
PHYSICAL REVIEW A 100, 022101 (2019)

Effective electrostatic attraction between electrons due to quantum interference
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We show how, with the use of quantum interference, we can violate, in some sense, the rule that charges
of equal sign always repel each other. By considering two electrons that propagate parallel to each other in a
Mach-Zehnder interferometer, we show that the quantum superposition of the electrostatic repulsion when the
electrons propagate in the same path with the absence of interaction when they propagate in opposite paths
may result in an effective attraction between them, when we post-select by which port each electron leaves the
interferometer. We also discuss an experimental setup that could be used to verify such an effect.
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I. INTRODUCTION

Electric charges of equal sign repel each other, while
charges of opposite sign experience an attraction. This sen-
tence represents a fundamental principle not only for the
scientific community but that is well known by the general
public as well. It is hard to imagine that such a principle
could be violated. But here we show that this principle may
be contradicted by a quantum interference phenomenon with
post-selection.

Quantum interference may result in many nonintuitive
phenomena such as interferometry with massive particles
[1–3], quantum delayed choice experiments [4–6], quantum
erasers [7–10], “interaction-free” measurements [11–13] or
the Hong-Ou-Mandel effect [14–16]. Here we discuss a
example of the counterintuitive characteristics of quantum
interference inspired by a recent work by Aharonov et al. [17]
and following the discussions of an earlier paper from our
group [18]. In Ref. [17] the authors discuss the classical limit
of the radiation pressure and the difference in interpretation
arising from classical and quantum descriptions, by treating
one of the mirrors of an interferometer quantum mechanically.
The authors have shown how it is possible for the quantum
combination of two possibilities, one in which light pushes
a mirror outwards and other that leaves it still, to result in
a inward pull in the mirror. Our previous paper generalizes
this result by considering anomalous shifts in momentum as-
sociated with general quantum objects, and proposes feasible
ways of testing the effect in the laboratory outside the weak
interaction regime [18]. With this we have introduced the
concept of the “quantum interference of force” effect.

Here we describe an interesting phenomenon based on the
quantum interference of force effect [18], by considering two
electrons that propagate parallel to each other in a Mach-
Zehnder interferometer and post-selecting the interferometer
port where each electron exits. In this two-electron inter-
ferometer, the electrons will interact or not based on the
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paths taken by each of them inside the system, resulting in
entanglement between the electrons’ states. A related analysis
can be found in [19], where the system consists of two single-
electron Mach-Zehnder interferometers coupled by Coulomb
interaction, and the post-selection of one electron exit is used
to obtain path information about the other electron due to
the existence of the interaction phase. Here we show that the
quantum superposition of the situations where the electrons
propagate in the same interferometer arm, repelling each
other, with the situations where they propagate in opposite
arms, with no interaction, may result in an effective attraction
between them. This effective electrostatic attraction between
the electrons is manifested in the momentum distribution
of each electron, that changes its mean value in the direc-
tion of the other electron with the propagation through the
interferometer.

II. SETUP DESCRIPTION

Consider a two-path Mach-Zehnder interferometer with
two electrons e1 and e2 sent at the same time through the appa-
ratus, as depicted in Fig. 1. The electrons can be distinguished
from one another by the x component of their position, with
their separation d being much larger than the width of their
wave functions. Apart from this displacement, the states of the
electrons are essentially the same. Both paths are considered
to be free from any external influence and isolated from each
other so that only the electromagnetic interactions between
electrons taking the same path are allowed to take place. We
associate the orthogonal state vectors |Ai〉 and |Bi〉 with the
distinguishable paths of propagation possible for the electrons
during their travel through the system, and the vectors |Ci〉
and |Di〉 with the possible exit ports of the Mach-Zehnder
interferometer, matching the labeling given by Fig. 1. The
reflection and transmission coefficients for each beam splitter,
BS1 and BS2, are the same, denoted by ir, and t = √

1 − r2,
with r and t real. The initial quantum state of the x component
of the electrons’ momentum will be denoted by |�i〉, with
i = {1, 2}.

