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The quantum-mechanical decay of two or more overlapped resonances in a common continuum is largely
influenced by Fano interference, leading to important phenomena such as the existence of bound states in the
continuum, fractional decay and quiescent dynamics for single particle decay, and signature of particle statistics
in the many-body quantum decay. An overlooked yet essential requirement to observe Fano interference is time-
reversal symmetry of the bath. Here we consider multilevel quantum decay in a bath sustaining unidirectional
(chiral) propagating states, such as in quantum Hall or in Floquet topological insulators, and show that the chiral
nature of scattering states fully suppresses Fano interference among overlapping resonances. As a result, there are
not bound states in the continuum, quantum decay is complete, and there is not any signature of particle statistics
in the decay process. Nonetheless, some interesting features are disclosed in the multilevel decay dynamics in a
topological bath, such as the appearance of high-order exceptional points, long quiescent dynamics followed by
a fast decay, and the possibility to observe damped non-Hermitian Bloch oscillations.
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I. INTRODUCTION

The decay of metastable states into a continuum is ubiqui-
tous in many areas of physics. Examples include the quantum-
mechanical decay of particles, nuclei, atoms, and molecules
[1–3], spontaneous emission of a photon from excited states of
atoms [4], tunneling escape from a potential trap [5], photon
leakage in integrated optical structures [6,7], dark energy
decay in cosmological models [8], etc. The decay of a single
discrete state is well described, in the weak-coupling and
Markovian approximation [4], by an exponential decay law,
leading to symmetric (Breit-Wigner) resonance states which
are ubiquitous in most of the quantum-mechanical decay pro-
cesses. However, deviations from exponential decay occur at
both short- and long-time scales as a result of memory effects
[2], which can be exploited to either accelerate or decelerate
the quantum-mechanical decay via frequent observations [9].
When two or more discrete states decay into a common
continuum, interesting phenomena can be observed as a result
of Fano interference among overlapping resonances [10,11].
These include limited decay and the existence of bound states
in the continuum (also referred to as dark states [3]) for perfect
destructive interference of different decay channels [3,4,12–
15], qualitative changes in long-time decay behavior [16],
damped oscillations [17], resilient periods followed by decay
bursts [18], exponential-power-law decay near an exceptional
point (EP) [19,20], particle statistics dependence in many-
body quantum decay [21,22], and interference in entangle-
ment decay [23]. A prototypal model of quantum decay is
provided by the Fano-Anderson (or Friedrichs-Lee) model,
which describes the coupling of one or more discrete states
to a common one-dimensional continuum [3,12,15,22,24,25].

Previous studies have mostly considered quantum decay
into a continuum with time-reversal symmetry. In effective
one-dimensional models, this means that scattering states into

which the discrete state decays propagate bidirectionally in
the bath. However, in topological matter, such as in quantum
Hall systems and topological insulators, scattering states can
show unidirectional (chiral) propagation as a result of time-
reversal symmetry breaking. Chiral edge states in topological
insulators have received a huge interest in past recent years
in several areas of physics, ranging from condensed-matter
physics to photonics and beyond (see, for instance, [26–28]
and references therein). So far, quantum decay in a topolog-
ical continuum and the role of chiral edge states onto Fano
interference and decay dynamics remain largely unexplored.

In this work we study theoretically quantum decay of
discrete states into a common topological continuum, which is
effectively modeled by a one-dimensional tight-binding lattice
with broken time-reversal symmetry sustaining unidirectional
propagating scattering states. Such a continuum can describe,
for example, a two-dimensional quantum Hall insulator or a
Floquet topological insulator when the energy of the discrete
states fall in a topological gap of the two-dimensional crystal
and the decay arises because of the coupling with the chiral
edge states in the topological gap. Owing to the chiral nature
of the scattering states, it is shown that Fano interference
among overlapping resonances is fully suppressed and bound
states in the continuum cannot be found, regardless of the
number and spectral coupling shape of the discrete states.
Nonetheless, some interesting features arising from the decay
in the topological continuum are found within the Markovian
approximation. These include the appearance of high-order
exceptional points, i.e., non-Hermitian degeneracies [29] in
the effective non-Hermitian description of the decay dynam-
ics, long quiescent dynamics followed by an abrupt decay, the
possibility to observe damped non-Hermitian Bloch oscilla-
tions when a gradient field is applied to the discrete states,
and the independence of quantum decay on particle statistics
in the many-body decay dynamics.
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FIG. 1. (a) Schematic of the multilevel Fano-Anderson model.
(b) A tight-binding lattice (a quantum wire) with side-coupled N
discrete sites realizes quantum-mechanical decay of N interfering
resonances in a tight-binding continuum. The frequencies of the
discrete states are fully embedded in the broad tight-binding lattice
band. (c),(d) Dispersion relation ω(k) of the continuum (Bloch)
states in (c) a one-dimensional lattice with time-reversal symmetry
[ω(k) = 2κ cos k in the nearest-neighbor approximation], and (d) in a
topological continuum with chiral edge states. In (c) destructive Fano
interference and bound states in the continuum can arise because of
bidirectional propagation in the continuum, whereas in (d) coupling
is unidirectional and bound states in the continuum are prevented [see
panel (e)].

II. QUANTUM DECAY OF INTERFERING RESONANCES:
FANO-ANDERSON MODEL AND
NON-HERMITIAN DYNAMICS

Quantum-mechanical decay of interfering resonances can
be studied rather generally by means of the Fano-Anderson
(or Friedrichs-Lee) model [3,12,15,24,25], which describes
the decay of N discrete states of frequencies ω1, ω2,..., ωN

coupled to a common one-dimensional continuum of states
[Fig. 1(a)]. As shown in many previous works, in the weak-
coupling and Markovian approximations the decay dynamics
of the interfering resonances in a broad continuum can be
described by an effective non-Hermitian Hamiltonian. Here
we briefly review for the sake of completeness the main model
and results of the analysis.

