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Experimental demonstration of fully contextual quantum correlations
on an NMR quantum information processor
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The existence of contextuality in quantum mechanics is a fundamental departure from the classical description
of the world. Currently, the quest to identify scenarios which cannot be more contextual than quantum theory
is at the forefront of research in quantum contextuality. In this work we experimentally test two inequalities,
which are capable of revealing fully contextual quantum correlations, on a Hilbert space of dimension 8 and
4, respectively, on an NMR quantum information processor. The projectors associated with the contextuality
inequalities are reformulated in terms of Pauli operators, which can be determined in an NMR experiment.
We analyze the behavior of each inequality under rotation of the underlying quantum state, which unitarily
transforms it to another pure state.
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I. INTRODUCTION

Noncontextual hidden-variable (NCHV) theories in which
outcomes of measurements do not depend on other compatible
measurements have been shown not to reproduce quantum
correlations [1,2]. Quantum mechanics (QM) exhibits the
property of contextuality [3–5], which implies that measure-
ment results of observables depend upon other commuting
observables which are within the same measurement test.
Much recent research has been in the direction of guessing the
physical principle responsible for this form of contextuality
[6]. The pertinent questions that arise include whether there
is any theory more contextual than quantum mechanics and
whether the simplest scenario in which more general theories
cannot be more contextual than quantum mechanics can be
identified [7–10].

Contextuality tests correspond to the violation of certain in-
equalities involving expectation values; the first such test was
proposed by Kochen and Specker [2] by using a single-qutrit
system [the Kochen-Specker (KS) theorem], and a modified
KS scheme was constructed by Peres [11]. State-independent
[12–14] tests use the set of observables such that for any
quantum state there is no probability distribution which can
describe the outcome of measurement of these observables on
that state; hence these tests are able to reveal the contextual
behavior of any state of the quantum system. On the other
hand, the state-dependent [15–17] tests typically use fewer
observables to show that no joint probability distribution can
describe the measurement outcomes on a certain subset of
states of the quantum system. The smallest indivisible phys-
ical system exhibiting quantum contextuality for repeatable
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measurements is a qutrit (a three-level quantum system) [1].
The simplest state-dependent noncontextual inequality, which
is commonly referred to as the Klyachko-Can-Binicioglu-
Shumovsky (KCBS) inequality [15], for a qutrit requires five
experiments, each of them involving two compatible yes-no
tests [7]. Several experimental tests of quantum contextual-
ity have been demonstrated by different groups using pho-
tons [18–22], ions [23,24], neutrons [25], and nuclear spins
[26,27].

In this paper we experimentally demonstrate fully contex-
tual quantum correlations via two different inequalities, on
an NMR quantum information processor. The first inequal-
ity, as proposed by Nagali et al. [21], uses ten projectors
and ten measurements which we implement on states in a
four-dimensional Hilbert space. The second inequality, pro-
posed by Cabello [7], utilizes ten projectors and requires five
measurements on a state in a Hilbert space of dimension
at least 6. We demonstrate this inequality by realizing the
six-dimensional subspace on states in an eight-dimensional
Hilbert space. For experimental verification of both inequal-
ities, we decompose all the projectors involved in terms of
Pauli operators. The advantage is twofold: First, it reduces
the need to perform quantum state tomography, which is a
resource-intensive procedure, and second, the inequalities can
be tested by using fewer observables. The eight-dimensional
and four-dimensional Hilbert spaces are physically realized
using three and two NMR qubits, respectively. Violation of the
inequalities as observed experimentally match well with theo-
retical predictions and have an experimental fidelity greater
than or equal to 0.96. We also study the behavior of both
inequalities when the underlying quantum state undergoes a
rotation. Our results imply that the violation of both inequal-
ities follows a nonlinear trend with respect to the rotation
angle of the underlying state. We also find that fully contextual
quantum correlations on an eight-dimensional Hilbert space
are more robust against state rotation as compared to those on
the four-dimensional Hilbert space, allowing a greater angle
for violation.
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The material in this paper is arranged as follows. Section II
describes fully contextual quantum correlations in a four-
dimensional Hilbert space and its experimental implemen-
tation using two NMR qubits. Section III describes a simi-
lar scenario, albeit on an eight-dimensional quantum system
experimentally realized using three NMR qubits. Section IV
contains a summary and a few concluding remarks. Details of
the decomposition of the projectors in terms of Pauli operators
for the four-dimensional and the eight-dimensional Hilbert
space are given in Appendixes A and B, respectively.

II. FULLY CONTEXTUAL QUANTUM CORRELATIONS
IN A FOUR-DIMENSIONAL HILBERT SPACE

In this section we first review a contextuality inequality
which is capable of revealing fully contextual quantum cor-
relations as developed by Nagali et al. [21] which utilize
states in a Hilbert space of dimension at least 4. We provide
a modified version of the inequality by decomposition into
Pauli matrices which we experimentally test on a four-level
quantum system using two NMR qubits.

