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We investigate the role of coherence and Markovianity in finding an answer to the question whether the
outcomes of a projectively measured quantum stochastic process are compatible with a classical stochastic
process. For this purpose we put forward an operationally motivated definition of “incoherent dynamics”
applicable to any open system’s dynamics. For nondegenerate observables described by rank-1 projective
measurements we show that classicality always implies incoherent dynamics, whereas the converse is true only
for invertible Markovian (but not necessarily time-homogeneous) dynamics. For degenerate observables the
picture is somewhat reversed as classicality does no longer suffice to imply incoherent dynamics (even in the
invertible Markovian case), while an incoherent, invertible Markovian dynamics still implies classicality.
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I. INTRODUCTION

Although in actual experiments with classical systems it
might not always be possible to measure the system without
disturbing it, at least theoretically one can consider the ideal
limit of a noninvasive measurement. This idea has led to the
theory of stochastic processes, a major mathematical toolbox
used across many scientific disciplines [1,2]. Since the limit
of an ideal nondisturbing measurement does not exist for
quantum systems, a widely accepted consensus of what a
quantum stochastic process actually is has not yet emerged.
However, recent progress (see Ref. [3] and references therein)
strongly suggests that a quantum stochastic process is con-
ceptually similar to classical causal modeling [4], and here
we will follow this approach. Understanding under which
circumstances a projectively measured quantum system can
be effectively described in a classical way is therefore of
fundamental interest as it sheds light on the gap between
quantum and classical stochastic processes. In addition, it en-
ables us to distinguish quantum from classical features, which
is a relevant task for future technologies (e.g., in quantum
information or quantum thermoydnamics) and for the field
of quantum biology. Finally, it also has practical relevance as
classical stochastic processes are easier to simulate.

The relation between classical and quantum stochastic pro-
cesses was first addressed by Smirne and co-workers [5], who
showed that the answer to the question whether a quantum
system effectively behaves classically is closely related to the
question whether coherences play a role in its evolution. More
specifically, for a quantum dynamical semigroup obeying
the regression theorem (i.e., a time-homogeneous quantum
Markov process), it was shown that the statistics obtained
from rank-1 projective measurements of a given system ob-
servable are compatible with a classical stochastic process if
and only if the dynamics is “noncoherence-generating-and-
detecting” (NCGD) [5].

The purpose of the present paper is to extend the results
of Smirne et al. in various directions. We will provide an

operationally motivated definition of incoherent dynamics,
which is supposed to capture the absence of any detectable
coherence in the dynamics. It is applicable to any open
systems dynamics, and it is different from the NCGD notion.
Our definition allows us to prove the following: first, for
nondegenerate observables described by rank-1 projectors,
any process which can be effectively described classically is
incoherent (i.e., cannot generate any detectable coherence),
whereas the converse is true only for invertible Markovian
but not necessarily time-homogeneous dynamics. Second, for
degenerate observables, we lose the property that classicality
implies incoherent dynamics because detectable coherence
can be hidden in degenerate subspaces.

The rest of the paper is structured as follows. In Sec. II we
set the stage and introduce some basic definitions. Our main
results are reported in Sec. III A for nondegenerate observ-
ables and in Sec. III B for degenerate observables. We con-
clude in Sec. IV. A thorough comparison with the framework
of Ref. [5] is given in Appendix A showing that our results
reduce to the ones of Smirne et al. in the respective limit.
Various counterexamples, which demonstrate that our main
theorems in Sec. III are tight, are postponed to Appendix B.

II. MATHEMATICAL PRELIMINARIES

We start by reviewing basic notions of a classical stochastic
process. We label the classical distinguishable states of the
system of interest by r, and we assume that the system gets
measured at an arbitrary set of discrete times {t1, . . . , tn}. We
denote the result at time ti by ri. Furthermore, for reasons
which will become clearer later, we explicitly denote the
initial preparation of the experiment by A0. At this stage the
reader can think of this as merely a verbal description of how
to initialize the experiment (e.g., “wait long enough such that
the system is equilibrated and start measuring afterwards”);
later it will mathematically turn out to be a completely positive
and trace-preserving map. We then denote the joint probabil-
ity distribution to get the sequence of measurement results
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rn = r1, . . . , rn at times t1, . . . , tn given the initial preparation
A0 by

p(rn, tn; . . . ; r1, t1|A0) ≡ p(rn|A0). (1)

The following definition is standard:
Definition II.1. The probabilities p(rn|A0) are said to be

classical with respect to a given preparation procedure A0 if
they fulfill the consistency condition∑

rk

p(r�, . . ., rk, . . ., r j |A0) = p(r�, . . .,�rk, . . ., r j |A0) (2)

for all � � k � j � 1. Here the probability on the right-hand
side is constructed by measuring the states ri of the system
only at the set of times {t�, . . . , t j} \ {tk}.