The second-quantization Hamiltonian of the N-level
Friedrichs-Lee model (with h̄ = 1) reads

Ĥ =
N∑

α=1

ωα ĉ†
α ĉα +

∫
dk ω(k)ĉ†(k)ĉ(k)

+
N∑

α=1

∫
dk[gα (k)ĉ†

α ĉ(k) + g∗
α (k)ĉ†(k)ĉα]

≡ Ĥbs + Ĥbath + Ĥint, (1)

where ĉα, ĉ†
α are the annihilation and creation operators

of particles for the bound states at energies ωα (α =
1, 2, . . . , N); ĉ(k), ĉ†(k) are the annihilation and creation
operators of particles in the effective one-dimensional con-
tinuum of states at the energy ω(k), described by a continuum
index k (for example the Bloch wave number if the bath is a
tight-binding continuum); and gα (k) is the spectral coupling
function between the αth discrete level and the continuum.
The operators ĉα, ĉ†

α, ĉ(k), ĉ†(k) satisfy the usual commu-
tation or anticommutation relations of bosonic or fermionic
particles. Note that the Hamiltonian Ĥ commutes with the par-
ticle number operator Ĝ = ∑

α ĉ†
α ĉα + ∫

dkĉ†(k)ĉ(k), which
is thus a constant of motion. In the single-particle case G = 1,
particle statistics is not of relevance and the state vector of the
system can be expanded as

|ψ (t )〉 =
N∑

α=1

cα (t )ĉ†
α|0〉 +

∫
dkc(k, t )ĉ†(k)|0〉, (2)

where cα (t ) and c(k, t ) are the probability amplitudes to find
the particle at the αth discrete level or in the continuum,
respectively. The evolution of the amplitude probabilities is
governed by the coupled equations

i
dcα (t )

dt
= ωαcα +

∫
dkgα (k)c(k, t ), (3)

i
∂c(k, t )

∂t
= ω(k)c(k, t ) +

N∑
α=1

g∗
α (k)cα (t ). (4)

Assuming that at initial time the continuum is in the vac-
uum state, the degrees of freedom of the continuum can be
formally eliminated from Eqs. (3) and (4), yielding a set of
integrodifferential equations for the occupation amplitudes cα .
In the Weisskopf-Wigner (Markovian) approximation, i.e., by
considering the weak-coupling limit gα → 0 and assuming a
broad and nonstructured continuum into which the frequen-
cies ωα are embedded, the decay dynamics of interfering res-
onances is described by the following effective non-Hermitian
Schrödinger equation in the subspace of discrete states (see,
for instance, [3,18,20,30]):

i
dcα

dt
�

N∑
β=1

Hα,βcβ (t ). (5)

The elements of the N × N non-Hermitian matrix H are
given by

Hα,β = ωαδα,β − i	α,β, (6)

where

	α,β =
∫ ∞

0
dτ

∫
dkgα (k)g∗

β (k) exp{i[ωβ − ω(k)]τ }. (7)

The eigenvalues and corresponding eigenvectors of H fully
capture the decay dynamics and Fano interference among
overlapped resonances (when ωα are closely spaced). In par-
ticular, the interference among the various decay channels can
accelerate or decelerate the decay dynamics, and for perfect
destructive interference the real part of one or more eigenval-
ues of H can vanish, signaling the existence of bound states
in the continuum (dark states) and fractional (limited) decay.
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III. QUANTUM DECAY AND FANO INTERFERENCE
IN A TOPOLOGICAL CONTINUUM

In the most common cases, the Hamiltonian Ĥbath describ-
ing the continuum of states satisfies time-reversal symme-
try and sustains bidirectional propagating (scattering) states.
For example, if the bath is a tight-binding one-dimensional
crystal, i.e., a quantum wire [Fig. 1(b)], k is the Bloch wave
number (−π � k < π ) and the dispersion relation ω(k) of the
tight-binding lattice band satisfies the condition

ω(−k) = ω(k) (8)

because of time-reversal symmetry [Fig. 1(c)]. This implies
(dω/dk)(−k) = −(dω/dk)(k), i.e., the continuum sustains
bidirectional propagating states at each frequency in the al-
lowed band. The simplest situation, which has been studied
in detail in Ref. [30], is that of a continuum consisting of
a tight-binding one-dimensional lattice with nearest-neighbor
hopping amplitude κ , corresponding to the dispersion relation

ω(k) = 2κ cos(k) (9)

and N discrete levels side coupled to the lattice at sites
n1, n2, . . . , nN with coupling constants κ1, κ2,..., κN [see
Figs. 1(b) and 1(c)]. Here κ is the hopping amplitude between
nearest-neighbor sites in the quantum wire. Owing to time-
reversal symmetry and the bidirectional nature of transport in
the lattice, two discrete levels with nearly degenerate reso-
nance frequency are indirectly coupled via the bidirectional
scattered states in the continuum, resulting in a Fano-type
interference.

In this work we consider the case where the continuum
corresponds to unidirectional propagating states solely, i.e.,
for which the group velocity (dω/dk) has a defined sign
(either positive or negative) within the entire Brillouin zone.
This case is typically found whenever the bath is a topological
continuum, such as a quantum Hall or a Floquet topolog-
ical insulator with some edges (see Sec. IV below), and
the frequencies ωα of the discrete states are embedded in a
topological gap of the insulator: the discrete levels are coupled
to the chiral edge states of the topological insulator (and
not to the bulk states), which thus acts as an effectively one-
dimensional bath (a quantum wire) sustaining unidirectional
propagating states solely. The decay of the discrete states
coupled to the chiral edge states of the topological insulator
can be effectively modeled by considering in Eq. (1) a one-
dimensional tight-binding metacrystal with long-range hop-
ping and broken time-reversal symmetry [31], which realizes
unidirectional transport in the quantum wire. For the sake of
definiteness, we consider a rather simple model, schematically
shown in Fig. 1(b), where N discrete sites are attached to a
one-dimensional metacrystal with long-range hopping. In the
Wannier basis representation, the Hamiltonian of the system
reads

Ĥ =
N∑

α=1

ωα ĉ†
α ĉα +

∑
l,n

(θn−l Â
†
nÂl + H.c.)