We consider a post-selection of the totality of events where
electron e1 exits the interferometer by D1 and e2 exits by
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FIG. 1. Two electrons propagate parallel to each other in a Mach-
Zehnder interferometer, entering by the indicated ports. Beam splitter
BS1 splits the incident wave functions and the mirrors M redirect
the electrons to interfere at the second beam splitter BS2. The lines
represent the centers of the wave functions of the electrons e1 (blue)
and e2 (red) while propagating in the interferometer. The distance d
between the electrons’ paths is considered to be much larger than
the widths of their wave functions, such that the electrons can be
labeled as e1 and e2 due to their spatial distinguishability. If the
electrons propagate in the same arm they repel each other, while if
they propagate in opposite arms their interaction is negligible. We
will post-select the events where electron e1 exits by D1 and electron
e2 exits by C2.

C2, as indicated in Fig. 1. By considering this post-selection
choice, the final joint state of the system that consists of the
two electrons will be a coherent sum over the amplitudes
associated with all the possible ways for this system to have
evolved in time towards this final state. There are in total four
possibilities of evolution for the described system: two where
the electrons take different paths inside the interferometer and
therefore do not interact, and two where they do travel by
the same path and an electric interaction between them exists
during some time interval. In the first two cases where the
electrons do not interact, the state of the system will evolve
as

(1) e1 goes through path A1 and e2 goes through B2:

−r2t2eiφ|�1, D1〉|�2,C2〉, (1)

(2) e1 goes through path B1 and e2 goes through A2:

−t2r2eiφ|�1, D1〉|�2,C2〉, (2)

where the vector states associated with each electron individ-
ually are labeled accordingly, and φ represents an extra phase
for an electron propagation through path Ai in relation to a
propagation through path Bi.

In turn, considering that the interaction between the elec-
trons will change their momentum states, the quantum state
associated with the last two possibilities of evolution where
the electrons take the same path and therefore interact will
evolve as

(1) e1 goes through path A1 and e2 goes through A2:

−r2t2ei(2φ+α)|�−
1 , D1〉|�+

2 ,C2〉, (3)

(2) e1 goes through path B1 and e2 goes through B2:

−r2t2eiα|�−
1 , D1〉|�+

2 ,C2〉, (4)

where we have taken the vectors |�∓
i 〉 to represent the elec-

trons’ momentum states that were disturbed by their electro-
magnetic interaction, and α represents a phase gained due

to the interaction. Considering the combination of these four
probability amplitudes, the post-selected electrons’ momen-
tum state is

|�ps〉 ∝ |�1〉|�2〉 + eiα cos (φ)|�−
1 〉|�+

2 〉. (5)

III. RESULTS

To closely analyze these results, we shall specify the initial
wave functions for the x component of the electrons’ momen-
tum �i(p) = 〈p|�i〉 as Gaussian distributions with width W
centered at zero:

�i(p) = π− 1
4√

W
exp

[
−1

2

( p

W

)2
]
, (6)

where the origin of the x axis for each electron was defined
at the corresponding center of its position wave function. If
the electrons’ separation is much larger than the width of their
wave functions and if this width does not change appreciably
during the electrons’ time travel along the interferometer, the
electrons’ interaction results in shifts δ on their momentum
wave functions without altering their Gaussian forms [20],
as we discuss in Appendix A. The exact magnitude of δ will
depend on the electrons’ separation d and on the interaction
time. In this case the wave functions for the x component of
the electrons’ momentum altered by the interaction become

�−
1 (p) ≡ 〈p|�−

1 〉 = �1(p + δ), (7)

�+
2 (p) ≡ 〈p|�+

2 〉 = �2(p − δ), (8)

which correspond to momentum shifts of ∓δ in the wave func-
tions. We note that electron e1 gains a negative momentum
while electron e2 gains a positive momentum of the same
amplitude.