The simplest test of quantum contextuality requires
the measurement of five different projectors {�i}, i ∈
{0, 1, 2, 3, 4}, and �i = |vi〉〈vi|, where |vi〉 are unit vectors
[15]. These projectors follow the exclusivity relation P(�i =
1) + P(�i⊕1 = 1) = 1, where P(�i = 1) represents the prob-
ability of obtaining the outcome �i and addition is taken
modulo 5. For projective measurements, this relationship im-
plies that only one of �i or �i⊕1 can be obtained in a joint
measurement of both. The corresponding test, termed KCBS
inequality [7], is of the form

1

2

4∑
i=0

P(�i + �i⊕1 = 1)
NCHV
� 2

QM
�

√
5

GP
� 5

2
, (1)

where the inequalities correspond to the maximum value
achievable for NCHV theories, QM, and generalized proba-
bilistic (GP) theories.

As is evident from Eq. (1), the maximum violation that
can be achieved in quantum mechanics is less than what
can be attained if an underlying GP model is considered.
Therefore, for the KCBS scenario, quantum correlations are
not fully contextual. Recently, it has been shown that there
exist tests of contextuality for which quantum correlations
saturate the bound as imposed by GP models [28]. For these
scenarios, quantum correlations are either noncontextual or
fully contextual.

Fully contextual quantum correlations can also be achieved
for various other scenarios, one of which is shown in Ref. [21]
and entails measurements corresponding to ten different pro-
jectors � j = |u j〉〈u j |, j = {0, 1, . . . , 9}. In this particular
scenario, the projectors follow exclusivity relationships as
depicted in Fig. 1, where each vertex represents a projector
�i and two projectors are connected by an edge if and only if
they are exclusive. The corresponding test of contextuality is
then given by the inequality

C =
9∑

i=0

P(�i = 1)
NCHV
� 3

QM,GP
� 7

2
. (2)
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FIG. 1. Orthogonality graph corresponding to the inequality C.
Vertices correspond to projectors and two vertices are connected by
an edge if they are orthogonal.

This test requires ten different measurements rather than
five and is capable of revealing fully contextual quantum
correlations in a Hilbert space of minimum dimension 4. The
inequality can be explicitly tested if we consider the unit
vectors |ui〉 as follows:

〈u0| ≡ 1√
2

(0, 0, 1, 1), (3a)

〈u1| ≡ 1

2
(1,−1, 1,−1), (3b)

〈u2| ≡ 1

2
(1,−1,−1, 1), (3c)

〈u3| ≡ 1√
2

(1, 0, 0,−1), (3d)

〈u4| ≡ 1

2
(1, 1, 1, 1), (3e)

〈u5| ≡ 1√
2

(0, 1, 0,−1), (3f)

〈u6| ≡ 1

2
(−1, 1, 1, 1), (3g)

〈u7| ≡ 1√
2

(1, 0, 0, 1), (3h)

〈u8| ≡ 1

2
(1, 1, 1,−1), (3i)

〈u9| ≡ 1

2
(1, 1,−1, 1). (3j)

The corresponding projective measurements are of the
form

M j = {� j, I − � j} ∀ j ∈ {0, 1, . . . , 9}, (4)

which are performed on the state

〈φ| ≡ (0, 0, 0, 1). (5)

To experimentally test the inequality C on a four-
level quantum system using two NMR qubits, one has to
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determine the expectation value of the observables involved
for an experimentally prepared state. This can be achieved
by decomposing the observables as a linear superposition of
Pauli operators. For a two-qubit system any observable can be
decomposed as a linear superposition of 16 Pauli operators,
and the Pauli operator can be mapped to the single-qubit Pauli
Z operator. This mapping is particularly useful in the context
of an NMR experimental setup where the expectation value of
the Z operator is easily accessible. In an NMR measurement
schema, the observed z magnetization of a nuclear spin in
a particular quantum state is proportional to the expectation
value of the Z operator of the spin in that state. The time-
domain NMR signal, i.e., the free-induction decay with an
appropriate phase, results in Lorentzian peaks when Fourier
transformed. These normalized experimental intensities give
an estimate of the expectation value of Z in that quantum state
[27,29,30].

For the experimental implementation of the inequality, we
decompose the projectors {� j} in terms of Pauli operators
{I, X,Y, Z} (details given in Appendix A). The inequality (2)
can be rewritten in terms of expectation values as

C =
9∑

i=0

〈�i〉 =
9∑

i=0

Tr[�iρ
′], (6)

where ρ ′ = |φ〉〈φ|. Using Eqs. (2), (6), and (A1), the inequal-
ity C can be rewritten as

C = 1
4 Tr[Bρ ′]

NCHV
� 3

QM,GP
� 7

2 , (7)

where

B = XX + YY − ZI + 2ZZ − IZ + 10II, (8)

which can be experimentally verified as detailed below.
The underlying state |φ〉 is unitarily rotated by an angle θ

as

|φ(θ )〉 = Uθ I|φ〉, (9)

where

Uθ =
[

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

]
. (10)

The corresponding theoretical value of the inequality C for the
aforementioned state (9) is found to be C = 1

4 (11 + 3 cos θ )
and is plotted in Fig. 5 along with the experimentally observed
values at various θ angles.