+
N∑

α=1

(κα ĉ†
αÂnα

+ H.c.), (10)

where Â†
n is the particle (bosonic or fermionic) creation oper-

ator at the nth Wannier site of the tight-binding lattice, θn−l is
the hopping rate between sites n and l in the lattice, and κα

is the hopping rate of the αth discrete site |α〉 attached to the
nα site of the lattice [Fig. 1(b)]. The dispersion curve of the
tight-binding lattice band is given by

ω(k) =
∞∑

n=−∞
θn exp(−ink), (11)

which is assumed to satisfy the constraint (dω/dk) > 0 to en-
sure unidirectional propagation of scattering states [Fig. 1(d)].
The Fano-Anderson Hamiltonian (1) is readily obtained by
writing Eq. (10) in the Bloch basis (rather than in the Wannier
basis). By letting

ĉ(k) = 1√
2π

∞∑
−∞

Ân exp(−ikn), (12)

where −π � k < π is the Bloch wave number, the Hamilto-
nian (10) is readily transformed into Eq. (1) with ω(k) given
by Eq. (11) and with the following spectral coupling functions
gα (k):

gα (k) = κα√
2π

exp(iknα ). (13)

The elements of the non-Hermitian matrix (6) can be com-
puted using Eqs. (7) and (13). The calculation, which is
detailed in the Appendix A, yields

Hα,β �
⎧⎨
⎩

ωβ − iκ2
β/(2vβ ) α = β

−i(κακβ/vβ ) exp[ikβ (nα − nβ] nα > nβ

0 nα < nβ

, (14)

where kβ and vβ are defined by [see Fig. 1(d)]

ω(kβ ) = ωβ, vβ = (dω/dk)kβ
> 0. (15)

It is worth comparing the expression of the effective non-
Hermitian matrix H given by Eq. (14) with the one cor-
responding to a tight-binding bidirectional continuum with
the usual dispersion relations ω(k) = 2κ cos(k) [Eq. (9)] sat-
isfying time-reversal symmetry. The elements of the non-
Hermitian matrix H for the bidirectional quantum wire have
been calculated in Ref. [30], and are given in Appendix B for
the sake of completeness.

Note that, for the unidirectional continuum with broken
time-reversal symmetry, H is a lower triangular matrix, i.e.,
the elements Hα,β in the upper diagonals β > α vanish [see
Eq. (14)], indicating that the eigenvalues of H are the ele-
ments on the main diagonal. Such a striking result follows
from the unidirectional (chiral) transport in the bath, yielding
unidirectional coupling between any of two discrete states |α〉
and |β〉: contrary to a bath sustaining bidirectional transport,
in the case of a chiral bath excitation that decays from a site
|α〉 into the continuum is detected by any other site |β〉 in the
chain if and only if nβ > nα [see Fig. 1(e)]. Such a behavior
has a strong impact into the decay dynamics as compared to a
usual bidirectional continuum, with some remarkable results
that are discussed below.

(i) Absence of bound states in the continuum and complete
decay. The unidirectional nature of coupling among the dis-
crete levels inhibits destructive interference among different
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decay channels (i.e., Fano interference), resulting in the com-
plete decay of any initial excitation into the continuum and
the absence of bound states in the continuum. In fact, a bound
state in the continuum would correspond to an eigenvalue
of H with vanishing imaginary part. While this is possi-
ble for a bidirectional continuum under certain conditions,
corresponding to complete destructive quantum interference
of decay channels (see, e.g., [30] and Appendix B), in the
unidirectional continuum from Eq. (14) it follows that the
imaginary part of any eigenvalue Hα,α of H is strictly neg-
ative, resulting in a complete decay. Note also that, owing to
the unidirectional nature of the coupling, the decay of level |1〉
is always described (within the Markovian approximation) by
an exponential law and it is not influenced by the presence of
the other discrete levels.

(ii) High-order exceptional points. A particular regime is
attained whenever ωα and κα are independent of index α,
i.e., all discrete states have the same resonance frequency and
are coupled with the same strength to the continuum. In this
case there is a non-Hermitian coalescence of all eigenvalues
and corresponding eigenvectors of the non-Hermitian matrix
H, i.e., an exceptional point of order N [29] arises in the
multilevel decay dynamics. This is a rather interesting result,
since in most common multilevel decay into a nontopological
continuum high-order exceptional points are rarely found and
under very special conditions. The presence of high-order
exceptional points results in a high non-normal behavior of the
decay dynamics and a characteristic exponential power-law
decay, discussed in Ref. [20].

(iii) Quiescent dynamics followed by an abrupt decay in
the topological continuum. The absence of bound states in
the continuum makes the quantum decay into the topolog-
ical bath complete. However, an interesting feature is that,
for a large number N of discrete states, the system can
be prepared at initial time in a coherent superposition of
the discrete states such that the dynamics is quiescent for
a certain time interval τ , where decay is negligible, after
which an abrupt decay into the continuum is observed. The
quiescence time τ increases almost linearly with the number
N of discrete levels. To illustrate such a behavior, let us
introduce the nondecaying (survival) probability at time t ,
defined as P(t ) = ∑N

α=1 |cα (t )|2, with P(0) = 1. For a given
initial condition c(0) ≡ (c1(0), c2(0), . . . , cN (0))T , the upper
bound for P(t ) is given by P(t ) � σmax(t ), where σmax(t ) is
the largest eigenvalue of the matrix A†(t )A(t ) and where we
have set A(t ) ≡ exp(−iHt ) [20]. For a fixed time t > 0, the
largest value σmax(t ) is assumed for the initial excitation c(0)
of the system which is the eigenvector of A†(t )A(t ) with
eigenvalue σmax(t ). Quiescent dynamics followed by a fast
decay occurs when σmax(t ) versus t remains very close to 1
for some interval 0 < t < τ , after which the decay starts with
an abrupt drop of the survival probability. The resilience time
τ can be thus defined as the largest time t = τ such that the
upper bound σmax(t ) of the survival probability remains larger
than a reference value Pb in the entire time interval (0, τ ),
i.e., σmax(t ) > Pb for 0 < t < τ and σmax(t ) < Pb for t > τ .
Clearly, the choice of the reference value Pb is not unique
and can be empirically set looking at the actual profile of the
decay law, which can be more or less steep. This means that
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FIG. 2. Quiescent dynamics in multilevel quantum decay. (a) Be-
havior of the upper bound σmax(t ) of the survival probability P(t )
vs time t in the system of Fig. 1(b) comprising N = 20 degenerate
discrete sites side coupled to a tight-binding continuum with ωα =
0, nα = α, and κα independent of α. The solid curve refers to a
topological continuum with dispersion curve as in Fig. 1(d), whereas
the dashed curve corresponds to a tight-binding continuum with
dispersion relation as in Fig. 1(c). Time is normalized to κ2

