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In this paper we provide a set of uncertainty principles for unitary operators using a sequence of inequalities
with the help of the geometric-arithmetic mean inequality. As these inequalities are “fine-grained” compared with
the well-known Cauchy-Schwarz inequality, our framework naturally improves the results based on the latter.
As such, the unitary uncertainty relations based on our method outperform the best known bound introduced
in Phys. Rev. Lett. 120, 230402 (2018). to some extent. Explicit examples of unitary uncertainty relations are
provided to back our claims.
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I. INTRODUCTION

At the foundation of quantum theory lies the Heisenberg
uncertainty principle [1], which was first introduced in 1927.
Traditionally, the textbook version of the uncertainty relation
was established by Kennard [2] (see also the work of Weyl [3])
by means of variance in terms of position and momentum. The
uncertainty principle lets us understand that if we were able to
measure the momentum of a quantum system with certainty,
then we would not gain the information of the measurement
outcome of location with certainty. Robertson [4] generalized
the uncertainty relation for position and momentum to any two
bounded observables A and B as

�A�B � 1
2 |〈ψ |[A, B]|ψ〉|, (1)

where � stands for the standard deviation of the observable
relative to a fixed state |ψ〉 and [A, B] represents the commu-
tator of the observables A and B. Later Eq. (1) was improved
by Schrödinger [5]. Recently, variance-based uncertainty re-
lations have been intensely studied in [6–24].

Because of their relevance in quantum information theory,
the entropies [25–41] have been employed to quantify the
uncertainty relations between incompatible observables. The
entropies are by no reason the best way to formulate joint
uncertainties, and it is reasonable to consider all nonnegative
Schur-concave functions as qualified uncertainty measures.
This has lead to the well known universal uncertainty relations
[42–45] expressed by majorization [46]. To this end, we shall
remark that all these uncertainty relations play an important
role in a wide range of applications such as entanglement
detection [47,48], quantum spin squeezing [49–53], quantum
metrology [54–58], quantum nonlocality [59,60], and so on.

Now we turn to the variance-based uncertainty relations in
the product form for unitary operators. Massar and Spiandel
[6] have considered the uncertainty relation for two unitary
operators that satisfy the commutation relation UV = eiφVU .
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This uncertainty relation gives rise to the constraint for a
quantum state to be simultaneously localized in two mutu-
ally unbaised bases related by a discrete Fourier transform
(DFT). Other applications of Masser-Spiandel’s uncertainty
relations include modular variables [61] and signal process-
ing [62,63]. Several further uncertainty relations for unitary
operators related by DFT have been investigated in [7–10].
Later, Bagchi and Pati [15] derived sum-form variance-based
uncertainty relations for two general unitary operators, which
have been tested experimentally with photonic qutrits [20].
The uncertainty relation for two general unitary operators is
directly related to the preparation uncertainty principle that
the amount of visibility for noncommuting unitary operators is
nontrivially upper bounded. It is noted that a crucial technique
underlying the variance-based uncertainty relations for two
observables or unitary operators is the celebrated Cauchy-
Schwarz inequality.

For multiobservables, the generalized uncertainty relation
was first considered by Robertson using the positive semidef-
initeness of a Hermitian matrix [64]. Recently, Bong et al.
used a similar method to derive a strong variance-based
uncertainty relation for any n unitary operators [24]. The
unitary uncertainty relation implies the famous Robertson-
Schödinger uncertainty relation in the case of two Hermitian
operators [5,64]. However, the lower bound is implicitly given
and sometimes hard to compute. This raises the question of
explicitly extracting the uncertainty relation from the Gram
determinant and also one wonders whether this strong uncer-
tainty relation can be further improved.

The goal of this paper is to give improved uncertainty rela-
tions for general unitary operators. Following Xiao et al. [17],
a sequence of “fine-grained” inequalities compared with the
Cauchy-Scharz inequality are employed to derive uncertainty
relations in connection with the geometric-arithmetic mean
(AGM) inequality. We use this method to derive variance-
based unitary uncertainty relations in the product form for two
and three operators in all quantum systems. The uncertainty
bounds for two unitary operators outperform those of Bong
et al.’s in the whole range. As the improvement is due to
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replacement of the Cauchy-Schwarz inequality underlying all
previous uncertainty principles, our method provides funda-
mentally better bounds. We also generalize the uncertainty
relation to the case of multiple unitary operators, and our
lower bounds are also shown to be tighter than that of Bong
et al’s to some extent.