For instance, in order to determine the expectation value
〈XX 〉 for the state ρ = |ψ〉〈ψ |, we map the state ρ to ρ1 =
U1ρU †

1 , where U1 = CNOT12Y2Y1, followed by observing 〈Z2〉
for the state ρ1. The expectation value 〈Z2〉 for the state ρ1

is equivalent to observing the expectation value of 〈XX 〉 for
the state ρ [30]. Table I details the mapping of Pauli basis
operators (used in this paper) to the single-qubit Z operator.
The observables of interest are given in the decomposition of
Eq. (8). By experimentally evaluating the expectation value
of the observables given in Eq. (8), the value of C can be
estimated.

To implement the inequality on a four-dimensional quan-
tum system, the molecule of 13C-enriched chloroform dis-
solved in acetone-D6 was used, with the 1H and 13C spins

TABLE I. Product operators for a two-qubit system mapped onto
the Pauli Z operators by transforming the initial state ρ → ρi =
UiρU †

i .

Observable Unitary operator

〈XX 〉 = Tr[ρ1Z2] U1 = CNOT12 Y2Y1

〈YY 〉 = Tr[ρ2Z2] U2 = CNOT12 X 2X 1

〈ZI〉 = Tr[ρ3Z1] U3 = identity
〈ZZ〉 = Tr[ρ4Z2] U4 = CNOT12

〈IZ〉 = Tr[ρ5Z2] U5 = identity

being labeled as qubit 1 and qubit 2, respectively (see Fig. 2
and Table II for details of the experimental parameters).

The Hamiltonian for a two-qubit system is given by [30]

H = −νHIH
z − νCIC

z + JHCIH
z IC

z , (11)

where νH and νC are the chemical shifts, IH
z and IC

z are the z
components of the spin angular momentum operators of the
1H and 13C spins, respectively, and JHC is the scalar coupling
constant. The system was initialized in the pseudopure state
(PPS) |00〉, using a spatial averaging technique [31,32] with
the density operator given by

ρ00 = 1
4 (1 − ε)I4 + ε|00〉〈00|, (12)

where I4 is the 4 × 4 identity operator and ε is proportional
to the spin polarization and can be evaluated from the ratio of
magnetic and thermal energies of an ensemble of magnetic
moments μ in a magnetic field B at temperature T ; ε ∼
μB
kBT and at room temperature and for B ≈ 10 T, ε ≈ 10−5.
The state fidelity of the experimentally prepared PPS was
computed to be 0.99. For the experimental reconstruction of
the density operator full quantum state tomography was per-
formed using a set of preparatory pulses {II, IX ′, IY ′, X ′X ′},
where I implies no operation and X ′(Y ′) denotes a qubit-

FIG. 2. (a) Molecular structure of 13C-labeled chloroform used
as a two-qubit quantum system. Also shown are the NMR spectra
of (b) the thermal equilibrium state and (c) the pseudopure state
|00〉. Each peak is labeled with the logical state of the qubit which
is passive during the transition. The horizontal scale represents the
chemical shifts in ppm.
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TABLE II. NMR parameters for 13C-labeled chloroform used as
a two-qubit quantum system.

Qubit ν (Hz) J (Hz) T1 (s) T2 (s)

1H 4787.86 JHC = 215.11 7.9 2.95
13C 11814.09 16.6 0.3

selective radio-frequency (rf) pulse of flip angle 90◦ of phase
x(y). The durations of π

2 pulses for 1H and 13C nuclei were
9.56 μs at a power level of 18.14 W and 16.15 μs at a power
level of 179.47 W, respectively.

The quantum circuit to achieve the required states to test
the inequality C on a four-dimensional quantum system is
shown in Fig. 3(a) and the corresponding NMR pulse se-
quence is shown in Fig. 3(b). Eight different states were
generated by varying the flip angle θ over a range of values:
180◦, 120◦, 90◦, 69.23◦, 60◦, 45◦, 30◦, and 0◦. The state that
is prepared with the flip angle θ = 180◦ gives the minimum
value of C, while the state which is prepared without applying
any rf pulse (θ = 0◦) gives the maximum value. All the states
required for testing the inequality on the four-dimensional
quantum system were experimentally prepared with state
fidelities greater than or equal to 0.97. The tomograph for
one such experimentally prepared state with the flip angle
θ = 180◦ and state fidelity 0.99 is depicted in Fig. 4.