It is possible to analyze the quantum states associated with
each of the electrons separately by taking the partial traces
over the post-selected state of Eq. (5). In this way, the state ρ1

associated with electron e1 is

ρ1 = Tr(2)(|�ps〉〈�ps|)
= |�1〉〈�1| + Ie−iα cos(φ)|�1〉〈�−

1 |
+Ieiα cos(φ)|�−

1 〉〈�1| + cos2(φ)|�−
1 〉〈�−

1 |, (9)

apart from a normalization factor, with

I =
∫

�2(p)�2(p − δ)d p = exp

(
− δ2

4W 2

)
. (10)

In the same manner, the state ρ2 associated with the electron
e2 is

ρ2 = |�2〉〈�2| + Ie−iα cos(φ)|�2〉〈�+
2 |

+ Ieiα cos(φ)|�+
2 〉〈�2| + cos2(φ)|�+

2 〉〈�+
2 |, (11)

apart from a normalization factor.
Both states ρ1, from Eq. (9), and ρ2, from Eq. (11),

which were derived from the entangled pure state of Eq. (5),
represent mixed states for the electrons e1 and e2 individu-
ally. We are able to obtain the probability distributions for
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FIG. 2. Distributions for the x component of the electrons’ mo-
mentum wave functions. (a) Initial momentum distribution for each
electron, given by |�i(p)|2 with �i(p) from Eq. (6). (b) Momen-
tum distributions of the situations where the electrons propagate
through the same path of the interferometer, given by |�−

1 (p)|2 and
|�+

2 (p)|2, with �−
1 (p) and �+

2 (p) from Eqs. (7) and (8), for δ =
0.3W . (c) Momentum distributions corresponding to the quantum
superposition of the two situations, given by Eqs. (12) and (13)
with the parameters δ = 0.3W , φ = 3π/4, and eiα = 1. We see that
the quantum superposition of an electrostatic repulsion between the
electrons with no interaction may result in an effective attraction
between them.

the electrons’ momenta as P1(p) = Tr(ρ1|p〉〈p|) and P2(p) =
Tr(ρ2|p〉〈p|), obtaining

P1(p) = �2
1(p) + cos2(φ)�2

1(p + δ)

+2I cos(φ) cos(α)�1(p)�1(p + δ), (12)

P2(p) = �2
2(p) + cos2(φ)�2

2(p − δ)

+2I cos(φ) cos(α)�2(p)�2(p − δ), (13)

apart from normalization factors. Both probability distribu-
tions have the same form except for a sign change in δ.

Figure 2 displays the counterintuitive result that we want
to emphasize in our paper. Figure 2(a) shows the initial distri-
butions of the x component of the electrons’ momenta, given
by the modulus squared of the momentum wave function of
Eq. (6). Figure 2(b) shows the momentum distributions for
the situations where the electrons propagate through the same
path in the interferometer, given by the modulus squared of the
momentum wave functions of Eqs. (7) and (8) with δ = 0.3W .
The momentum distribution for electron e1 is displaced for
negative values and the distribution for electron e2 is displaced
for positive values, evidencing the repulsive character of the
interaction. Figure 2(c) shows the momentum distributions
predicted by Eqs. (12) and (13) with the parameters δ =
0.3W , φ = 3π/4, and eiα = 1. The momentum distribution
for electron e1 is displaced for positive values and the distri-
bution for electron e2 is displaced for negative values, a result
that indicates an effective attractive interaction during their
propagation through the interferometer.

IV. DISCUSSION

The strange behavior of an effective electrostatic attrac-
tion between electrons in the interferometer is the result
of a quantum interference effect. In Fig. 3 we plot the
terms of Eq. (12) that result in the post-selected momentum
distribution for electron e1 with the same parameters δ =
0.3W , φ = 3π/4, and eiα = 1. We note that the term Tb(p) ≡
2I cos(φ) cos(α)�1(p)�1(p + δ) is the one responsible for
the shift to a positive mean value of momentum, since it sub-
tracts more from the term Ta(p) ≡ �2

1(p) + cos2(φ)�2
1(p +

δ) for negative values of p than for positive values of p,
resulting in a positive average momentum for the distribution
P1(p). The term Tb(p) is the one that comes from the crossed
terms, being the result of the interference between the situ-
ation where the electrons repel each other with the situation
with no interaction.