This paper is organized as follows. In Sec. II we intro-
duce a fine-grained sequence of inequalities to generalize the
Cauchy-Schwarz inequality, which was proved twice in this
consideration. Our first main result (Theorem 1) of variance-
based unitary uncertainty relations in the product form is
given in Sec. II A for two unitary operators. In Sec. II B,
the bounds are strengthened by symmetry of permutations. In
Sec. II C, examples are given to show our Theorem 1 provides
tighter bounds than those of Bong et al’s. In Sec. III, we
investigate product-form variance-based unitary uncertainty
relations for three unitary operators. The uncertainty relations
for multiple unitary operators are addressed in Sec. III A, and
comparison is also provided with previous lower bounds for
qutrit pure state; four-dimensional pure state and qutrit mixed
state are studied in Sec. III B. Concluding remarks are given in
Sec. IV. In the Appendixes, we give some details of the proofs
and calculations.

II. UNCERTAINTY RELATIONS FOR TWO
UNITARY OPERATORS

Let A and B be two unitary operators defined in a finite-
dimensional Hilbert space with a fixed state |ψ〉. With respect
to the mean value 〈A〉 = 〈ψ | A |ψ〉, the variance of A over |ψ〉
is defined by

�A2 = 〈(A − 〈A〉)†(A − 〈A〉)〉
= 〈ψ | δÂ†δÂ |ψ〉 , (2)

where δÂ = A − 〈A〉. Note that the variance is bounded by
0 � �A2 � 1.

Suppose {|ψ1〉 , . . . , |ψn〉} is a computational basis; then
the state | f 〉 = δÂ |ψ〉 can be written as | f 〉 = ∑n

j=1 α j |ψ j〉
and similarly |g〉 = δB̂ |ψ〉 = ∑n

j=1 β j |ψ j〉. Thus the product
of the variances obeys the unitary uncertainty relation (UUR)

�A2�B2 = 〈 f | f 〉〈g|g〉 =
∑
i, j

|αi|2|β j |2

� |
n∑

i=1

α∗
i βi|2 = |〈 f |g〉|2

= |〈A†B〉 − 〈A†〉〈B〉|2, (3)

where the inequality is due to the Cauchy-Schwarz inequality.
Note that the last expression is independent from the choice
of the computational basis.

Let
−→
X = (x1, x2, . . . , xn) and

−→
Y = (y1, y2, . . . , yn) be

the (nonnegative) real vectors given by xi = |αi| and y j =
|β j |, where (α1, . . . , αn) and (β1, . . . , βn) are the coordinate
vectors of δÂ and δB̂, respectively. Then the product of
the variances can be rewritten as �A2�B2 = |−→X |2|−→Y |2 =∑

i, j x2
i y2

j . Note that the Cauchy-Schwarz inequality is in fact a
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FIG. 1. Diagram for the Ik (1 � k � n). The black (i, j) dot
represents x2

i y2
j . So Ik is (

∑k
i=1 xiyi )2 plus the dots outside of the

kth principal square: Ik = (
∑k

i=1 xiyi )2 + ∑
1�i< j�n

k< j
(x2

i y2
j + x2

j y
2
i ) +∑

k+1�i�n x2
i y2

i . The kth principal square shows the Cauchy-Schwarz

inequality:
∑k

i, j=1 x2
i y2

j � (
∑k

i=1 xiyi )2.

consequence of n(n − 1)/2 AGM inequalities. Indeed,∑
i, j

x2
i y2

j =
∑
i< j

(
x2

i y2
j + x2

j y
2
i

) +
∑

i

x2
i y2

i

�
∑
i< j

2xiy jx jyi +
∑

i

x2
i y2

i

=
(

n∑
i=1

xiyi

)2

, (4)

with equality if and only if xiy j = x jyi for all i �= j.
Now we refine the Cauchy-Schwarz inequality by intro-

ducing a sequence of partial ones. For each 1 � k � n, define

Ik =
∑

1�i�n

x2
i y2

i +
∑

1 � i < j � n
k < j

(
x2

i y2
j + x2

j y
2
i

)

+
∑

1�i< j�k

2xiyix jy j . (5)

In particular, I1 = |−→X |2|−→Y |2 and In = (
∑n

i=1 xiyi )2. The
quantities Ik can be visualized by lattice dots within an n × n
square as follows. In Fig. 1 the black dot at ith column and jth
row presents x2

i y2
j ; then Ik is the quantity (

∑k
i=1 xiyi )2 plus the

dots outside of the kth principal square. It is easily seen that

Ik+1 − Ik = −
(

k∑
i=1

xiyk+1 + yixk+1

)2

� 0.
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One therefore obtains the following descending sequence

I1 � I2 � · · · � In−1 � In (6)

and the Cauchy-Schwarz inequality also follows from the
sequence: I1 � In.