For each of these eight different initial states, the contextu-
ality test was repeated three times. The mean values and the
corresponding error bars were calculated and the results are
shown in Fig. 5, where the inequality values are plotted for
different θ values. The maximum of the sum of probabilities
using classical theory is 3 and the maximum of the sum of

FIG. 3. (a) Quantum circuit for the required state, generated
randomly with the different flip angles. (b) NMR pulse sequence for
the corresponding quantum circuit. The sequence of pulses before
the first dashed black line achieves state initialization into the |00〉
state. The value of the flip angle β is kept fixed at 59.69◦, while the
pulse rf flip angle θ is varied. The time interval τ12 is set to 1

2JHC
.
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FIG. 4. Real (left) and imaginary (right) parts of the theoretical
and experimental tomographs of the 〈φ1| = (0, −1, 0, 0) state in the
four-dimensional Hilbert space, prepared with an experimental state
fidelity of 0.99.

probabilities using quantum theory is 3.5, which are shown by
dotted and dashed lines, respectively, in Fig 5. As can be seen
from the values tabulated in Table III, the theoretically com-
puted and experimentally measured values of the inequality
agree well to within experimental errors. From Fig. 5 it can
be seen that the violation for the inequality C decreases as the
original state |φ〉 is rotated through an angle θ ; no violation
is observed for the angle θ > 70◦. The corresponding curve
is found to obey a nonlinear trend such that smaller rotations
lead to minor changes in the violation, while larger rotations
may lead to a situation where no violation is observed.

θ(Degrees)

C

06104102100108060402 0810
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FIG. 5. Quantum correlations corresponding to the inequality C
for various states plotted for different initial states |φ〉 as a function
of the θ parameter.
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TABLE III. Theoretically computed and experimentally mea-
sured values of quantum correlations corresponding to the inequality
C for different quantum states parametrized by the angle θ .

θ Theory Expt.

180◦ 2.000 2.024 ± 0.025
120◦ 2.375 2.433 ± 0.031
90◦ 2.750 2.754 ± 0.029
69.23◦ 3.016 2.989 ± 0.040
60◦ 3.125 3.171 ± 0.034
45◦ 3.280 3.334 ± 0.035
30◦ 3.399 3.434 ± 0.040
0◦ 3.500 3.501 ± 0.032

III. FULLY CONTEXTUAL QUANTUM CORRELATIONS
IN AN EIGHT-DIMENSIONAL HILBERT SPACE

In this section we first review a contextuality inequality
which is capable of revealing fully contextual quantum corre-
lations as developed by Cabello [7], which requires a Hilbert
space dimensionality of at least 6. We then design a modified
version of the inequality via decomposition of the projectors
into Pauli matrices, for ease of experimental implementation.
We experimentally test the inequality on an eight-level quan-
tum system, physically realized via three NMR qubits.

One of the simplest tests of contextuality, capable of re-
vealing fully contextual quantum correlations, requires only
five measurements, but of ten different projectors {�i}, and is
of the form

K = 1

2

4∑
i=0

P(�i + �i+1 + �i+5 + �i+7 = 1)

NCHV
� 2

QM,GP
� 5

2
, (13)

where the sum in the indices is defined as standard addition
except for three cases where we define it as 4 + 1 = 0,
3 + 7 = 5, and 4 + 7 = 6 to ensure that only those vertices
connected by the same edge style in Fig. 6 appear in the sum.
To elaborate, the term corresponding to i = 4 will be of the
form P(�4 + �0 + �9 + �6 = 1).

Since both the KCBS and the aforementioned inequality
(13) require only five different measurements, the above
scenario is termed a KCBS twin inequality, with the only
difference that it is capable of revealing fully contextual
quantum correlations and requires quantum systems having
Hilbert space dimension at least 6. We will henceforth refer to
this inequality as the KCBS twin inequality.

The scenario corresponding to the KCBS twin inequality
(13) can be represented by an exclusivity graph as shown in
Fig. 6. In this graph, each vertex corresponds to a unit vector
|vi〉 used to construct the projectors �i, and two vertices are
connected by an edge if and only if they are exclusive. From
the graph it is possible to identify five different measurements
Mi, which are defined as

Mi = {�i,�i+1,�i+5,�i+7} ∀ i ∈ {0, 1, . . . , 9}. (14)

0

1

3 2

4

6

7

8

9

5

FIG. 6. Orthogonality graph corresponding to the KCBS twin
inequality K. Vertices correspond to projectors, while edges repre-
sent the orthogonality relationship between two vertices. Five sets of
four interconnected vertices correspond to measurements involved in
testing K and are differentiated by different edge line styles.

These measurements can be identified from the graph in Fig. 6
by five sets of four interconnected vertices, each represented
by a different line style.