The expectation value of the momentum of electron 1
leaving the interferometer at the post-selection condition is

〈p1〉ps =
∫ ∞
−∞ d pP1(p)p∫ ∞
−∞ d pP1(p)

= −δ
[

cos2(φ) + cos(φ) exp
( −δ2

4W 2

)]
1 + cos2(φ) + 2 cos(φ) exp

( −δ2

4W 2

) , (14)

with P1(p) given by Eq. (12) with eiα = 1. It is straightforward
to show that 〈p2〉ps = −〈p1〉ps. The anomalous behavior of an
effective attraction between the electrons depicted in Fig. 2
happens for many values of the interferometer parameters.
In Fig. 4 we plot the value of 〈p1〉ps/W as a function of
the parameters δ/W and φ for eiα = 1. We note that anoma-
lous positive values for 〈p1〉ps/W occur in a large range of
parameters.

It is important to mention that, independently of the pa-
rameters used in the interferometer, the average interaction
between the electrons is always repulsive when we consider
all possible events, without post-selection. This means that if
the post-selection of electron e1 exiting by D1 and electron e2

exiting by C2 results in an effective attraction between them,
as in the situation depicted in Fig. 2, the average interaction
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FIG. 3. Terms of Eq. (12). Ta(p) ≡ �2
1(p) + cos2(φ)�2

1(p + δ)
(dashed red line), Tb(p) ≡ 2I cos(φ) cos(α)�1(p)�1(p + δ) (dot-
dashed green line) and P1(p) = Ta(p) + Tb(p) (continuous blue line)
with the parameters δ = 0.3W , φ = 3π/4, and eiα = 1.

in the other situations (electron e1 by D1 and electron e2 by
D2, electron e1 by C1 and electron e2 by C2, electron e1 by
C1 and electron e2 by D2) is necessarily repulsive, such that
the average total interaction is repulsive. We demonstrate this
behavior in Appendix B, showing the agreement with the
Ehrenfest theorem in this situation, which is a way to say
that the average momentum is conserved when one does not
post-select the results.

The setup we discuss in this paper is intimately con-
nected to weak measurements [21,22]. There is a pre- and
post-selection of the quantum state of the electrons with the
selection of the entrance and exit interferometer ports. The
center of the momentum wave function of each electron can
be considered a pointer used to measure an observable that
indicates if the electrons propagate in the same arm of the in-
terferometer or not. In the weak measurements formalism, the
pointer displacement is proportional to the “weak value” of
the observable, which depends on the pre- and post-selection
states. In this situation, it is possible to obtain anomalous
weak values for the observable [21,22], and the effective
electrostatic attraction between the electrons that we study
here would be a manifestation of this anomaly.

Now we discuss an experimental proposal for observing
the effective electrostatic attraction between electrons due

FIG. 4. Expectation value of the average momentum of elec-
tron e1 normalized by the width of the distribution, 〈p1〉ps/W , as
a function of δ/W and φ. Anomalous positive values, associated
with an effective electrostatic attraction between the electrons, are
evident.