α/(2vα )
in the former case, whereas it is normalized to κ2

α/(2κ ) in the
latter case. Clearly, the survival probability in the quantum decay
in the topological continuum shows a quiescent dynamics for a time
interval τ , after which an abrupt decay is observed. The resilience
time τ , defined as the time τ such that σmax(τ ) = Pb, turns out to
be an almost linearly increasing function of the number N of the
discrete levels, as shown in panel (b) for three different values of the
reference level Pb (squares: Pb = 0.996; circles: Pb = 0.97; triangles:
Pb = 0.5). (c) Example of the survival probability for N = 20 levels
decaying in the topological continuum for the coherent initial prepa-
ration of the system in the state shown in the inset (amplitudes cα

at initial time t = 0). The time evolution of the amplitudes |cα (t )| at
various discrete sites is depicted in panel (d). Note that the excitation
remains trapped in the impurity sites and shifts in time until the right
edge site α = 20 is reached, after which an abrupt decay into the
quantum wire occurs.

there is some uncertainty in the definition of τ . Figure 2(a)
shows a typical behavior of the upper bound σmax(t ) of the
survival probability P(t ) versus t corresponding to multilevel
quantum decay of N = 20 discrete levels in a topological
continuum (solid curve) and in an ordinary tight-binding con-
tinuum (dashed curve). Clearly, for the case of a topological
continuum a quiescent dynamics of the survival probability
for a time interval τ is observed, followed by a rapid decay
into the bath. The numerically computed behavior of the
quiescence time τ versus N for three values of the reference
level Pb is shown in Fig. 2(b). The figure clearly shows
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that the resilience interval increases almost linearly with the
number of discrete levels, a result that does not sensitively
depend on the precise value of the reference level Pb. To
observe resilience dynamics in the decay process, the system
should be prepared at initial time t = 0 in a proper coherent
superposition of amplitudes cα (0). A possibile choice is that
cα (0) be equal to the eigenvector of A†(t )A(t ) with the lowest
decay rate, for some fixed value of t < τ . As an example,
quiescent dynamics followed by an abrupt decay into the bath,
for a number N = 20 of discrete levels, is shown in Fig. 2(c).
Here the system is initially prepared in a coherent state, shown
in the inset of Fig. 2(c), corresponding to the eigenstate of
the matrix A†(τ )A(τ ) with τ � 28 (the resilience time for
N = 20). Note that such a state corresponds to the excitation
of a few discrete sites around the site α = 3, near the left edge
of the impurity chain. To physically explain the absence of
the decay into the continuum until the time t ∼ τ , it is worth
looking at the temporal evolution of the amplitudes |cα (t )| in
the various discrete sites, which is depicted in Fig. 2(d). The
figure clearly shows that the excitation remains trapped in the
chain of discrete sites and shifts in time at a constant speed
until the right-edge discrete site is reached, after which an
abrupt decay into the continuum is observed. Such a simple
physical picture explains the resilience against quantum decay
despite the absence of bound states and why the resilience
time τ increases linearly with the number N of discrete sites.

(iv) Non-Hermitian damped Bloch oscillations. An interest-
ing dynamical behavior is observed when a gradient field C is
applied to the N discrete levels, i.e., the resonances are equally
spaced in frequency ωα = ω1 + C(α − 1), and they are cou-
pled to the topological continuum with the same coupling
strength and group velocity, i.e., κα and vα are independent
of α. In this case the eigenvalues of the non-Hermitian matrix
H describing the decay dynamics read

λα = ω1 + C(α − 1) − i	 (16)

(α = 1, 2, . . . , N) where 	 ≡ κ2
α/(2vα ) is the common decay

rate. Since the real part of the eigenvalues are equally spaced
by C, the temporal dynamics is periodic with period TB =
2π/C, enveloped by an exponential decay with decay rate
	. Such a dynamical behavior corresponds to damped Bloch
oscillations, which are peculiar to non-Hermitian lattices with
unidirectional hopping [32]. Note that, contrary to usual Bloch
oscillations in Hermitian lattices, here edge effects do not
smear out the periodicity of the oscillations, which are ob-
served even when dealing with few discrete levels [32]. An
example of damped Bloch oscillations of N = 6 discrete lev-
els decaying into a topological continuum is shown in Fig. 3.
The damped oscillatory behavior with period TB is clearly
observed when detecting the decay behavior of the amplitudes
in the discrete levels α � 2 [Fig. 3(a)]. Interestingly, the
signature of the damped Bloch oscillations is also visible in
the decay behavior of the survival probability P(t ) [Fig. 3(b)],
which is slowed down after each Bloch oscillation period.

IV. EXAMPLES OF MULTILEVEL DECAY IN
TOPOLOGICAL BATHS

Chiral edge states in two-dimensional topological in-
sulators provide a major platform to realize an effective
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FIG. 3. Non-Hermitian damped Bloch oscillations in multilevel
quantum decay in a topological continuum. N = 6 discrete levels
are side coupled to the topological tight-binding continuum with
equally spaced resonance frequencies C = 10	, where 	 = κ2

α/2vα

is the decay rate. At initial time t = 0 the system is prepared with
the excitation in site α = 1, i.e., cα (0) = δα,1. Panel (a) shows the
temporal dynamics of the amplitudes |cα (t )| for α = 2 (solid curve)
and α = 3 (dashed curve), clearly showing a damped oscillatory
dynamics with Bloch oscillation period TB = 2π/C. Time is normal-
ized to the inverse of decay rate 1/	. The behavior of the survival
probability is shown in panel (b).

one-dimensional topological continuum showing unidirec-
tional propagating modes. Provided that the energies of the
discrete levels are entirely embedded in a topological gap of
the crystal, decay arises because of the coupling of the discrete
levels with the chiral edge states, which thus realize an effec-
tive one-dimensional continuum with a dispersion curve as the
one shown in Fig. 1(d). Chiral edge states emerge in a wide
variety of topological quantum and classical systems, such as
in quantum Hall systems, in the Haldane model, in Floquet
topological insulators, and in anomalous Floquet topological
insulators, to mention a few (see for example [27,28,33]
and references therein). Here we discuss multilevel decay in
two examples of topological baths, namely in a tight-binding
quantum Hall system (the Harper-Hofstadter model), and in
anomalous Floquet topological insulators, and compare exact
numerical results with the non-Hermitian effective description
presented in the previous section.