An explicit form of the KCBS twin inequality (13) which
saturates the QM and GP bound can be obtained if we consider
the unit vectors |vi〉 defined as

〈v0| ≡ 1√
8

(
√

2,−
√

2, 0, 0, 2, 0, 0, 0), (15a)

〈v1| ≡ 1√
8

(
√

2, 0, 0,
√

2,−1,
√

3, 0, 0), (15b)

〈v2| ≡ 1

2
(1,−1,−1,−1, 0, 0, 0, 0), (15c)

〈v3| ≡ 1

2
(1,−1, 1, 1, 0, 0, 0, 0), (15d)

〈v4| ≡ 1√
8

(
√

2, 0, 0,−
√

2,−1,
√

3, 0, 0), (15e)

〈v5| ≡ 1√
8

(
√

2, 0,−
√

2, 0,−1,−
√

3, 0, 0), (15f)

〈v6| ≡ 1√
8

(
√

2, 0,
√

2, 0,−1,−
√

3, 0, 0), (15g)

〈v7| ≡ 1

2
(1, 1, 1,−1, 0, 0, 0, 0), (15h)

〈v8| ≡ 1√
8

(
√

2,
√

2, 0, 0, 2, 0, 0, 0), (15i)

〈v9| ≡ 1

2
(1, 1,−1, 1, 0, 0, 0, 0). (15j)

The state |ψ〉 on which the measurements Mi will be per-
formed is chosen as

〈ψ | ≡ (1, 0, 0, 0, 0, 0, 0, 0) (16)
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so that 〈vi|ψ〉 = 1
2 ∀ i ∈ {0, 1, . . . , 9}, which subsequently en-

sures the exclusivity relation P(�i + �i+1 + �i+5 + �i+7 =
1) = 1, i = 0, 1, . . . , 4.

To experimentally test the inequality K [Eq. (13)] on a
eight-level quantum system using three NMR qubits, the
expectation values of the observables involved have to be
determined for an experimentally prepared state. The expec-
tation value of desired observables can be determined by
decomposing the observables as a linear superposition of the
Pauli operators as has been detailed in Sec. II. For a three-
qubit system any observable can be decomposed as a linear
superposition of 64 Pauli basis operators.

In order to evaluate the KCBS twin inequality experimen-
tally, we first decompose the projectors involved in terms
of Pauli operators {I, X,Y, Z} for three qubits (details given
in Appendix B). Since in an NMR quantum information
processor it is only possible to measure the expectation value
of the observables, we first translate Eq. (13) in terms of
expectation values as

K = 1

2

4∑
i=0

〈�i + �i+1 + �i+5 + �i+7〉

=
9∑

i=0

〈�i〉 =
9∑

i=0

Tr[�iρ], (17)

where ρ = |ψ〉〈ψ |.
Using the decomposition given in Eq. (B1), the inequality

K [Eq. (13)] can then be rewritten as

K = 1
8 Tr[Aρ]

NCHV
� 2

QM,GP
� 5

2 (18)

and

A = IIZ + 4IZI + IZZ + 4ZII (19)

+ ZIZ − 2ZZI + ZZZ + 10III. (20)

which we experimentally verify using a three-qubit NMR
information processor. We note here in passing that the de-
composition of the observable A consists only of diagonal
Pauli operators, which can be easily observed in an exper-
iment. The fact that the observable A can be decomposed
as a combination of only diagonal Pauli operators is an
interesting coincidence. Furthermore, in an NMR setup, it is
easier to implement these diagonal operators as compared to
other operators which have diagonal and off-diagonal terms.
For example, the expectation value of 〈IIZ〉 can be obtained
simply by measuring the NMR peak intensities after applying
a detection pulse on the third qubit. The underlying state |ψ〉
is unitarily rotated by an angle θ as

|ψ (θ )〉 = Uθ II|ψ〉, (21)

where Uθ is as given in Eq. (10).
For the aforementioned state (21), the theoretical value of

the inequality (18) is found to be K = 1
2 (4 + cos θ ), which

is plotted in Fig. 10 along with the experimentally observed
values at various θ angles. By experimentally measuring the
expectation value of the observable A for state ρ, the value
of inequality K can be estimated. For example, in order to
determine 〈IZZ〉, the underlying state ρ is mapped to the state

TABLE IV. Product operators for a three-qubit system mapped
to the Pauli Z operators by transforming the initial state ρ → ρi =
UiρU †

i .