to quantum interference. Electronic Mach-Zehnder interfer-
ometers in free space can be implemented using diffraction
gratings acting as mirrors and beam splitters [23,24]. Highly
coherent ultrashort electron beams can be generated by laser-
triggered emissions from metal tips [25–27], and it is pos-
sible to have the emission of at most one electron per laser
pulse [28]. The optimal coherence properties of such electron
beams, as well as their precise time emission with the inci-
dence of a femtosecond laser pulse in the metal tips, could be
used to implement the incidence of two electrons at the same
time in a Mach-Zehnder interferometer, coming from two tips
illuminated by the same laser beam. Consider that the pro-
duced electron beams have a transverse width �x0 ≈ 10 μm
at the entrance of the interferometer, corresponding to a
transverse momentum spread 2W ≈ h̄/�x0 ≈ 10−29 kg m/s,
and a kinetic energy around 10 eV, corresponding to a lon-
gitudinal velocity v ≈ 2 × 106 m/s. If the parallel electron
beams are separated by a distance d ≈ 2 mm and propagate
through an interferometer with length L ≈ 4 cm, the total
momentum exchange between the electrons is δ = Ft , where
F = q2/(4πε0d2) is the electrostatic force and t = L/v is
the interaction duration. The value for δ for the considered
parameters is around 20% of W , ideal for an observation of the
effect. For electron emissions that last 100 fs, the initial lon-
gitudinal width of the electron wave functions is around 200
nm for v ≈ 2 × 106 m/s, and increases to around ≈10 μm
with the propagation through the interferometer, as shown in
Appendix A, being always much smaller than the considered
separation d between the electrons. So the components of
the forces that act on the electrons on their propagation
direction are negligible compared to the transverse forces,
which justifies our one-dimensional analysis of the dynamics.
More details are presented in Appendix A. A thin metallic
foil can be placed between the interferometer arms to avoid
the interaction between the electrons when they propagate
through opposite paths. Though an optimal technical imple-
mentation may be challenging, these considered parameters
are within the scope of what could be experimentally achieved
with existing techniques [23–27].

To conclude, we have shown that the quantum superpo-
sition of the electrostatic repulsion between two electrons
(when they propagate in the same arm of an interferometer)
with an absence of interaction (when they propagate in op-
posite arms) may result in an effective electrostatic attraction
between them, given the appropriate post-selection. So, in
this scenario, the common sense that two charges of equal
sign always repel each other is violated due to a quantum
interference effect. As we have discussed, an experimental
observation of such effect is, in principle, feasible.
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APPENDIX A: ELECTRON PROPAGATION THROUGH
THE INTERFEROMETER ARMS

Here we discuss the change of the electrons’ wave func-
tions with the propagation through the interferometer arms.
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In particular, we justify the modification of the x component
of the electrons’ momentum wave functions from Eq. (6)
to Eqs. (7) and (8) when they propagate in the same arm.
The parameters used here are experimentally achievable, as
discussed in the end of the main text of the paper.

Let us first consider a free propagation, as when the
electrons propagate in opposite arms. Consider that the elec-
trons have a longitudinal velocity v ≈ 2 × 106 m/s and
the interferometer length is L ≈ 4 cm, such that the elec-
trons’ propagation time is t ≈ 2 × 10−8 s. The width of
a Gaussian beam as a function of time can be written
as �x(t ) = �x0

√
1 + h̄2t2/(4m2�x4

0 ) [29]. If the transverse
beam waists are �x0 ≈ 10 μm at the entrance of the interfer-
ometer, the change of the beam widths with propagation for
these parameters is of the order of 0.01% and thus negligible.
If the initial beam longitudinal widths are around 200 nm,
the longitudinal spread is considerable, and after a 4 cm
propagation the longitudinal widths would be around 6 μm
with the considered parameters, comparable to the considered
transverse widths.

Consider that the separation between the electrons in the
interferometer is d ≈ 2 mm, 200 times greater than the di-
mensions of the electrons’ wave functions considered in the
previous paragraph. In this case, the electrostatic potential
energy when they propagate in the same interferometer arm
can be written as

q2

4πε0

√
(d + x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

≈ q2

4πε0d
+ q2x1

4πε0d2
− q2x2

4πε0d2
, (A1)

where (x1, y1, z1) and (x2, y2, z2) represent the electrons’ posi-
tions in reference frames centered on each beam axis, q is the
electron charge, and terms with x1x2/d3, y1y2/d3, etc. were
discarded in relation to terms with 1/d , x1/d2, and x2/d2.
The first term on the right side of the above equation is
responsible for the phase α from Eqs. (3) and (4). Its presence
in the quantum Hamiltonian evolving for a time t results in
α = −q2t/(4πε0 h̄d ). By varying the distance d , α may be
adjusted to be an integer multiple of 2π , such that eiα = 1.
For the considered parameters, we have α ≈ 7π . However,
d ≈ 2.3 mm gives α ≈ 6π .