A. Quantum decay in the Harper-Hofstadter topological bath

The celebrated Harper-Hofstadter model [34] describes
charged particles moving in a two-dimensional tight-binding
square lattice under a uniform magnetic flux per unit cell
[Fig. 4(a)]. This model realizes a quantum Hall topologi-
cal insulator where the magnetic flux breaks time-reversal
symmetry and topological features are characterized by the
first Chern numbers. The Harper-Hofstadter model has been
realized in different kinds of synthetic matter with artificial
gauge fields, including ultracold atoms in optical lattices [35],
microwave circuits [36], and photons in coupled microring
resonators [37]. In the infinitely extended lattice, the single-
particle energy spectrum depends sensitively on the magnetic
flux per unit cell and the tight-binding band of the square
lattice splits into narrow magnetic bands. At high magnetic
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FIG. 4. Quantum-mechanical decay in a quantum Hall topolog-
ical bath. (a) Infinitely extended tight-binding square lattice in the
presence of a magnetic flux ϕ per lattice unit cell that breaks time-
reversal symmetry. κ is the nearest-neighbor hopping amplitude.
(b) Semi-infinite square lattice with an edge at n = 1. (c) Energy
spectrum of the semi-infinite square lattice for a magnetic flux ϕ =
π/2 and for κ = 1. Note that there are four magnetic bands with
two wide topological gaps. Chiral edge states, with opposite group
velocities, are found with energies in the upper and lower wide gaps.
If the frequencies ωα of the discrete levels, side coupled to the edge of
the square lattice, are entirely embedded in the lower wide magnetic
gap, the chiral edge states with positive group velocities act as an
effective one-dimensional topological bath sustaining unidirectional
propagating modes. (d) Decay dynamics [behavior of the occupation
probabilities |c1(t )|2 and |c2(t )|2 vs time t] for N = 2 discrete levels
with frequencies ω1 = ω2 = −1.5 side coupled, with equal coupling
constants κ1 = κ2 = 0.2, to the sites (n, m) = (1, 0) and (n, m) =
(1, 3) of the square lattice. At initial time the system is prepared
in the discrete state |1〉. Solid and dashed curves refer to the exact
numerical results and to the approximate non-Hermitian description,
respectively. The values of kβ and of the group velocity vβ used in
the non-Hermitian matrix H are obtained from the dispersion curve
ω(k) of the chiral edge states and the condition ω(kβ ) = ω1,2, and
read kβ � 2.536 and vβ = (dω/dk)ω1,2 � 1.6. Note that, owing to
unidirectional Fano interference, the decay of level |1〉 is almost
exponential and it is not influenced by the presence of the discrete
level |2〉.

fields, a self-similar (fractal) energy spectrum does emerge,
which is known as the Hofstadter butterfly. The Hamiltonian

of the Harper-Hofstadter model reads

ĤH = κ
∑
n,m

{â†
n+1,mân,m + exp(iϕn)â†

n,m+1ân,m + H.c.},
(17)

where κ is the hopping rate between adjacent sites in the
square lattice and ϕ is the magnetic flux in each plaquette.
Here we consider the case of a magnetic flux ϕ = π/2,
corresponding to band splitting into four magnetic bands with
two wide topological gaps, shown in Fig. 4(c). When the
infinite two-dimensional lattice is truncated at one edge in
the n direction, as in Fig. 4(b), chiral edge states in each one
of the two wide topological gaps arise with a dispersion curve
ω(k) which can be computed from the eigenvalue Harper
equation

κ (An+1 + An−1) + 2κ cos(k + nϕ)An = ω(k)An (18)

with the boundary conditions A0 = 0 and An → 0 as n →
+∞. The chirality of the edge states is opposite in the two
gaps, as shown in Fig. 4(c). When a number N of discrete
levels |1〉, |2〉,...are side coupled to the edge of the lattice
[N = 2 in Fig. 4(b)] and their frequencies are embedded in
either one of the two wide topological gaps, the semi-infinite
two-dimensional square lattice, sustaining unidirectional edge
states in either one of the two gaps, acts as an effective one-
dimensional topological bath with a dispersion curve ω(k)
like in Fig. 1(d), into which the discrete levels can decay.
A positive group velocity (dω/dk) > 0 is obtained when
the frequencies of the discrete levels are embedded in the
lower topological gap. As an example, Fig. 4(d) shows the
numerically computed decay dynamics of two discrete levels,
attached at the edge at sites (n, m) = (1, 0) and (n, m) =
(1, 3), into the chiral edge states in the lower topological gap.
Parameter values used in the simulations are κ = 1 (hopping
rate in the square lattice), κ1 = κ2 = 0.2 (coupling constants
of discrete levels with the lattice), and ω1 = ω2 = −1.5 (res-
onance frequencies of the discrete levels). Solid and dashed
curves in the figure depict the exact numerical results (solid
curves) and the approximate ones (dashed curves) obtained
by the effective non-Hermitian model [Eqs. (5), (6), (14)
in previous sections], respectively. Note that, owing to the
unidirectional nature of the coupling between the discrete
levels, the decay of level |1〉 is almost exponential and it is
not influenced by the presence of the discrete level |2〉.