Observable Unitary operator

〈IIZ〉 = Tr[ρ1Z3] U1 = identity
〈IZI〉 = Tr[ρ2Z2] U2 = identity
〈IZZ〉 = Tr[ρ3Z3] U3 = CNOT23

〈ZII〉 = Tr[ρ4Z1] U4 = identity
〈ZIZ〉 = Tr[ρ5Z3] U5 = CNOT13

〈ZZI〉 = Tr[ρ6Z2] U6 = CNOT12

〈ZZZ〉 = Tr[ρ7Z3] U7 = CNOT23CNOT12

ρ3 = U3ρU †
3 with U3 = CNOT23, followed by measuring 〈Z3〉,

which is equivalent to the expectation value of 〈IZZ〉 for the
state ρ. The explicit mapping of the expectation value of the
observables onto Pauli Z operators for three qubits is given in
Table IV.

To experimentally implement the KCBS twin inequality
capable of revealing fully contextual quantum correlations for
an eight-dimensional quantum system, we used the molecule
of 13C -labeled diethyl fluoromalonate dissolved in acetone-
D6, with the 1H, 19F, and 13C spin- 1

2 nuclei being encoded as
qubit 1, qubit 2, and qubit 3, respectively (see Fig. 7 for the
molecular structure and corresponding NMR spectrum of the
PPS state, and Table V for details of the experimental NMR
parameters). The NMR Hamiltonian for a three-qubit system

(a)

1H

13C

19F
(b)

(c)

1H 19F 13C
|11〉 |01〉 |10〉 |00〉 |01〉|00〉 |10〉|11〉 |01〉 |00〉|10〉 |11〉

|00〉 |00 |〉 00〉

5.8 5.6 5.4 -196.3 -196.5 -196.7 86.5 85.5 84.5
ωH (ppm) ωF (ppm) ωC (ppm)

5.8 5.6 5.4 -196.3 -196.5 -196.7 86.5 85.5 84.5

ωH (ppm) ωF (ppm) ωC (ppm)

FIG. 7. (a) Molecular structure of 13C-labeled diethyl fluoro-
malonate used to physically realize three qubits. Also shown are
the NMR spectra of (b) the thermal equilibrium state and (c) the
pseudopure state |000〉. Each peak is labeled with the logical state
of the qubit which is passive during the transition. The horizontal
scale represents the chemical shifts in ppm.
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TABLE V. NMR parameters for the three-qubit 13C-labeled di-
ethyl fluoromalonate system.

Qubit ν (Hz) J (Hz) T1 (s) T2 (s)

1H 3334.24 JHF = 47.5 3.4 1.6
19F −110999.94 JHC = 161.6 3.7 1.5
13C 12889.53 JFC = −191.5 3.6 1.3

is given by [29]

H = −
3∑

i=1

viI
i
z +

3∑
i> j,i=1

Ji j I
i
z I j

z , (22)

where the indices i, j = 1, 2, or 3 label the qubit, νi is the
chemical shift of the ith qubit in the rotating frame, Ji j is the
scalar coupling interaction strength, and I i

z is the z component
of the spin angular momentum operator of the ith qubit. The
system was initialized in a PPS, i.e., |000〉, using the spatial
averaging technique [33] with the density operator given by

ρ000 = 1 − ε

23
I8 + ε|000〉〈000|, (23)

where ε is proportional to the spin polarization and I8

is the 8 × 8 identity operator. The fidelity of the exper-
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FIG. 8. (a) Quantum circuit for state preparation. The parameter
θ in the unitary Ry(θ ) is used to generate different quantum states.
(b) Corresponding NMR pulse sequence for the quantum circuit.
The sequence of pulses before the first dashed black line achieves
initialization of the state into the pseudopure |000〉 state. The value
of the flip angle α is kept fixed at 57.87◦, while the flip angle θ is
varied over a range of values. The broad open rectangles denote π

pulses, and the flip angle and phases of the other pulses are written
below each pulse. The time intervals τ12, τ13, and τ23 are set equal to
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expected and the experimentally reconstructed tomographs of the
〈ψ1| = (0, 0, 0, 0, 1, 0, 0, 0) state in the eight-dimensional quantum
system, with an experimental state fidelity of 0.97.

imentally prepared PPS state was computed to be 0.96
using the fidelity measure [34]. Full quantum state to-
mography [35,36] was performed to experimentally recon-
struct the density operator via a set of preparatory pulses
{III, IIY ′, IY ′Y ′,Y ′II, X ′Y ′X ′, X ′X ′Y ′, X ′X ′X ′}, where I im-
plies no operation and X ′(Y ′) denotes a qubit-selective rf pulse
of flip angle 90◦ of phase x(y).

Experiments were performed at room temperature (294 K)
on a Bruker Avance III 600-MHz FT-NMR spectrome-
ter equipped with a QXI probe. Local unitary operations
were achieved by using highly accurate and calibrated spin-
selective transverse rf pulses of suitable amplitude, phase, and
duration. Nonlocal unitary operations were achieved by free
evolution under the system Hamiltonian, of suitable duration
under the desired scalar coupling with the help of embedded
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FIG. 10. Graph representing quantum correlations correspond-
ing to the inequality K for various states rotated by the angle θ from
the initial state |ψ〉.
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TABLE VI. Theoretically computed and experimentally mea-
sured values of quantum correlations corresponding to the inequality
K for various states, rotated by the angle θ , from the initial state |ψ〉.