We remark that, if the consistency requirement (2)
is fulfilled, then—by the Kolmogorov-Daniell extension
theorem—we know that there exists an underlying
continuous-in-time stochastic process, which contains all joint
probabilities (1) as marginals. The importance of this theorem
lies in the fact that it allows us to bridge experimental reality
(where any measurement statistics is always finite) with its
theoretical description (which often uses continuous-time dy-
namics in the form of, e.g., stochastic differential equations).

Although condition (2) is in general not fulfilled for
quantum dynamics, the joint probability distribution (1) is
nevertheless a well-defined object in quantum mechanics. For
this purpose we assume that the experimentalist measures at
time tk an arbitrary system observable Rk = ∑

rk
rkPrk with

projectors Prk = P2
rk

and eigenvalues rk ∈ R. If all projectors
are rank-1, i.e., Prk = |rk〉〈rk|, we talk about a nondegenerate
system observable, otherwise we call it degenerate. Further-
more, following the conventional picture of open quantum
systems [6], we allow the system S to be coupled to an
arbitrary environment E . The initial system-environment state
at time t0 < t1 is denoted by ρSE (t0). Then, by using superop-
erator notation, we can express Eq. (1) as

p(rn|A0) = trSE {PrnUn,n−1 . . .Pr2U2,1Pr1U1,0A0ρSE (t0)}
≡ trS{Tn+1[Prn , . . . ,Pr2 ,Pr1 ,A0]}. (3)

Here the preparation procedure A0 is an arbitrary com-
pletely positive (CP) and trace-preserving map acting on
the system only (we suppress identity operations in the
tensor product notation). Notice that the preparation proce-
dure could itself be the identity operation (i.e., “do noth-
ing”) denoted by A0 = I0. Furthermore, Uk,k−1 denotes the
unitary time evolution propagating the system-environment
state from time tk−1 to tk (we make no assumption about
the underlying Hamiltonian here). We also introduced the
projection superoperator Prk ρ ≡ Prk ρPrk , which acts only on
the system and corresponds to result rk at time tk . Finally,
in the last line of Eq. (3) we have introduced the (n+1)-step
“process tensor” Tn+1 [7] (also called a “quantum comb” [8,9]
or “process matrix” [10,11]). It is a formal but op-
erationally well-defined object: it yields the (subnor-
malized) state of the system ρ̃S (Prn , . . . ,Pr2 ,Pr1 ,A0) =
Tn+1[Prn , . . . ,Pr2 ,Pr1 ,A0] depending multilinearly on a cer-
tain set of interventions Prn , . . . ,Pr2 ,Pr1 ,A0. Its norm, as
given by the trace over S, equals the probability to obtain
the measurement results rn. Recently, it was shown that the

process tensor allows for a rigorous definition of quantum
stochastic processes (or quantum causal models) fulfilling
a generalized version of the Kolmogorov-Daniell extension
theorem [3]. We also add that complete knowledge of the
process tensor Tn implies complete knowledge of the process
tensor T� for � � n, i.e., Tn contains T�.

We now have the main tools at hand to precisely state the
question we are posing in this paper: Which conditions does a
quantum stochastic process need to fulfill in order to guarantee
that the resulting measurement statistics can (or cannot) be
explained by a classical stochastic process? That is, when is
Eq. (2) fulfilled? Or, in terms of the process tensor, when is

trS{T�+1[Pr�
, . . . , �k, . . . ,Pr j , . . . ,A0]}

= trS{T�+1[Pr�
, . . . , Ik, . . . ,Pr j , . . . ,A0]}? (4)

Here we have introduced the dephasing operation at time tk ,
�k ≡ ∑

rk
Prk , which plays an essential role in the following.

Furthermore, the dots in Eq. (4) denote either projective
measurements (if the system gets measured at that time) or
identity operations (if the system does not get measured at
that time).