A. Main results

Let ρ be a mixed state on the Hilbert space. The variance
of the unitary operator A with respect to ρ is defined as

(�A)2 = Tr(ρδÂ†δÂ). (7)

Let M = (mi j )l×p be a rectangular matrix; the vec-
torization |M〉 [or vec(M )] is the straightening vector
(m11, . . . , m1p, . . . , ml1, . . . , ml p) ∈ Cl p. As ρ is positive
semidefinite, we will simply denote by |√ρ〉 the pure state
given by the vectorization vec(

√
ρ) in the computational ba-

sis. Note that the vector |√ρ〉 satisfies the following property
[65]

|MT 〉 = (I ⊗ M ) |T 〉 (8)

for two matrices M and T in suitable size. Thus

�A2 = Tr(
√

ρδÂ†δÂ
√

ρ)

= 〈√ρ| (I ⊗ δÂ†δÂ) |√ρ〉
= |(I ⊗ δÂ) |√ρ〉 |2, (9)

where
√

ρ is the uniquely defined semidefinite positive matrix
associated to ρ.

Theorem 1. Let A and B be two unitary operators on an
n-dimensional Hilbert space H and ρ a quantum state on H .
Suppose xi and yi are the probabilities of δÂ and δB̂ with
respect to a computational basis of H . Then the product of
the variances of A and B satisfies the following uncertainty
relations (k = 1, . . . , N):

�A2�B2 � Ik, (10)

where N = n (or n2) if ρ is pure (or mixed),
Ik = ∑

1�i�N x2
i y2

i + ∑
1 � i < j � N

k < j

(x2
i y2

j + x2
j y

2
i ) +∑

1�i< j�k 2xiy jx jyi, and the equality holds if and only if
xiy j = x jyi for all 1 � i �= j � k.

Proof. The uncertainty relations (10) for the case of pure
state ρ were already shown in the last section. As for the
mixed state ρ, we remarked that |√ρ〉 is viewed as a pure
state in an n2-dimensional Hilbert space [66]; therefore, the
relations (10) also follow for all k = 1, . . . , n2.

Remark 1. Note that |−→X |2|−→Y |2 � Ik amounts to a partial
Cauchy-Schwarz inequality [17], as it is obtained by applying
the Cauchy-Schwarz inequality on the first k components. One
can formulate an even more general inequality by selecting
arbitrary x2

i y2
j + x2

j y
2
i instead of all the terms with 1 � i < j �

k.
Recently, Bong et al. [24] derived a strong unitary uncer-

tainty relation for any set of unitary operators based on the
positive semidefiniteness of the Gram matrix. More precisely,
let U1, . . . ,Ud be d unitary operators and U0 = I . Their result
says that the positive semidefiniteness of the Gram matrix
G = G(ρ) of size d + 1 with Gjk = 〈U †

j Uk〉 = Tr(ρU†
j Uk )

generalizes the UUR. In the case of two unitary operators

A and B, det G(ρ) � 0 turns out to be �A2�B2 � |〈A†B〉 −
〈A†〉〈B〉|2 [24], which is exactly the aforementioned (UUR) in
Eq. (3).

We have seen that the lower bound of this UUR is weaker
than our Theorem 1. In fact for any 2n complex numbers αi, βi

[67] ∣∣∣∣∣
n∑

i=1

α∗
i βi

∣∣∣∣∣
2

�
(

n∑
i=1

|αi||βi|
)2

�
∑
i, j

|αi|2|β j |2, (11)

where the second inequality uses the Cauchy-Schwarz in-
equality. It follows from Eq. (6) that

�A2�B2 = I1 � · · · � Ik � · · · � IN =
(

N∑
i=1

|αi||βi|
)2

�
∣∣∣∣∣

N∑
i=1

α∗
i βi

∣∣∣∣∣
2

= |〈A†B〉 − 〈A†〉〈B〉|2. (12)

This means that the UUR given in [24] for two unitary
operators is the weakest bound in this sequence.