θ Theory Expt.

180◦ 1.500 1.522 ± 0.042
120◦ 1.750 1.785 ± 0.035
90◦ 2.000 2.016 ± 0.031
60◦ 2.250 2.239 ± 0.030
45◦ 2.353 2.330 ± 0.033
36◦ 2.404 2.385 ± 0.045
0◦ 2.500 2.449 ± 0.046

π refocusing pulses. The durations of the π
2 pulses for 1H,

19F, and 13C nuclei were 9.36 μs at a power level of 18.14 W,
23.25 μs at a power level of 42.27 W, and 15.81 μs at a power
level of 179.47 W, respectively.

The quantum circuit to construct the states required to test
fully contextual quantum correlations is shown in Fig. 8(a)
and the corresponding NMR pulse sequence is shown in
Fig. 8(b). Different states can be prepared by varying the
value of the flip angle θ of the rf pulse. We prepared seven
different states by varying the flip angle θ to attain a range
of values: 180◦, 120◦, 90◦, 60◦, 45◦, 36◦, and 0◦. The state
prepared with θ = 180◦ gives the minimum value of K, while
the state prepared without applying any rf pulse (θ = 0◦) gives
the maximum value. All the states required to demonstrate
the KCBS twin inequality on an eight-dimensional Hilbert
space which are capable of revealing the transformation from
classical correlations to fully contextual correlations were
experimentally prepared with state fidelities greater than or
equal to 0.96. The tomograph of one such experimentally
reconstructed state with flip angle θ = 180◦ with state fidelity
0.97 is depicted in Fig. 9. For each of the initial states, the
contextuality test was repeated three times. The mean values
and the corresponding error bars were computed and the
results are shown in Fig. 10, where the inequality values are
plotted for different values of the parameter θ . The maximum
of the sum of probabilities using classical theory is 2 and the
maximum of the sum of probabilities using quantum theory is
2.5; they are depicted by dotted and dashed lines, respectively,
in Fig. 10. The theoretically computed and experimentally
obtained values of the inequality for different values of the
θ parameter are tabulated in Table VI. The theoretical and
experimental values match well, within the limits of exper-
imental errors. From Fig. 10 it can also be seen that the
violation observed for the KCBS twin inequality decreases
as the original state |ψ〉 is rotated through an angle θ , with
no violation when the transformed state is orthogonal to the
original state. Furthermore, the plot is nonlinear, indicating
that smaller rotations lead to minor changes in violation, while
larger rotations may also lead to observing no violation at all.

IV. CONCLUSION

In this paper we experimentally demonstrated fully con-
textual quantum correlations on an NMR quantum informa-
tion processor. We studied two distinct inequalities capable
of revealing such correlations: The first inequality used ten

measurements on a four-dimensional Hilbert space while
the second inequality used five measurements on an eight-
dimensional Hilbert space to reveal fully contextual correla-
tions. However, both inequalities involved the same number
of projectors. For an experimental demonstration of each
inequality, every projector was decomposed in terms of the
Pauli basis and the corresponding inequality recast in terms
of Pauli operators, thereby reducing the need for resource-
intensive full state tomography. Both inequalities C and K
were experimentally implemented with a fidelity greater than
or equal to 0.96 by measuring the expectation values of only
five and seven Pauli operators, respectively, for the state which
maximizes the violation.

In addition to demonstration of fully contextual quantum
correlations, we analyzed the behavior of each inequality un-
der rotation of the underlying state, which unitarily transforms
it to another pure state. The experiments were repeated for
various states rotated through an angle θ and were in good
agreement with theoretical results. It was seen that both the
inequalities follow a nonlinear trend, while the inequality K
offers a greater range of violation than the inequality C with
respect to the parameter θ .

An experimental implementation of fully contextual quan-
tum correlations is an important step towards achieving in-
formation processing tasks, for which no postquantum theory
can do better. While the inequality C has been experimentally
observed in optical systems, an experimental demonstration of
the inequality K is difficult owing to the high dimensionality
of the Hilbert space required. Our work asserts that NMR is
an optimal test bed for such scenarios.
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APPENDIX A: DECOMPOSITION OF THE PROJECTORS
APPEARING IN THE INEQUALITY C

The decomposition of the projectors �i appearing in the
inequality C in terms of two-qubit Pauli operators is given as

�0 = 1
4 (−ZI − ZX + IX + II ), (A1a)

�1 = 1
4 (XI − XX − IX + II ), (A1b)

�2 = 1
4 (−XI + XX − IX + II ), (A1c)

�3 = 1
4 (−XX + YY + ZZ + II ), (A1d)

�4 = 1
4 (XI + XX + IX + II ), (A1e)

�5 = 1
4 (−XI + XZ − IZ + II ), (A1f)

�6 = 1
4 (−XZ + YY − ZX + II ), (A1g)

�7 = 1
4 (XX − YY + ZZ + II ), (A1h)

�8 = 1
4 (XZ + YY + ZX + II ), (A1i)

�9 = 1
4 (−XZ − YY + ZX + II ), (A1j)
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TABLE VII. Pauli operators for three qubits used to decompose
the corresponding projectors for the experimental demonstration of
the inequality K.