To answer the question, we will need a suitable notion of an
“incoherent” quantum stochastic process, defined as follows:

Definition II.2. For a given set of observables {Rk}, k ∈
{1, . . . , �}, we call the dynamics of an open quantum system
�-incoherent with respect to the preparation A0 if all process
tensors

T�+1

[
��,

{
��−1

I�−1

}
, . . . ,

{
�1

I1

}
,A0

]
(5)

are equal. Here the angular bracket notation means that at each
time step we can freely choose to perform either a dephasing
operation (�) or nothing (I). If the dynamics are �-incoherent
for all � ∈ {1, . . . , n}, we simply call the dynamics incoherent
with respect to the preparation procedure A0.

This definition is supposed to capture the situation where
the experimentalist has no ability to detect the presence
of coherence during the course of the evolution. For this
purpose we imagine that the experimentalist can manipulate
the system in two ways: first, she can prepare the initial
system state in some way via A0 (which could be only
the identity operation) and she can projectively measure the
system observables Rk at times tk ∈ {t1, . . . , tn}. The question
is then: if the final state got dephased with respect to the
observable R� (e.g., by performing a final measurement of R�),
is the experimentalist able to infer whether the system was
subjected to additional dephasing operations at earlier times,
i.e., can possible coherences at earlier times become manifest
in different populations at the final time t�? If that is not the
case, the dynamics are called �-incoherent. We remark that a
process that is �-incoherent is not necessarily k-incoherent for
k �= �. It is therefore important to specify at which (sub)set
of times the process is incoherent. In the following we will
be interested only in processes which are �-incoherent for all
� ∈ {1, . . . , n}, henceforth dubbed simply “incoherent” (with
respect to the preparation A0). We repeat that our definition
of incoherence is different from the NCGD notion introduced
in Ref. [5]; see Appendix A. Furthermore, a similar idea
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restricted to two times was introduced in Ref. [12] in order
to detect nonclassical system-environment correlations in the
dynamics of open quantum systems.

III. RESULTS

A. Nondegenerate observables

Our first main result is the following:
Theorem III.1. If the measurement statistics are classical

with respect to A0, then the dynamics is incoherent with
respect to A0.

Before we prove it, we remark that this theorem holds for
any quantum stochastic process (especially without imposing
Markovianity). Furthermore, a classical process for the times
{tn, . . . , t1} is also classical for all subsets of times, and hence,
the theorem implies incoherence, i.e., �-incoherence for all
� ∈ {1, . . . , n}. In the following proof we will display only
the case � = n, as the rest follows immediately.

Proof. We start by noting that

Tn+1[Prn , . . . ,Pr1 ,A0] = p(rn, . . . , r1|A0)|rn〉〈rn|, (6)

which is a general identity as we have not made any assump-
tion about the joint probability p(rn, . . . , r1|A0). Obviously, if
we choose to perform nothing at any time t� < tn, we have

Tn+1[Prn , . . . , I�, . . . ,Pr1 ,A0]

= p(rn, . . . ,�r�, . . . , r1|A0)|rn〉〈rn|. (7)

But by assumption of classicality, this is equal to

Tn+1[Prn , . . . , I�, . . . ,Pr1 ,A0]

=
∑

r�

p(rn, . . . , r�, . . . , r1|A0)|rn〉〈rn|

=
∑

r�

Tn+1[Prn , . . . ,Pr�
, . . . ,Pr1 ,A0]

= Tn+1[Prn , . . . ,��, . . . ,Pr1 ,A0]. (8)

Hence, by summing Eq. (8) over the remaining rk �= r�, we
confirm

Tn+1[�n, . . . , I�, . . . ,�1,A0]

= Tn+1[�n, . . . , ��, . . . ,�1,A0] (9)

for arbitrary t� < tn and where the dots denote dephasing
operations at the remaining times. We can now pick another
arbitrary time tk �= t� and repeat essentially the same steps as
above to arrive at the conclusion

Tn+1[�n, . . . , I�, . . . , Ik, . . . ,�1,A0]

= Tn+1[�n, . . . ,��, . . . ,�k, . . . ,�1,A0] (10)

for any two times tk �= t�. By repeating this argument further,
we finally confirm that the dynamics are incoherent. �

The converse of Theorem III.1 holds only in a stricter
sense. For this purpose we need the notion of Markovianity as
defined in Ref. [13]. There it was shown that the definition of
a quantum Markov process implies the notion of operational
CP divisibility. This means that for an arbitrary set of indepen-
dent interventions (CP maps) Arn , . . . ,Ar0 the process tensor

“factorizes” as

Tn+1[Arn , . . . ,Ar0 ] = Arn�n,n−1 . . . �1,0Ar0ρS (t0). (11)

Here the set {��,k} is a family of CP and trace-preserving
maps fulfilling the composition law ��, j = ��,k�k, j for any
� > k > j. We remark that a CP divisible process (which is
commonly referred to as being “Markovian”) is in general
not operationally CP divisible (also see the recent discussion
in Ref. [14]). In a nutshell, an operationally CP divisible
process always fulfills the quantum regression theorem, but
a CP divisible process does not (a counterexample is in fact
shown in Appendix A).

Furthermore, to establish the converse of Theorem III.1 we
also need the following definition:

Definition III.1. A Markov process {��,k} is said to be
invertible, if the inverse of any �k,0 exists for all k, i.e., the
CP and trace-preserving maps ��,k are identical to ��,0�

−1
k,0.

We are now ready to prove the next main theorem:
Theorem III.2. If the dynamics are Markovian, invertible,

and incoherent for all preparations A0, then the statistics are
classical for any preparation.

Proof. By using Eq. (11) and the property of incoherence,
we can conclude that for any two times t�+1, t� ∈ {t1, . . . , tn}
(with t�+1 > t�)

��+1��+1,�����,0A0ρS (t0) = ��+1��+1,���,0A0ρS (t0).

(12)

Since the dynamics are invertible and incoherent for all
preparations A0, this implies the superoperator identity
��+1��+1,��� = ��+1��+1,�. By multiplying this equation
with Pr�+1 , we arrive at∑

r�

Pr�+1��+1,�Pr�
= Pr�+1��+1,�. (13)

From this general identity we immediately obtain that∑
r�

p(rn)

= tr

{
Prn�n,n−1. . .

∑
r�

Pr�+1��+1,�Pr�
. . .Pr1�1,0A0ρ

}

= tr{Prn�n,n−1 . . .Pr�+1��+1,�I� . . .Pr1�1,0A0ρ}
= p(rn, . . . ,�r�, . . . , r1). (14)

This concludes the proof as the above argument also holds for
all possible subsets of times. �

We add that the counterexamples in Appendix B demon-
strate that Theorem III.2 is also tight in the sense that a
process, which is incoherent only for a subset of preparations
or which is not invertible, does not imply classical statistics.
One remaining open question concerns the assumption of
Markovianity. At the moment it is not clear whether relaxing
this condition is meaningful as it requires one to define the
notion of invertibility for a non-Markovian process, which is
not unambiguous.

Furthermore, the superoperator identity (13) implies that,
if we write ��,k as a matrix in an ordered basis where
populations precede coherences with respect to the measured
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observable Rk (input) and R� (output), it has the form

��,k =
(

A�,k 0
C�,k D�,k

)
, (15)

where A�,k is a stochastic matrix and C�,k and D�,k are
matrices, which are constrained only by the requirement of
complete positivity.

B. Degenerate observables

If the measured observable contains degeneracies, the pic-
ture above somewhat reverses. First, Theorem III.1 ceases to
hold even in the Markovian and invertible regime because the
assumption of a nondegenerate observable already entered in
the first step of its proof; see Eq. (6). Physically speaking, the
reason is that it now becomes possible to hide coherences in
degenerate subspaces, and this can have a detectable effect
on the output state (5). This is demonstrated with the help of
an example in Appendix B. In contrast, Theorem III.2 still
holds true for degenerate observables. In fact, in the proof of
Theorem III.2 we never used that the measured observable is
nondegenerate.

IV. CONCLUSIONS

We have investigated whether the outcomes of a projec-
tively measured quantum system can be described classically
depending on the capability of an open quantum system to
show detectable effects of coherence. The question whether
the quantum stochastic process is (invertible) Markovian and
whether the measured observables are degenerate (or not) had
a crucial influence on the results. Together with the coun-
terexamples in Appendix B we believe that we have provided
a fairly complete picture about the interplay between clas-
sicality, coherence, and Markovianity. It remains, however,
still open whether our definition of “incoherent dynamics”
is the most meaningful one. One clear advantage of our pro-
posal is that it is operationally and theoretically well-defined
for arbitrary quantum processes. Therefore, it could help to
extend existing resource theories, which crucially rely on
the existence of dynamical maps [15], to arbitrary multitime
processes.