As the case of k = 1 is trivial, we will include this in our
statement of the result for simplicity.

B. Improved UURs

The symmetric group SN , which acts on the set
{1, 2, . . . , N} naturally by permutation, can be used to
strengthen the lower bounds of our UURs. For any two
permutations π1, π2 ∈ SN , the induced action of SN × SN on
Ik is given by

(π1, π2)Ik =
∑

1�i�N

x2
π1(i)y

2
π2(i)

+
∑

1 � i < j � N
k < j

(
x2
π1(i)y

2
π2( j) + x2

π2( j)y
2
π1(i)

)

+
∑

1�i< j�k

2xπ1(i)yπ2( j)xπ2( j)yπ1(i). (13)

Clearly I1 is stable under the action of SN × SN ; subsequently

I1 � (π1, π2)I2 � · · · � (π1, π2)IN . (14)

Optimizing over the symmetric group SN , we obtain the
following stronger result.

Theorem 2. Let ρ be any quantum state on an n-
dimensional Hilbert space H ; A and B two unitary operators
on H . One has the following improved unitary uncertainty
relations for the product of variances (k = 1, . . . , N):

�A2�B2 � max
π1,π2∈SN

(π1, π2)Ik, (15)

where N = n (or n2) if ρ is pure (or mixed), (π1, π2)Ik

is defined in (13), and the equality holds if and only if
xπ1(i)yπ2( j) = xπ2( j)yπ1(i) for all 1 � i �= j � k.

We remark that the lower bound in Theorem 2 is tighter
than that of Theorem 1, since maxπ1,π2∈SN (π1, π2)Ik � Ik for
any 1 � k � N . An example is given to show strict strength-
ening of the bounds (see Example 1 and Fig. 3).
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FIG. 2. Comparison of our bounds with Bong et al.’s bound for
pure state. The solid blue (upper) and green (lower) curves represent
�A2�B2 and Bong et al.’s bound LB, respectively. Our bounds
I2, I3, or I4 are tighter and shown in dashed yellow curves.

C. Examples

Example 1. Let us consider the pure states |ψ〉 =
cos θ |0〉 − sin θ |d − 1〉 on a d-dimensional Hilbert space
[15], and A, B are the following unitary operators:

A =
[ d−1

2 ]∑
j=−[ d

2 ]

ω j | j〉 〈 j| = diag(1, ω, ω2, . . . , ωd−1),

B =
[ d−1

2 ]∑
j=−[ d

2 ]

| j + 1〉 〈 j| =
(

0 1
Id−1 0

)
, (16)

where ω = ei2π/d . Note that AB = ωBA [6].
Case d = 2. In this case

A =
(

1 0

0 −1

)
, B =

(
0 1

1 0

)
. (17)

Both our UUR and Bong et al.’s are equal to �A2�B2 = I2

(see Fig. 2). So we focus on d = 3, 4, 5, where the UURs are
not saturated.

Case d = 3. The unitary operators are

A = diag
(
1, e

2π i
3 , e

4π i
3

)
, B =

(
0 1

I2 0

)
, (18)

their associated real vectors
−→
X = (x1, x2, x3),

−→
Y =

(y1, y2, y3) are given by

x1 = |(1 − e− 2π i
3

)
sin2 θ cos θ |, x2 = 0,

x3 = |(1 − e− 2π i
3

)
sin θ cos2 θ | (19)

and

y1 = |− sin3 θ |, y2 = | cos θ |,
y3 = |− sin2 θ cos θ |, (20)

FIG. 3. Strengthened bounds vs the bounds Ik for qutrit
pure state. The solid blue curve represents �A2�B2 and
maxπ1,π2∈S3 (π1, π2)I2. The dashed green curve represents
maxπ1,π2∈S3 (π1, π2)I3. The dotted dashed and dotted curves
represent I2 and LB (or I3), respectively.

and then I2, I3 can be fixed and �A2�B2 � I2 � I3 =
|〈A†B〉 − 〈A†〉〈B〉|2. Figure 2 shows that our bounds are better
than Bong et al.’s bound.