The system Hamiltonian can be divided in a Hamiltonian
for the y and z components of the electrons’ momenta, which
generates free propagation and reflections by the interferome-
ter mirrors, and Hamiltonians for the x momentum component
of each electron, that includes the electrostatic interaction
given by the second or third term on the right side of Eq. (A1).
For a Gaussian beam with width �x0 ≈ 10 μm in the x
direction, the maximum momentum component with non-
negligible amplitude probability is around 2W ≈ h̄/�x0 ≈
10−29 kg m/s, contributing to the kinetic energy with a value
(2W )2/(2m) ≈ 6 × 10−29 J, where m is the electron mass.
The contribution of the potential energy for the Hamiltonian
of each electron is of the order of q2�x0/(4πε0d2) ≈ 6 ×
10−28 J, one order of magnitude greater than the kinetic energy
term.

Disregarding the kinetic energy term in relation to the
electrostatic interaction term in the Hamiltonians H1 and H2

that govern the x component of each electron momentum
evolution when they propagate in the same arm of the in-
terferometer, the evolution operator for each electron can be
written as

Ui(t ) = exp

[−iHit

h̄

]
≈ exp

[
∓ iδxi

h̄

]
, (A2)

with δ = q2t/(4πε0d2) and the minus sign referring to elec-
tron e1 and the plus sign to electron e2. The above evolution
operators are momentum displacement operators, that dis-
place the eigenvalue of a momentum eigenvector by amounts
±δ. So the application of the above evolution operators in
states described by the momentum wave function of Eq. (6)
results in states with momentum wave functions given by
Eqs. (7) and (8). For the considered parameters, we have
δ ≈ 10−30 kg m/s ≈ W/5, which is a reasonable value for
observing the quantum effects we discuss in this work.

The electrostatic repulsion between the electrons generates
a beam tilt on the phase fronts perpendicular to the prop-
agation direction for each electron wave function, and one
may wonder if the interference of this probability amplitude
with the probability amplitude with no interaction and no
beam tilt could result in an extra effect of interference fringes,
unconsidered in this work. But note that if we interfere a
beam with zero average x component of momentum with a
beam displaced in momentum by δ ≈ 10−30 kg m/s in the
x direction, this results in interference fringes with spacing
around h/δ ≈ 6 × 10−4 m at the interferometer exit. Since the
considered beam diameter is around 10−5 m, a much smaller
value, there will be no interference fringes in this condition.

APPENDIX B: AGREEMENT WITH THE
EHRENFEST THEOREM

As we have mentioned, although we are able to observe
the anomalous effect of attraction between two electrons in
the system when the appropriate post-selection of exit ports
is made, it is necessary that the average interaction between
the electrons be repulsive overall. This expectation is derived
from the Ehrenfest theorem, which states that the behavior
of the averages of quantum observables should agree with
those expected classically. Here we show how the Ehrenfest
theorem applies to our interferometer.

