑
k

σ z
k + E2

C

2NV

∑
k<k′

σ x
k σ x

k′

+EC

2

∑
k

[
δNg,k (t ) + EC

NV

∑
k′

δNg,k′ (t )

]
σ x

k . (A12)

Defining h̄ε = EJ
2 , h̄λ = E2

C
2V and h̄

√
�
2 ηk (t ) = EC

2 [δNg,k (t ) +
EC
NV

∑
k′ δNg,k′ (t )], the Hamiltonian H can be rewritten as

the form shown in the main text. For a large N , one has∑
k′ δNg,k′ (t ) � 0 and h̄

√
�
2 ηk (t ) � EC

2 δNg,k (t ).

APPENDIX B: GENERATION OF COLORED NOISES

In this section, we briefly introduce the generation of
colored noise fields. The stochastic white fields {ηk (t ); k =
1, ..., N} may be generally written in the form of a real white
Gaussian process h(t ) with 〈h(t )〉s = 0 and 〈h(t )h(t ′)〉s =
δ(t − t ′). The colored noise fields can be obtained by digitally
filtering h(t ) [46]. The specific algorithm for generating the
1
f α noise has four basic steps: (i) The continuous signal
h(t ) is discretized into a sequence with the sampling period
1
f0

, i.e., {h̃n = h( n−1
f0

); n = {1, ..., 2nmax = tmax f0}; (ii) This
finite discrete sequence is then converted into a same-length
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complex-valued sequence via the discrete Fourier transform,

H̃k = 1

2nmax

2nmax∑
n=1

h̃ne−iπ (n−1)(k−1)
nmax . (B1)

The sequence {H̃k; k = 1, ..., 2nmax} owns the Hermitian sym-
metry, H̃∗

k = H̃2nmax−k . The linear curve fitting of {H̃k; k =
1, ..., nmax} leads to H̃k = a1k + a2 with a1 = 0 and the con-
stant a2, corresponding to the white-noise spectrum; (iii) Each
component in the sequence {H̃k; k = 1, ..., nmax} multiples a
k-dependent factor ( nmax

k )
α
2 , resulting in a new sequence {H̃ ′

k =
( nmax

k )
α
2 H̃k; k = 1, ..., nmax} and further {H̃ ′

k = {H̃ ′∗
2nmax−k; k =

nmax + 1, ..., 2nmax}; and (iv) Finally, the 1
f α noise sequence

h̃′
n in the time domain is given by the inverse discrete Fourier

transform,

h̃′
n =

2nmax∑
k=1

H̃ ′
keiπ (n−1)(k−1)

nmax . (B2)

It is seen that H̃ ′
k = H̃k for k = nmax, i.e., the white and colored

noise sequences have the same spectral density at the Nyquist
frequency f0

2 .

APPENDIX C: METASTABILITY

We are now in the position to explain the metastability
of the dissipative many-body system, for which we solve the
Markovian master Eq. (9) based on the exact diagonalization
method. In the product-state basis |u〉 = ∏

k ⊗|v〉k with (u =
0, ..., 2N − 1) and (v = ↑ and ↓), Eq. (9) is re-expressed as

d

dt
〈u1|ρ|u2〉 =

∑
u3,u4

L(u1,u2 ),(u3,u4 )〈u3|ρ|u4〉, (C1)

where we have defined

L(u1,u2 ),(u3,u4 ) = 〈u1|
[
−i

Hs

h̄
− �

2

∑
k

(σ x
k )2

]
|u3〉δu2,u4

+〈u4|
[

i
Hs

h̄
− �

2

∑
k

(σ x
k )2

]
|u2〉δu1,u3

+�
∑

k

〈u1|σ x
k |u3〉〈u4|σ x

k |u2〉. (C2)

Further, we replace the pairs (u1, u2) with a number sequence
μ = 0, 1, ..., 4N − 1 and Eq. (C1) is rewritten in the matrix
form

d

dt
R = −MR. (C3)

The elements of the column vector R and 4N -by-4N matrix
M are given by Rμ = 〈u1|ρ|u2〉 and Mμ1,μ2 = −L(u1,u2 ),(u3,u4 ).
Solving Eq. (C3) leads to

R(t ) = D−1e−Et DR(0). (C4)

The diagonal matrix E = DMD−1 with Eμ1,μ2 = (γμ1 −
iβμ1 )δμ1,μ2 lists the eigenvalues of M. The column vector R(0)

(a)

(c)

(b)

FIG. 6. (a) Decay rates γμ of different relaxation modes vs. the
spin-spin interaction λ. The qubit number is set at N = 5 because
of the limit of matrix dimension that is numerically diagonaliz-
able. The detail in the circle is displayed in (b). Both γ0 and
γ4N −1 are independent of λ. The first several lowest γ0,1,2,... in the
strong interaction regime determine the system’s stationary state and
metastability. (c) Metastable value mms as a function of initial state∏

k ⊗(
√

1 − A2|↑〉 + Aeiϕ |↓〉)k with λ/ε = 10. All spins are ini-
tially prepared in the same state and ρ(0) = ∏

k ⊗((1 − A2)|↑〉〈↑| +
A
√

1 − A2eiϕ |↑〉〈↑| + A
√

1 − A2e−iϕ |↑〉〈↓| + A2|↓〉〈↓|)k . The am-
plitude A varies between 0 and 1 while the phase changes within
the range of [0, 2π ).

denotes the density matrix ρ at t = 0. Finally, one arrives at

〈u1|ρ(t )|u2〉 =
∑
u3,u4

(D−1e−Et D)(u1,u2 ),(u3,u4 )〈u3|ρ(0)|u4〉.
(C5)

We term γμ − iβμ the μ-th relaxation mode. The real parts
γμ, which are sorted in descending order γμ � γμ+1, denote
the decay rates of different modes, while the imaginary parts
are related to the interaction-induced level shifts.

The lowest γ0 stays zero [Fig. 6(a)], giving the true
stationary state of ρ, i.e., ρss = ρ(t → ∞) and mss =
N−1 ∑

k Tr(σ z
k ρss). The maximum γ4N −1 is independent of the

coupling strength λ and equal to 2N�. In the weak-coupling
limit λ/ε ∼ 0, γμ are divided into 2N groups with the equal
interval �. As λ/ε is increased, γ0<μ<4N −1 are strongly mod-
ulated, where some modes are pushed towards γ0 or γ4N −1. In
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the strong coupling regime λ/ε 
 1, the first several decay
rates γμ=1,2,.. are close to γ0 = 0 [Fig. 6(b)]. These modes
determine the long-term relaxation dynamics of the system,

giving rise to the metastability. In addition, Eq. (C5) indicates
that the metastable behavior of the system depends also on the
initial state ρ(0) [Fig. 6(c)].
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