Case d = 4, 5. The vectors
−→
X ,

−→
Y for d = 4, 5 are respec-

tively as follows:

−→
X =

{
|(1 − e

−π i
2 ) sin 2θ

2 |(| sin θ |, 0, 0, | cos θ |),
|(1 − e

−2π i
5 ) sin 2θ

2 |(| sin θ |, 0, 0, 0, | cos θ |), (21)

−→
Y =

{
(|− sin3 θ |, | cos θ |, 0, |− sin2 θ cos θ |),
(|− sin3 θ |, | cos θ |, 0, 0, |− sin2 θ cos θ |). (22)

Then the lower bounds I2, I3, I4 (I2, I3, I4, I5) can be
computed. It is readily seen that �A2�B2 � I2 = I3 �
I4 = |〈A†B〉 − 〈A†〉〈B〉|2 (�A2�B2 � I2 = I3 = I4 � I5 =
|〈A†B〉 − 〈A†〉〈B〉|2). Figure 2 shows that, in all these cases,
our bounds are better than that of Bong et al.

Remark. The bounds I2, I3, I4 can be further strength-
ened by Theorem 2. Consider the same qutrit state |ψ〉 =
cos θ |0〉 − sin θ |2〉. Applying the symmetric group S3 as in
Eq. (13) it follows that �A2�B2 = maxπ1,π2∈S3 (π1, π2)I2 �
maxπ1,π2∈S3 (π1, π2)I3. Figure 3 shows that the bounds strictly
outperform Ik .

Example 2. Consider the qubit mixed state ρ = 1
2 (I + 
r ·


σ ) with 
r = ( 1
3 , 2

3 cos θ, 2
3 sin θ ) and 
σ = (σx, σy, σz ), where

σx, σy, σz are the Pauli matrices.
Consider the unitary operators

A = eiπσy/8 =
(

cos π
8 sin π

8

− sin π
8 cos π

8

)
, (23)

B = eiπσz/8 =
(

ei π
8 0

0 e−i π
8

)
, (24)

which correspond to Bloch sphere rotations of −π/4 about
the y axis and z axis, respectively.
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FIG. 4. Comparison of our bounds with that of Bong et al.’s for
pure state. The solid blue (upper) and purple (lower) curves represent
�A2�B2 and Bong et al.’s bound LB, respectively. Our bounds
I2, I3, or I4 are shown in dashed or dotted curves in yellow, green,
and red, respectively.

It is seen that (cf. Appendix A)

|√ρ〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3−√

5(
√

5−2 sin θ )+
√

3+√
5(

√
5+2 sin θ )

2
√

30

− i(
√

3−√
5−

√
3+√

5)(−i+2 cos θ )
2
√

30

i(
√

3−√
5−

√
3+√

5)(i+2 cos θ )
2
√

30√
3+√

5(
√

5−2 sin θ )+
√

3−√
5(

√
5+2 sin θ )

2
√

30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

Then the bounds I2, I3, I4 associated with ρ can be computed.
We find that �A2�B2 > I2 > I3 > I4 � |〈A†B〉 − 〈A†〉〈B〉|2,
which is the lower bound of Bong et al. Figure 4 shows that
our bounds are almost always better than that of Bong et al. It
seems that the bounds Ik are separated for mixed states.

III. UNCERTAINTY RELATIONS FOR THREE
UNITARY OPERATORS

We now study product-form variance-based unitary uncer-
tainty relations for three unitary operators based upon our
UUR for two unitary operators in terms of the quantities Ik

in the preceding section.

A. Main results

Let A, B, and C be three unitary operators defined on an
n-dimensional Hilbert space. By Theorem 1 the UURs for the
pairs {A, B}, {B,C}, and {A,C} over the quantum state ρ are
written as �A2�B2 � Ik , �B2�C2 � Jk , and �A2�C2 � Kk ,
where Ik, Jk, Kk are the quantities Ik defined above (6) for the
pairs, respectively. Taking the square root of the product, we
have the following result.

Corollary 1. For a fixed quantum state ρ and three unitary
operators A, B, and C on an n-dimensional Hilbert space H ,
the product of the variances obeys the following inequalities
(k = 2, . . . , N):

�A2�B2�C2 � (IkJkKk )1/2, (26)

where N = n (or n2) if ρ is pure (or mixed), Ik = Ik (A, B),
Jk = Ik (A,C), and Kk = Ik (B,C). Here Ik are defined in
Sec. II A.

One can also strengthen the bound using the symmetry
of SN . Denote maxπ1,π2∈SN (π1, π2)Ii by Îi; then the improved
UURs are given in the following corollary.