We further point out that our investigation is closely related
to the study of Leggett-Garg inequalities and possible viola-
tions thereof [16,17]. In fact, the classicality assumption (2)
plays a crucial role in deriving any Leggett-Garg inequality.
Therefore, we can conclude that all incoherent quantum sys-
tems, which evolve in an invertible Markovian way, will never
violate a Leggett-Garg inequality if the measured observable
is nondegenerate. Interestingly, incoherent quantum systems
could potentially violate Leggett-Garg inequalities if the mea-
sured observable is degenerate.

Another interesting open point of investigation concerns
the question whether the property of incoherence implies
a particular structure on the generator of a quantum mas-
ter equation, which is still the primarily used tool in open
quantum system theory. This question is indeed being further
pursued by one of us [18].

Note added in proof. Recently, we became aware of the
work of Milz et al. [19] where an identical question is ana-
lyzed from a related perspective.
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APPENDIX A: COMPARISON WITH THE FRAMEWORK
OF SMIRNE et al.

In Ref. [5] the notion of “noncoherence-generating-and-
detecting dynamics” (NCGD dynamics) was introduced based
on the following definition:

Definition A.1. The dynamics of an open quantum system
is called NCGD with respect to the set of observables {Rk} if

����,k�k�k, j� j = ����, j� j (A1)

for all t� � tk � t j � t1.
In this definition ��,k denotes the “dynamical map” of the

quantum system from time tk to time t�. For instance, for a
time-dependent master equation with Liouvillian L(t ) this is
defined as

��,k = T+ exp

[∫ t�

tk

L(t ) dt

]
, (A2)

where T+ denotes the time-ordering operator.
To compare the notions of NCGD and incoherent dy-

namics, we start by noting that both are almost identical
if the dynamics are Markovian, invertible, and subjected to
measurements of a nondegenerate system observable. This is
important as we are thereby able to confirm the results of
Ref. [5] in an independent way. To see this, we first prove
the following statement:

Theorem A.1. If the dynamics are Markovian, invertible,
and incoherent for all possible preparations, then they are also
NCGD.

Proof. By assumption of incoherence we have for an ar-
bitrary preparation A0 and an arbitrary set of times {t�, tk, t j}
with � � k � j � 1

T�+1[��, . . . ,�k, . . . ,� j, . . . ,A0]

= T�+1[��, . . . , Ik, . . . , � j, . . . ,A0], (A3)

where the dots denote identity operations. By Markovianity,
this means that

����,k�k�k, j� j� j,0A0ρ0 = ����, j� j� j,0A0ρ0. (A4)

Since A0 is arbitrary and the dynamics are assumed to be
invertible, this implies

����,k�k�k, j� j = ����, j� j . (A5)

Hence, the dynamics are NCGD. �
The “converse” of Theorem A.1 reads as follows:
Theorem A.2. If the dynamics is Markovian and NCGD,

the dynamics is incoherent with respect to all preparations that
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result in a diagonal state (with respect to the observable R1) at
time t1.

Proof. Since the dynamics is Markovian and the state at
time t1 is diagonal, we always have

Tn+1

[
�n,

{
�n−1

In−1

}
, . . . ,

{
�1

I1

}
,A0

]

= Tn+1

[
�n,

{
�n−1

In−1

}
, . . . ,�1,A0

]
. (A6)

Hence, the dynamics are “sandwiched” by two dephasing
operations at the beginning at time t1 and at the end at time
tn. By the property of NCGD, we are allowed to introduce
arbitrary dephasing or identity operations at any time step tk ,
n > k > 1. Hence, the dynamics are incoherent. �

This proves that our main results are not in contradiction
to Ref. [5]: There it was shown that a Markovian time-
homogeneous process—a subclass of invertible Markov pro-
cesses, which are described by a time-independent Liouvillian
L—is classical with respect to measurements of a nondegen-
erate observable for an initially diagonal state if and only if
the dynamics are NCGD.