B. Quantum decay in an anomalous Floquet topological bath

A bath showing unidirectional transport can be realized in
Floquet topological insulators, where time-reversal symmetry
is broken by periodic temporal modulation of the underlying
Hamiltonian of a crystal [33]. An interesting case is the one
of anomalous topological insulators [38], whose topological
classification goes beyond that of static systems. Anomalous
Floquet topological insulators have been recently demon-
strated in synthetic matter based on photonic [39] and sound
[40] transport in two-dimensional lattices. Interestingly, to
achieve unidirectional (rectified) transport based on Floquet
driving it is enough to consider a quasi-one-dimensional
lattice [41], namely a binary lattice with controlled coupling
between nearest-neighbor sites, as demonstrated in an earlier
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experiment Ref. [42]. A scheme of multilevel decay in the
anomalous Floquet topological bath, consisting of two slowly
driven sublattices A and B into which the side-coupled discrete
levels can decay, is shown in Fig. 5(a). The modulation
cycle, of period T = 2T1 + T2, comprises threes steps. In
the first step (time interval 0 < t < T1), alternating dimers
of sublattices A and B are coupled by a coupling constant
κ such that κT1 = π/2 [solid bonds in Fig. 5(a)], while in
the second step (time interval T1 < t < 2T1) the other dimers
are coupled with the same coupling constant. In such two
steps the discrete levels are decoupled from the sublattices.
Note that, owing to the condition κT1 = π/2, after the two
steps any initial excitation in sublattice A is shifted forward
by one site in A with a π phase shift, whereas any initial
excitation in sublattice B is shifted backward by one site in B
with π phase shift [41,42]. In momentum space, the one-site
forward or backward spatial shift is simply described by the
operator exp(±ik + iπ ). In the third step of the modulation
cycle (time 2T1 < t < T ), the sites in sublattices A and B
are decoupled, while the discrete levels |1〉, |2〉,... are side
coupled to the sites n1, n2,...of sublattice A by the coupling
constants ρ1, ρ2,.... Clearly, assuming that at initial time t = 0
the bath is in the vacuum state, after each modulation cycle,
i.e., at times t = T, 2T, 3T, . . ., the sublattice B remains in
the vacuum state, while excitation can spread in sublattice
A, which acts as an effective topological bath sustaining
unidirectional propagating Bloch modes. The propagator Û
of the system over one oscillation cycle can be factorized as

Û = Û2Û1, (19)

where Û1 describes the system evolution in the first and
second steps of Fig. 5(a), i.e., from t = 0 to t = 2T1, whereas
Û2 describes the system evolution in the third step, i.e., from
t = 2T1 to t = T . Since in the first two steps the binary lattice
and discrete levels are decoupled, one has

Û1 = exp(−iĤbathT − iĤbsτ ) ≡ exp(−iĤ1T ), (20)

where we have set τ ≡ 2T1,

Ĥbs ≡
N∑

α=1

ωα ĉ†
α ĉα (21)

is the Hamiltonian of the discrete levels, and

Ĥbath ≡
∫ π

−π

dkω(k)ĉ†(k)ĉ(k) (22)

is the effective Hamiltonian of the bath. In the above equa-
tions, ωα is the resonance frequency of the discrete level |α〉
and ĉ†

α the corresponding creation operator of the excitation
in the level, ĉ†(k) is the creation operator of Bloch mode with
wave number k in sublattice A, and ω(k) is the dispersion
relation (quasienergy) of the effective topological bath given
by [Fig. 5(b)]

ω(k) = (π + k)/T (mod 2π/T). (23)

The propagator Û2, describing the evolution of the system in
the third stage, from t = 2T1 to t = T , reads

Û2 = exp(−iĤbsT2 − iĤ0T2) ≡ exp(−iĤ2T ), (24)
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FIG. 5. Multilevel decay in an anomalous Floquet topological
insulators. (a) Scheme of the slowly driven system. The topological
bath, comprising two sublattices A and B, is side coupled to a number
N of discrete levels |1〉, |2〉,... (N = 2 in the figure) via sublattice A.
The modulation cycle of period T = 2T1 + T2 comprises three steps.
In the first two steps, each of duration T1, the discrete levels are un-
coupled to the bath and alternating dimers of the sublattices are cou-
pled with a hopping amplitude κ satisfying the condition κT1 = π/2.
In the third step (time duration T2), the sites in sublattices A and B are
decoupled, while the discrete levels |1〉, |2〉,... are coupled to the sites
n1, n2,...of sublattice A with coupling constants ρ1, ρ2,.... (b) Disper-
sion relation (quasienergy) of the effective topological bath. Note that
the group velocity v = (dω/dk) = 1/T is independent of frequency.
(c) Example of two-level decay in the anomalous Floquet topo-
logical continuum. Parameter values are ω1 = ω2 = 0, T1 = T2 =
T/3, κ = 3π/(2T ), ρ1 = ρ2 = 0.15κ, n1 = 0, and n2 = 2. At ini-
tial time the system is prepared with the excitation in level |1〉. The
evolution of the occupation probabilities of the two discrete levels
at stroboscopic times t = 0, T, 2T, . . . as obtained by numerical
computation of the exact Floquet dynamics is shown by bold circles,
whereas the approximate continuous-time dynamics governed by
the corresponding non-Hermitian Hamiltonian Eq. (14) is depicted
by thin solid curves. Note that, owing to unidirectional Fano inter-
ference, the decay of level |1〉 is almost exponential and it is not
influenced by the presence of the discrete level |2〉.
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where Ĥ0 is the interaction Hamiltonian of discrete levels with
the sites of sublattice A, i.e.,

Ĥ0 =
N∑

α=1

ρα

{
ĉ†
αÂnα

+ H.c.
}

=
N∑

α=1

∫
dk{Gα (k)ĉ†

α ĉ(k) + H.c.} (25)

with

Gα (k) = (ρα/
√

2π ) exp(iknα ). (26)

The propagator in one oscillation cycle, from t = 0 to t = T ,
is given by

Û = exp(−iĤ2T ) exp(−iĤ1T ) = exp(−iĤT ), (27)

where Ĥ is the effective Hamiltonian of the periodic (Floquet)
dynamics. This means that, at times t = 0, T, 2T, 3T, . . .,
the time-periodic Floquet dynamics can be stroboscopically
mapped into the continuous dynamics of the effective time-
independent Hamiltonian Ĥ . Using the Baker-Campbell-
Hausdorff formula and taking into account that, for a weak
discrete-bulk coupling, the commutator [Ĥ1, Ĥ2] is negligible,
the effective Hamiltonian takes the form given by Eq. (1)
where ω(k) is defined by Eq. (23) [Fig. 5(b)] and gα (k) by
Eq. (13) with κα = (T2/T )ρα (see Appendix C for technical
details). An example of two-level decay into the anomalous
Floquet topological insulator is shown in Fig. 5(c). Note that,
like for the previous example of the quantum Hall topological
bath [Fig. 4(d)], the decay of the initially excited level |1〉
is described by an almost exponential law, i.e., the decay is
insensitive to the presence of the other discrete level |2〉 owing
to the unidirectional nature of Fano interference.