Corollary 2. Let ρ, A, B,C as in Corollary 1. The strength-
ened UURs are given by

�A2�B2�C2 � (Îk ĴkK̂k )1/2, (27)

where Îk = maxπ1,π2∈SN (π1, π2)Ik , Ĵk = maxπ1,π2∈SN (π1, π2)
Jk , and K̂k = maxπ1,π2∈SN (π1, π2)Kk .

B. Examples

For three unitary operators A, B,C, Bong et al.’s UUR is
expressed as the positivity of the Gram matrix:

det G(ρ) = det

⎛
⎜⎜⎜⎝

1 〈A〉 〈B〉 〈C〉
〈A†〉 1 〈A†B〉 〈A†C〉
〈B†〉 〈B†A〉 1 〈B†C〉
〈C†〉 〈C†A〉 〈C†B〉 1

⎞
⎟⎟⎟⎠ � 0,

(28)

which can be rewritten as

�A2�B2�C2 � �A2|〈B†C〉 − 〈B†〉〈C〉|2

+ �B2|〈A†C〉 − 〈A†〉〈C〉|2 + �C2|〈A†B〉 − 〈A†〉〈B〉|2

− 2 Re{(〈A†C〉 − 〈A†〉〈C〉)(〈C†B〉 − 〈C†〉〈B〉)

× (〈B†A〉 − 〈B†〉〈A〉)}, (29)

where Re denotes the real part. The right-hand side (RHS) will
be denoted by LB. This inequality is saturated for pure state
when n = dim H � 3, where the determinant of the Gram
matrix vanishes.

Let us compare their result with our bounds in the cases of
pure state (n � 4) and mixed state separately.

FIG. 5. Comparison of our bounds with Bong et al.’s for
pure state. The solid blue (upper) and purple (lower) curves are
�A2�B2�C2 and Bong et al.’s bound LB. The other three dotted
dashed yellow, dashed green, and dotted red lines (from top to
bottom) represent our bounds (I2J2K2)1/2, (I3J3K3)1/2, and (I4J4K4)1/2

separately.
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Example 3. Let |ψ〉 = 1
2 cos θ

2 |0〉 +
√

3
2 sin θ

2 |1〉 +
1
2 sin θ

2 |2〉 +
√

3
2 cos θ

2 |3〉 and we take three unitary operators:

A = diag
(
1, ei π

2 , eiπ , ei 3π
2
)
, B =

(
0 1
I3 0

)
,

C =

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠. (30)

Using Corollary 1, the lower bounds (IkJkKk )1/2 (2 � k �
4) can be easily calculated and one sees that they are better
than that of Bong et al.’s in significant regions. See Fig. 5 for
the comparison.

Example 4. Consider the mixed state analyzed in Example
2 and three unitary operators:

A = eiπσy/8 =
(

cos π
8 sin π

8

− sin π
8 cos π

8

)
,

B = eiπσz/8 =
(

ei π
8 0

0 e−i π
8

)
,

C = eiπσx/8 =
(

cos π
8 i sin π

8

i sin π
8 cos π

8

)
. (31)

The vectorized state |√ρ〉 was given in Example 2; based
on this the uncertainty bound (I2J2K2)1/2 can be computed and
is seen to be always tighter than Bong et al.’s bound LB (cf.
Fig. 6). However, (I3J3K3)1/2 and (I4J4K4)1/2 are not as good
as LB.

Example 5. Consider the mixed qutrit state ρ = 1
3 (I +√

3
n · 
λ) [68] on C3, where 
λ is the eight-dimensional
vector of the Gell-Mann matrices of rank 3 and 
n =
( 1√

3
cos θ, 0, 0, 0, 0, 1√

3
sin θ, 0, 0). As a matrix, the density

operator ρ takes the following form:

ρ = 1

3

⎛
⎜⎝

1 cos θ 0

cos θ 1 sin θ

0 sin θ 1

⎞
⎟⎠. (32)

FIG. 6. Comparison of our bounds with Bong et al.’s bound
for mixed state. The solid blue (upper) and purple (lower) curves
represent �A2�B2�C2 and Bong et al.’s bound LB. The other three
dotted dashed yellow, dashed green, and dotted red curves (from top
to bottom) are our bounds (I2J2K2)1/2, (I3J3K3)1/2, and (I4J4K4)1/2,
respectively.