Without the three assumptions of invertibility, Markovian-
ity, and nondegeneracy of the measured observable, notable
differences start to appear. First, our definition of incoherent
dynamics remains meaningful even if the dynamics are not in-
vertible or if the measured observable is degenerate: in the first
case, the dynamical map ��,k is not unambiguously defined
for tk > t0, and in the second case, even �k,0 might not be
defined if the system remains entangled with the environment
after an initial dephasing operation. Most notably, however,
in the non-Markovian regime Eq. (A1) cannot directly be
checked in an experiment by comparing two sets of ensem-
bles, one which was dephased in the middle of the evolution
and one which was not. Indeed, if the dynamics are non-
Markovian, then the dynamics after a dephasing operation at
time tk will not be described by the map ��,k = ��,0�

−1
k,0.

We will exemplify this point by an example, which was
also considered in Refs. [5,13] and experimentally realized in
Ref. [20].

The model describes a spin coupled to a continuous degree
of freedom via the Hamiltonian HSE = g

2σz ⊗ q̂ (h̄ ≡ 1). The
initial state of the environment is taken to be pure with a
wave function in coordinate representation ψE (q) = √

γ /π/

(q + iγ ). For an initially decorrelated system-environment
state the exact reduced system dynamics are ρ(t ) =
trE {e−iHSE tρ(0) ⊗ |ψ〉E 〈ψ |e−iHSE t }. Evaluating the trace in the
coordinate basis and using eiασz = cos α + i sin ασz, it is easy
to confirm that

ρ(t ) =
∫

dq
γ /π

q2 + γ 2

[
cos

(
gq

2
t

)
− i sin

(
gq

2
t

)
σz

]

×ρ(0)

[
cos

(
gq

2
t

)
+ i sin

(
gq

2
t

)
σz

]
. (A7)

Explicit evaluation of the integrals yields

ρ(t ) = 1
2 (1 + e−�t )ρ(0) + 1

2 (1 − e−�t )σzρ(0)σz, (A8)

where we have introduced the dephasing rate � ≡ gγ . Next,
we take Eq. (A8), subtract σz (A8) σz and multiply by e−�t/2

to confirm that

e−�t

2
[ρ(0) − σzρ(0)σz] = 1

2
ρ(t ) − 1

2
σzρ(t )σz. (A9)

This allows us to deduce a master equation for the two-level
system by taking the time derivative of Eq. (A8) and by using
the previous result:

∂tρ(t ) = −�
e−�t

2
[ρ(0) − σzρ(0)σz] = �

2
[σzρ(t )σz − ρ(t )]

= �

2

[
σzρ(t )σz − 1

2

{
σ 2

z , ρ(t )
}] ≡ Lρ(t ), (A10)

where L denotes the “Liouvillian.” This is a very simple
master equation where the expectation values of the Pauli
matrices [x(t ), y(t ), z(t )] = [〈σx〉(t ), 〈σy〉(t ), 〈σz〉(t )] obey the
differential equations

ẋ(t ) = −�x(t ), ẏ(t ) = −�y(t ), ż(t ) = 0. (A11)

The solution of these equations is obvious.
Next, let us apply a dephasing operation in the σx basis at

an arbitrary time s > 0, which is defined for any ρ as

�ρ = |+〉〈+|ρ|+〉〈+| + |−〉〈−|ρ|−〉〈−|, (A12)

where |±〉 = (|1〉 ± |0〉)/
√

2. Note that for a density matrix
parametrized by a Bloch vector (x, y, z) in the σz basis we
obtain

�
1

2

(
1 + z x − iy
x + iy 1 − z

)
= 1

2

(
1 x
x 1

)
. (A13)

We now want to compute the exact system state at time t > s
after a dephasing operation was applied:

ρ(t ) = tr{Ut,t−s�Us,0ρ(0) ⊗ |ψ〉E 〈ψ |}. (A14)

By evaluating the trace again in the coordinate representation,
this can be done straightforwardly, although now the calcu-
lation becomes more tedious. The result for an initial state
with expectation value 〈σx〉(0) = x0 [the other expectation
values do not matter because they get erased in the dephasing
operation; cf. Eq. (A13)] is

x(t ) = x0

2
{cosh[�(t − 2s)] + cosh(�t )}

−x0

2

{
sinh(�t ) + sinh[�(t − 2s)]

sign(t − 2s)

}
. (A15)