V. MULTIPARTICLE QUANTUM DECAY

In previous sections we considered the decay dynamics of
a single particle, so that the bosonic or fermionic nature of
the particle does not affect the decay dynamics. However, in
many-particle systems the decay dynamics is influenced by
the particle statistics, even for noninteracting particles [21,22].
For example, fermions generally show a faster decay than
bosons, as demonstrated in a recent experiment [22] where
polarization-entangled photon states were used to emulate
different particle statistics. In previous studies, the continuum
was assumed to satisfy time-reversal symmetry. A main ques-
tion then arises: is the multiparticle decay dynamics affected
by particle statistics when the decay occurs in a topological
bath with broken time-reversal symmetry? Let us assume
that N indistinguishable particles are initially placed in the
N discrete levels |1〉, |2〉,... |N〉, and let us indicate by P(t )
the nondecaying probability, i.e., the probability that at time
t none of the N particles have decayed into the topological
continuum. As shown in [22], the nondecaying probability
P(t ) depends on the particle statistics and in the Markovian
approximation reads

P(ferm)(t ) = |det[U (t )]|2 (28)

for fermions, and

P(bos)(t ) = |perm[U (t )]|2 (29)

for bosons, where U (t ) = exp(−iHt ) is the propagator of
the effective non-Hermitian Hamiltonian (6) and where
det(U ), perm(U ) indicate the determinant and permanent of
the matrix U , respectively. If the decay occurs in a topological
continuum sustaining unidirectional propagating modes, ac-
cording to Eq. (14) the effective non-Hermitian Hamiltonian
H is a lower triangular matrix, and thus also U (t ) is a lower
triangular matrix. In such a limiting case, the permanent and
determinant of U do coincide, i.e., one has

P(ferm)(t ) = P(bos)(t ) = exp(−	t ), (30)

where we have set

	 ≡
N∑

α=1

κ2
α

vα

. (31)

Equation (30) indicates that, contrary to multiparticle quan-
tum decay in a nontopological continuum, the nondecaying
probability P(t ) is insensitive to particle statistics and always
shows an exponential decay with a decay rate given by
Eq. (31).

VI. CONCLUSION

Fano interference among overlapping resonances is ubiq-
uitous in the quantum-mechanical decay process of two or
more discrete states coupled to a common continuum. Fano
interference is at the heart of important phenomena such as
the existence of bound states in the continuum and fractional
decay owing to destructive interference among different de-
cay channels. In the many-body quantum decay process of
noninteracting particles, Fano interference behaves differently
for bosonic and fermionic particles. Such previous results
assume time-reversal symmetry of the bath Hamiltonian,
which is indeed the most common situation. In this work
we considered the process of multilevel quantum-mechanical
decay in a topological bath with broken time-reversal sym-
metry sustaining unidirectional (chiral) propagating states,
such as in quantum Hall or in Floquet topological insulators.
Such topological systems are nowadays available in different
physical settings, such as in cold atoms or in photonic sys-
tems where synthetic gauge fields or Floquet dynamics can
break time-reversal symmetry [28,33]. The main result of the
present work is that the chiral nature of scattering states fully
suppresses Fano interference among overlapping resonances,
with a great impact into the multilevel quantum decay dynam-
ics: bound states in the continuum are suppressed, quantum
decay is complete, and there are not signatures of particle
statistics in the decay process. Nonetheless, some interesting
features have been found, such as the appearance of high-
order exceptional points, long quiescent dynamics followed
by a sudden fast decay, and the possibility to observe damped
non-Hermitian Bloch oscillations. Our results disclose im-
portant physical behaviors in the quantum-mechanical decay
process when the underlying bath is a topological continuum
and are expected to stimulate further theoretical and experi-
mental research, bringing in close connection two apparently
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different areas of research: topological phases of matter and
resonance physics.

APPENDIX A: CALCULATION OF THE EFFECTIVE
NON-HERMITIAN HAMILTONIAN IN A CONTINUUM

WITH UNIDIRECTIONAL TRANSPORT

In this Appendix we derive expression (14) of the non-
Hermitian matrix elements Hα,β given in the main text.
For the sake of definiteness, we assume that (dω/dk) is
always positive in the entire Brillouin zone −π � k < π ,
corresponding to the topological bath sustaining forward-
propagating modes solely [see Fig. 1(d)], however a similar
analysis holds for a topological continuum with (dω/dk) < 0.
Substitution of Eq. (13) into Eq. (7) yields

	α,β = κακβ

2π

∫ π

−π

{
dk exp[ik(nα − nβ )]

×
∫ ∞

0
dτ exp[iωβτ − iω(k)τ ]

}
. (A1)

Taking into account the identity
∫ ∞

0
dτ exp(−i�τ ) = πδ(�) − iP

(
1

�

)
, (A2)

where P denotes the Cauchy principal value of the integral,
from Eqs. (A1) and (A2) one obtains

	α,β = κακβ

2

∫ π

−π

dk exp[ik(nα − nβ )]δ(ω(k) − ωβ )

− i
κακβ

2π
P

∫ π

−π

dk
exp[ik(nα − nβ )]

ω(k) − ωβ

. (A3)

Since the frequency ωβ of the discrete state |β〉 is embedded
into the continuous spectrum of Ĥbath and ω(k) is an increas-
ing function of k, there exists one and only one Bloch wave
number kβ such that ω(kβ ) = ωβ [see Fig. 1(d)]. Hence the
first integral on the right-hand side of Eq. (A3) reads
∫ π

−π

dk exp[ik(nα − nβ )]δ[ω(k) − ωβ] = exp[ikβ (nα − nβ )]

vβ

,

(A4)
where we have set vβ ≡ (dω/dk)kβ

. Moreover, since we
consider a broad and structureless continuum, in the sec-
ond integral on the right-hand side of Eq. (A3) we can
assume ω(k) � ωβ + vβ (k − kβ ) for the dispersion relation;
such an assumption is consistent with the weak-coupling and
Markovian approximations used to derive the effective non-
Hermitian equations (5)–(7) given in the main text. Under
such an assumption, the principal value integral on the right-
hand side of Eq. (A3) reads

P
∫ π

−π

dk
exp[ik(nα − nβ )]

ω(k) − ωβ

� P
∫ π

−π

dk
exp[ik(nα − nβ )]

vβ (k − kβ )
.