First we note that there are in total 4 possibilities of paths
for the two particles inside the apparatus, and 4 possible ways
that they can leave the system at the end of the experiment,
making up for a total of 16 evolution possibilities for the
system. This means that a priori we have a 16 term super-
position for our complete two-electron state after they leave
the apparatus. The four-term superposition for the joint state
just before the action of BS2 can be written as

irte2iφeiα|�−
1 , A1〉|�+

2 , A2〉 + irteiα|�−
1 , B1〉|�+

2 , B2〉
+ t2eiφ|�1, A1〉|�2, B2〉 − r2eiφ|�1, B1〉|�2, A2〉, (B1)

where we have taken into account the existence or not of an
interaction between the electrons and the appropriate phase
gains due to the evolution of the system as done in our
previous discussion.
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The effect of BS2 over the different terms of this state can be written as

|A1〉|A2〉 ⇒ t2|C1〉|C2〉 − r2|D1〉|D2〉 + irt (|C1〉|D2〉 + |D1〉|C2〉),

|B1〉|B2〉 ⇒ −r2|C1〉|C2〉 + t2|D1〉|D2〉 + irt (|C1〉|D2〉 + |D1〉|C2〉),

|A1〉|B2〉 ⇒ irt (|C1〉|C2〉 + |D1〉|D2〉) + t2|C1〉|D2〉 − r2|D1〉|C2〉,
|B1〉|A2〉 ⇒ irt (|C1〉|C2〉 + |D1〉|D2〉) − r2|C1〉|D2〉 + t2|D1〉|C2〉. (B2)

By plugging Eqs. (B2) into Eq. (B1), we reach the final joint state superposition for the electrons leaving the system:

irt[eiα (t2eiφ − r2e−iφ )|�−
1 〉|�+

2 〉 + (t2 − r2)|�1〉|�2〉]|C1〉|C2〉
+ irt[eiα (t2e−iφ − r2eiφ )|�−

1 〉|�+
2 〉 + (t2 − r2)|�1〉|�2〉]|D1〉|D2〉

+ [−r2t2eiα (eiφ + e−iφ )|�−
1 〉|�+

2 〉 + (t4 + r4)|�1〉|�2〉]|C1〉|D2〉
− r2t2[eiα (eiφ + e−iφ )|�−

1 〉|�+
2 〉 + 2|�1〉|�2〉]|D1〉|C2〉. (B3)

The post-selection of exit ports made previously in our dis-
cussion meant projecting this state superposition in the vector
state |D1〉|C2〉, and by doing this we get the wave function of
Eq. (5) used to derive our results, as we should.

To show that the average interaction is always repulsive
when no post-selection is made, we can focus on what
happens to electron e1. We have created a situation where
electron e1 has counterintuitively gained positive momentum
due to its interaction with electron e2 by post-selecting the
exit ports, therefore mimicking an attractive interaction. We
can nevertheless show that, on average, the momentum gained
by this electron when we consider the complete joint state of
Eq. (B3) is always either null or negative. This means that
the expectation value of the electron e1 momentum without
post-selection must be always null or negative, namely

〈p1〉 = 〈p1〉CCPCC + 〈p1〉DDPDD + 〈p1〉CDPCD

+〈p1〉DCPDC, (B4)

where Pjk is the probability of detecting electron e1 at exit j
and e2 at k, and 〈p1〉 jk is the respective average momentum

for this detection. This quantity can be derived by repeating
the process done in Eqs. (9), (12), and (14) for each of the
four exit port possibilities, |C1〉|C2〉, |D1〉|D2〉, |C1〉|D2〉, and
|D1〉|C2〉. Some straightforward algebra shows us that the total
average momentum gained by electron e1 is

〈p1〉 = (t4 + r4)〈�1|p1|�1〉 + 2t2r2〈�−
1 |p1|�−

1 〉
= −2t2r2δ. (B5)

This perfectly agrees with our classical intuition, as the first
term incorporates the probability that the electrons are either
both transmitted or both reflected by BS1 (they do not inter-
act), and the second term considers the probability that one of
the electrons is transmitted and the other is reflected at BS1

(they do interact). So the final average momentum is simply
the momentum gained when they do interact, 〈�−

1 |p1|�−
1 〉 =

−δ, which comes from a repulsive interaction, times the prob-
ability of interacting, 2t2r2. Therefore the average interaction
is repulsive, in agreement with momentum conservation and
the Ehrenfest theorem.
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