Now, for time-homogeneous dynamics the definition of
NCGD in Ref. [5] reduces to

�eL(t−s)�eLs� = �eLt� (A16)

for all t > s > 0. For our example we get according to the
dynamics in Eq. (A16)

x̃(t ) ≡ tr{σxeL(t−s)�eLs�ρ(0)} = e−�t x0 (A17)

for all t and especially independent of any dephasing op-
eration. Hence, the dynamics is NCGD according to the
definition from Ref. [5]. But by looking at the exact time
evolution of the system [cf. Eq. (A15) and Fig. 1], we see that
even the mean value x(t ) can show a strong dependence on the
dephasing operation. Therefore, according to our definition,
the dynamics are not incoherent with respect to the σx basis.
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FIG. 1. Plot of the exact time evolution [Eq. (A15), solid blue
line] compared with the approximated one [Eq. (A17), dashed pink
line]. Parameters are � = 1, s = 1, and x0 = 1.

Finally, we mention that there are a couple of finer details
too. For instance, in our work we consider only a fixed set of
discrete times, whereas Smirne et al. allow for arbitrary times.
On the other hand, the system observable Rk was not allowed
to be explicitly time-dependent in Ref. [5]. These points can,
however, be incorporated in each of the frameworks, and
therefore we did not put any additional emphasis on these
minor details.

APPENDIX B: COUNTEREXAMPLES

1. A process which is incoherent for one preparation
A0 but not classical for that preparation

Consider an isolated two-level system undergoing purely
unitary dynamics. Then the dynamics are incoherent with
respect to any preparation A0 which maps the system state
to a completely mixed state: independent of any dephasing or
identity operation, the state will stay at the origin of the Bloch
ball for all times.

However, such a dynamics does not necessarily imply
classical statistics. Consider, e.g., the measurement basis to
be σz (with outcomes {↑k,↓k} at times tk) and the unitary
rotations to be around the y axis. Furthermore, the time steps
are chosen equidistant in such a way that the rotation is exactly
π/2. It is then easy to confirm that

p(↑3,↑2,↑1) = p(↑3,↓2,↑1) = 1
8 ; (B1)

hence,
∑

σ2∈{↑,↓} p(↑3, σ2,↑1) = 1/4. But if we do
not perform any measurement at time t2, we obtain
p(↑3,��σ2,↑1) = 0. The statistics are therefore nonclassical.

2. A process which is Markovian and incoherent
for all preparations but not classical

Consider a Markov process for a two-level system where
the map in the first time step is defined by

�2,1 : ρ �→ 1

2

(
1 0
0 1

)
(B2)

for any input state ρ. The rest of the dynamics is again unitary
as in the previous counterexample. Thus, the dynamics are
incoherent for any preparation, but not classical.

3. A process which is Markovian, invertible, and classical
for all preparations but not incoherent with respect

to measurements of a degenerate observable

Consider two qubits A and B and projective measurements
in some fixed basis of qubit A only such that the dephasing
operation acts only locally on qubit A: � = �A ⊗ IB. Thus,
the measured observable is degenerate and projects onto two
possible subspaces of dimension two. Furthermore, we con-
sider only measurements at two times t2 and t1 and assume
the dynamics between these two times to be described by
a unitary swap gate, Uswap|iA jB〉 = | jBiA〉. We also assume
that the dynamics in between the preparation and the first
measurement is trivial, i.e., described by an identity operation.

Now, consider an arbitrary initial state resulting from an
arbitrary preparation A0, denoted as

A0ρ0 =
∑

iA,iB, jA, jB

ρiAiB, jA jB |iAiB〉〈 jA jB|. (B3)

Then straightforward calculation reveals that

p(r2, r1) = trAB{Pr2UswapPr1A0ρ0} = ρr1r2,r1r2 , (B4)

p(r2,�r1) = trAB{Pr2UswapA0ρ0} =
∑

j

ρ jr2, jr2 . (B5)

Hence, the process is classical:
∑

r1
p(r2, r1) = p(r2,�r1).

However, the process is not incoherent. Consider, for in-
stance, the initial state

A0ρ0 = |ψ0〉〈ψ0|, |ψ0〉 = |0A〉 + |1A〉√
2

⊗ |0B〉. (B6)

Then

T3[�2, I1,A0] = |ψ1〉〈ψ1|, |ψ1〉 = |0A〉 ⊗ |0B〉 + |1B〉√
2

,

(B7)
but

T3[�2,�1,A0] = |0A0B〉〈0A0B| + |0A1B〉〈0A1B|
2

. (B8)
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