FIG. 7. Comparison of our bounds with Bong et al.’s bound for
qutrit state. The solid blue (upper) and green (lower) curves represent
�A2�B2�C2 and Bong et al.’s bound LB, respectively. The other
eight dashed or dotted curves (from top to bottom) are the bounds
(I2J2K2)1/2, . . . , (I9J9K9)1/2.

The three unitary operators A, B,C are taken as the rota-
tional operators RZ,θz , RY,θy , RX,θx with the Euler angles θz =
π
4 , θy = −π

4 , θx = π
3 around Z, Y , and X axes, respectively,

i.e.,

RZ,θz =

⎛
⎜⎝

cos θz sin θz 0

− sin θz cos θz 0

0 0 1

⎞
⎟⎠,

RY,θy =

⎛
⎜⎝

cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy

⎞
⎟⎠,

RX,θx =
⎛
⎝1 0 0

0 cos θx − sin θx

0 sin θx cos θx

⎞
⎠. (33)

The state |√ρ〉 is seen as follows (cf. Appendix B):

|√ρ〉 =
(

cos2 θ√
6

+ sin2 θ√
3

,
cos θ√

6
,

× (−2 + √
2) sin 2θ

4
√

3
,

cos θ√
6

,
1√
6
,

sin θ√
6

,

× (−2 + √
2) sin 2θ

4
√

3
,

sin θ√
6

,
cos2 θ√

3
+ sin2 θ√

6

)
.

The lower bounds {(IkJkKk )1/2|2 � k � 8} associated with
ρ are then calculated and depicted in Fig. 7. The picture
shows that our lower bounds {(IkJkKk )1/2|2 � k � 6} are al-
ways tighter than LB, Bong et al.’s bound, (I7J7K7)1/2 and
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(I8J8K8)1/2 are better than LB in some regions, and LB is
better than (I9J9K9)1/2.

IV. CONCLUSION

In this paper, we have studied a stronger form of variance-
based unitary uncertainty relations (UUR) for two and three
operators relative to both pure and mixed quantum states.
Our idea is to employ the partial Cauchy-Schwarz inequality
to derive a sequence of effective lower bounds Ik for the
product of the uncertainties. Moreover, our bounds Ik can be
strengthened by permutation.

We have also shown that our uncertainty bounds are tighter
than the recently discovered UUR given by Bong et al. using
the positivity of the Gram matrix [24] for two and multiple
unitary operators. In one comparison with Bong et al.’s bound,
two unitary operators related by the discrete Fourier transform
are examined and it was found that our bounds outperform
significantly their lower bounds, which could have potential
implications for signal processing and modular variables.
In another example of three unitary operators, most of our
bounds demonstrated better effects than theirs for arbitrary
quantum state and three unitary operators.
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APPENDIX A

The Hermitian matrix ρ is unitarily diagonalizable, so it
can be expressed as ρ = UDU † for a unitary matrix U and a
diagonal matrix D.

For the qubit mixed state ρ = 1
2 (I + 
r · 
σ ) with 
r =

{ 1
3 , 2

3 cos θ, 2
3 sin θ} and 
σ = {σx, σy, σz}. The unitary matrix

U = ( v1
|v1| ,

v2
|v2| ), where the orthogonal eigenvectors ui, u2 are

given by

v1 =
(

− i(2 sin θ + √
5)

−i + 2 cos θ
, 1

)T

,

v2 =
(

i(
√

5 − 2 sin θ )

−i + 2 cos θ
, 1

)T

.

The diagonal matrix D is determined by the corresponding
eigenvalues and

D
1
2 =

⎛
⎜⎜⎝

√
1
6

(
3 + √

5
)

0

0

√
1
6

(
3 − √

5
)
⎞
⎟⎟⎠. (A1)

Therefore, the unique positive semidefinite square root of the
Hermitian matrix ρ is given by

√
ρ = UD

1
2 U † =

⎛
⎜⎝

√
3+√

5(2 sin θ+√
5)+

√
3−√

5(
√

5−2 sin θ )
2
√

30
i(
√

3−√
5−

√
3+√

5)(i+2 cos θ )
2
√

30

− i(
√

3−√
5−

√
3+√

5)(−i+2 cos θ )
2
√

30

√
3−√

5(2 sin θ+√
5)+

√
3+√

5(
√

5−2 sin θ )
2
√

30

⎞
⎟⎠. (A2)

Consequently, the vectorization |√ρ〉 for the mixed state ρ is
obtained as a four-dimensional pure state.