(A5)
For a broad continuum, corresponding to a large group veloc-
ity vβ , the integral on the right-hand side in Eq. (A5) can be
approximately computed in complex plane using the residue
theorem by extending the integral from −∞ to ∞. Taking into

account that

P
∫ ∞

−∞
dx

exp(iθx)

x − ξ
=

⎧⎨
⎩

0, θ = 0
iπ exp(iθξ ), θ > 0

−iπ exp(iθξ ), θ < 0
(A6)

one finally obtains

	α,β =

⎧⎪⎨
⎪⎩

κ2
β

2vβ
, nα = nβ

κακβ

vβ
exp[ikβ (nα − nβ )], nα > nβ

0, nα < nβ.

(A7)

Substitution of Eq. (A7) into Eq. (6) yields Eq. (14) given in
the main text.

APPENDIX B: EFFECTIVE NON-HERMITIAN
HAMILTONIAN IN A TIGHT-BINDING CONTINUUM

WITH TIME-REVERSAL SYMMETRY

We consider the system shown in Fig. 1(b), where N dis-
crete levels are side coupled to a tight-binding continuum (a
quantum wire) with time-reversal symmetry and a dispersion
relation ω = ω(k) given by Eq. (9). The elements of the
effective non-Hermitian Hamiltonian H, defined by Eqs. (6)
and (7), can be calculated in a closed form and read explicitly
(see [30] for more details),

Hα,β = ωαδα,β − iκακβ i|nα−nβ |

(√
4κ2 − ω2

β + iωβ

)|nα−nβ |

(2κ )|nα−nβ |
√

4κ2 − ω2
β

.

(B1)
In particular, for ωα = 0, i.e., when all discrete states have
the same resonance frequency tuned at the center of the tight-
binding lattice band, one simply obtains

Hα,β = −i1+|nα−nβ | κακβ

2κ
. (B2)

In case of two discrete levels (N = 2) and for ω1 = ω2 =
0, one bound state in the continuum, corresponding to a
vanishing eigenvalue of H, is found provided that |nα − nβ | is
an even number. Such a bound state shows some topological
protection, i.e., it is robust against change of couplings κ1,2

and disorder in the hopping rate of the quantum wire.

APPENDIX C: DERIVATION OF THE EFFECTIVE
HAMILTONIAN IN THE ANOMALOUS FLOQUET

TOPOLOGICAL BATH

From Eq. (27) given in the main text and using the Baker-
Campbell-Hausdorff formula, the effective Hamiltonian Ĥ
reads

Ĥ = Ĥ1 + Ĥ2 + iT

2
[Ĥ1, Ĥ2]

+ T 2

12
([Ĥ2, [Ĥ1, Ĥ2]] − [Ĥ1, [Ĥ1, Ĥ2]]) + · · · , (C1)

where

Ĥ1 = Ĥbath + 2T1

T
Ĥbs, Ĥ2 = T2

T
(Ĥbs + Ĥ0), (C2)

and where the dots denote terms involving higher-order com-
mutators. For a weak discrete-continuum coupling, we show
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below that the commutator [Ĥ1, Ĥ2] is negligible, so that one
has

Ĥ � Ĥ1 + Ĥ2 = Ĥbath + Ĥbs + Ĥint, (C3)

where Ĥbs and Ĥbath are given by Eqs. (21) and (22),
respectively,

Ĥint = T2

T
Ĥ0 =

N∑
α=1

∫
dk{gα (k)ĉ†

α ĉ(k) + H.c.}, (C4)

and gα (k) = (T2/T )Gα (k).
Let us calculate the commutator [Ĥ1, Ĥ2]. We assume a

small discrete-continuum coupling and an interaction time T2,
over one oscillation cycle, much smaller than the oscillation
period T . Under such an assumption and since Ĥbath and Ĥbs

commute, one readily obtains

[Ĥ1, Ĥ2] � T2

T
[Ĥbath + Ĥbs, Ĥ0]. (C5)

For the sake of definiteness, let us assume bosonic
commutation relations for the particle creation or
annihilation operators, i.e., [ĉα, ĉ†

β ] = δα,β , [ĉα, ĉβ ] =
[ĉ†

α, ĉ†
β ] = 0, [ĉ(k), ĉ†(k′] = δ(k − k′), and [ĉ(k), ĉ(k′] =

[ĉ†(k), ĉ†(k′] = 0. Using Eqs. (21), (22), and (25), the
commutator on the right-hand side of Eq. (C5) can be
calculated after some straightforward algebra, yielding

iT

2
[Ĥ1, Ĥ2] � T

2

N∑
α=1

∫
dk{i[ωα − ω(k)]gn(k)ĉ†

α ĉ(k)+ H.c.}.

(C6)

In the weak-coupling approximation, energy conservation
implies that the propagating states in the continuum excited
in the decay process are those with Bloch wave number satis-
fying the condition ω(k) � ωα; hence, if we set ω(k) � ωα on
the right-hand side of Eq. (C6) under the sign of the integral,
it follows that the correction introduced by the commutator
(iT/2)[Ĥ1, Ĥ2] to Ĥint can be neglected.

Finally, let us notice that, if the discrete levels are de-
generate in frequency, i.e., ωα is independent of α, after a
gauge transformation one can assume ωα = 0 and thus Ĥbs =
0. In this case, the condition T2 � T can be relaxed and
the effective Hamiltonian Ĥ , stroboscopically describing the
Floquet dynamics, is again given by Eq. (C3).
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