Pauli operators Pauli operators

A0 = IIX A17 = XZX
A1 = IIZ A18 = XZZ
A2 = IX I A19 = Y IY
A3 = IXX A20 = Y XY
A4 = IXZ A21 = YY I
A5 = IYY A22 = YY X
A6 = IZI A23 = YY Z
A7 = IZX A24 = Y ZY
A8 = IZZ A25 = ZII
A9 = XII A26 = ZIX
A10 = XIX A27 = ZIZ
A11 = XIZ A28 = ZXI
A12 = XXI A29 = ZXX
A13 = XXX A30 = ZXZ
A14 = XXZ A31 = ZYY
A15 = XYY A32 = ZZI
A16 = XZI A33 = ZZX
A34 = ZZZ A35 = III

where I , X , Y , and Z are identity operators and σx, σy and σz

Pauli operators.

APPENDIX B: DECOMPOSITION OF PROJECTORS
APPEARING IN INEQUALITY K

The decomposition of the projectors �i appearing in the
inequality K in terms of three-qubit Pauli operators is given
as

�0 = 1
16 [−A0 + A1 + 2A6 − A7 + A8 +

√
2(A9 − A10 + A11

+ A16 − A17 + A18 − A19 − A24)

− A26 − A27 − A33 − A34 + 2A35], (B1a)

�1 = 1
32 [−

√
3A0 − A1 + 2A3 − 2A5 + 2A6 −

√
3A7 + A8

+
√

2(−A9 +
√

6A10 − A11 +
√

6A12 − A13 −
√

6A14

+ A15 − A16 +
√

6A17) +
√

2(−A18 −
√

6A19 − A20

+
√

6A21 − A22 −
√

6A23 −
√

6A24) +
√

3A26 + A27

+ 2A29 − 2A31 − 2A32 +
√

3A33 + 3A34 + 4A35],

(B1b)

�2 = 1
8 (−A4 + A5 − A7 + A25 − A30 + A31 − A33 + A35),

(B1c)

�3 = 1
8 (A4 − A5 − A7 + A25 + A30 − A31 − A33 + A35),

(B1d)

�4 = 1
32 [−

√
3A0 − A1 − 2A3 + 2A5 + 2A6 −

√
3A7 + A8

+
√

2(−A9 +
√

6A10 − A11 −
√

6A12 + A13 +
√

6A14

− A15 − A16 +
√

6A17) +
√

2(−A18 −
√

6A19 + A20

−
√

6A21 + A22 +
√

6A23 −
√

6A24) +
√

3A26 + A27

− 2A29 + 2A31 − 2A32 +
√

3A33 + 3A34 + 4A35],

(B1e)

�5 = 1
32 [

√
3A0 + A1 − 2A2 − 2A4 + 2A6 +

√
3A7 − A8

+
√

2(−A9 −
√

6A10 − A11 + A12 +
√

6A13 + A14

+
√

6A15 − A16 −
√

6A17) +
√

2(−A18 +
√

6A19

−
√

6A20 + A21 +
√

6A22 + A23 +
√

6A24)

−
√

3A26 + 3A27 − 2A28 − 2A30 − 2A32

−
√

3A33 + A34 + 4A35], (B1f)

�6 = 1
32 [

√
3A0 + A1 + 2A2 + 2A4 + 2A6 +

√
3A7 − A8

+
√

2(−A9 −
√

6A10 − A11 − A12 −
√

6A13

− A14 −
√

6A15 − A16 −
√

6A17) +
√

2(−A18

+
√

6A19 +
√

6A20 − A21 −
√

6A22 − A23 +
√

6A24)

−
√

3A26 + 3A27 + 2A28 + 2A30 − 2A32

−
√

3A33 + A34 + 4A35], (B1g)

�7 = 1
8 (A4 + A5 + A7 + A25 + A30 + A31 + A33 + A35),

(B1h)

�8 = 1
16 [A0 + A1 + 2A6 + A7 + A8 +

√
2(A9 + A10 + A11

+ A16 + A17 + A18 + A19 + A24)

+ A26 − A27 + A33 − A34 + 2A35], (B1i)

�9 = 1
8 (−A4 − A5 + A7 + A25 − A30 − A31 + A33 + A35),

(B1j)

where the Ai’s are given in Table VII.
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