APPENDIX B

For the qutrit mixed state ρ = 1
3 (I + √

3
n · 
λ) with 
n =
( 1√

3
cos θ, 0, 0, 0, 0, 1√

3
sin θ, 0, 0) and 
λ = (λ1, λ2, . . . , λ8)

is the vector of the Gell-Mann matrices. Using a similar
procedure as Appendix A, we diagonalize the matrix ρ as

D = U †ρU =
⎛
⎝ 2

3 0 0
0 1

3 0
0 0 0

⎞
⎠, (B1)

where the unitary matrix U = ( v1
|v1| ,

v2
|v2| ,

v3
|v3| ) is given by the

eigenvectors

v1 = (cot θ, csc θ, 1)T ,

v2 = (− tan θ, 0, 1)T ,

v3 = (cot θ,− csc θ, 1)T .

Then the unique semidefinite square root of matrix ρ is

√
ρ = UD

1
2 U =

⎛
⎜⎜⎜⎝

cos2 θ√
6

+ sin2 θ√
3

cos θ√
6

(−2+√
2) sin 2θ

4
√

3
cos θ√

6
1√
6

sin θ√
6

(−2+√
2) sin 2θ

4
√

3
sin θ√

6
cos2 θ√

3
+ sin2 θ√

6

⎞
⎟⎟⎟⎠.

(B2)

By stacking columns of the matrix
√

ρ on top of one another,
we have the pure state |√ρ〉 on the nine-dimensional Hilbert
space.

APPENDIX C

To highlight our method, we further consider the strength-
ened UURs for four unitary operators.

Let A, B, C, and D be four unitary operators on an n-
dimensional Hilbert space; the product form of variance-based
unitary uncertainty relations with two pairs of unitary opera-
tors {A, B} and {C, D} in quantum state |ψ〉 can be written
as �A2�B2 � Ik and �C2�D2 � Jk , respectively. Therefore,
UURs for four unitary operators are then given as follows:

�A2�B2�C2�D2 � IkJk, (C1)

with 2 � k � N .
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Though the above seems to be a trivial step beyond the
case of two unitary operators, it still outperforms Bong et al.’s
bound in many situations.

Example 6. Let us consider the pure state |ψ〉 = cos θ |0〉 +
1
2 sin θ |1〉 +

√
3

2 sin θ |4〉 on five-dimensional Hilbert space,
and take four unitary operators A, B, C, and D as follows:

A = diag(e− 4π i
5 , e− 2π i

5 , 1, e
2π i

5 , e
4π i
5 ),

B = diag(e
4π i
5 , e

2π i
5 , 1, e− 2π i

5 , e− 4π i
5 ), (C2)

C =
(

0 1
I4 0

)
, D = i

(
0 1
I4 0

)
.

It is not difficult to check that �A2�B2�C2�D2 = IkJk with
2 � k � 5 in our UURs due to its saturated conditions.

For four unitary operators, Bong et al.’s UUR is

det G(ρ) = det

⎛
⎜⎜⎜⎜⎜⎝

1 〈A〉 〈B〉 〈C〉 〈D〉
〈A†〉 1 〈A†B〉 〈A†C〉 〈A†D〉
〈B†〉 〈B†A〉 1 〈B†C〉 〈B†D〉
〈C†〉 〈C†A〉 〈C†B〉 1 〈C†D〉
〈D†〉 〈D†A〉 〈D†B〉 〈D†C〉 1

⎞
⎟⎟⎟⎟⎟⎠

� 0. (C3)

It is complicated and cumbersome to simplify the above
into a form of �A2�B2�C2�D2 � M, the uncertainty lower

FIG. 8. Solid blue curve represents �A2�B2�C2�D2; the dot-
ted orange line denotes det G(|ψ〉).

bound. So we simply sketch det G(|ψ〉) in Fig. 8. We find that
the determinant G(|ψ〉) vanishes only when {θ = nπ |n ∈ Z},
i.e., when the uncertainty relation is saturated.

This means that our bound is tighter than Bong et al.’s
bound in the whole range except at the points nπ . Given the
complexity of straightening out the product of the variances
from det G(ρ) as required from Bong et al.’s method, our
procedure is simpler and provides direct lower bounds in this
case.
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