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Relativistic many-body theory of the electric dipole moment of 129Xe and its implications
for probing new physics beyond the standard model
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We report the results of our theoretical studies of the time-reversal and parity violating electric dipole moment
(EDM) of 129Xe arising from the nuclear Schiff moment (NSM) and the electron-nucleus tensor-pseudotensor
(T-PT) interaction based on the self-consistent and the normal relativistic coupled-cluster methods. The important
many-body effects are highlighted and their contributions are explicitly presented. The uncertainties in the
calculations of the correlation and relativistic effects are determined by estimating the contributions of the triples
excitations and the Breit interaction, respectively, which together amount to about 0.7% for the NSM and 0.2%
for the T-PT interactions. The results of our present work in combination with improved experimental limits for
129Xe EDM in the future would tighten the constraints on the hadronic CP violating quantities, and this could
provide important insights into new physics beyond the standard model of elementary particles.
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The observation of the electric dipole moment (EDM) of
a nondegenerate system would be a signature of violations
of both time-reversal (T ) and parity (P) symmetries [1,2].
The CPT theorem implies that T violation amounts to CP
violation [3]. The standard model (SM) of particle physics
contains CP violation in the form of a complex phase in the
Kobayashi-Maskawa matrix, which, however, cannot explain
the large matter-antimatter asymmetry observed in the Uni-
verse [4]. This suggests [5,6] that although the SM predicts
very small values for atomic EDMs, their actual sizes could
lie close to the current experimental limits [7].

The EDMs of diamagnetic atoms have the potential to
probe new physics at energy scales much higher than TeV
[8]. They are primarily sensitive to the nuclear Schiff moment
(NSM) and the tensor-pseudotensor (T-PT) electron-nucleus
interaction [8]. The former arises due to CP violating nucleon-
nucleon interactions and the EDMs of nucleons, which at
the level of elementary particles arise from CP violating
quark-quark interactions and the EDMs and chromo-EDMs
of quarks [8]. On the other hand, the latter is due to the
T-PT electron-nucleon interaction originating from the T-PT
electron-quark interaction, which has been predicted by lep-
toquark models [9].

There have been important developments in the search
for EDMs of elementary particles and composite systems in
recent years. The most stringent EDM limit to date, dHg <

7.4×10−30e cm [95% confidence level (C.L.)], comes from
the diamagnetic atom, 199Hg [10]. This unprecedented pre-
cision has been achieved due to the steady improvements
in the spin precession measurement for this atom over the
past three decades. The first result for another diamagnetic
atom, 225Ra, for which the nuclear octupole deformation is
expected to amplify its atomic EDM by about two to three
orders of magnitude [11], was reported 3 years ago [12]
to be dRa < 1.4×10−23e cm (95% C.L.). As for the 129Xe

diamagnetic atom, three experiments on its EDM are cur-
rently under way [13–15]. Among the above three diamag-
netic species, 225Ra is radioactive with a half-life of 14.9 d,
while 199Hg and 129Xe are stable. Of the two stable atoms
199Hg and 129Xe, the latter is characterized by its excep-
tionally long transverse–spin relaxation times in a gas of
atmospheric pressure [16]. The result for the first 129Xe EDM
measurement was published in 1984 [17]. In fact, two groups
have reported improved measurements of EDM in 129Xe
recently [18,19]. One of these measurements gives its value as
(0.26 ± 2.33stat ± 0.72sys)×10−27e cm (95% C.L.) [18], while
the other measurement reports as (−4.7 ± 6.4)×10−28e cm
(95% C.L.) [19] improving by factors of one-and-a-half
and five times, respectively, than the previous measurement
(0.7 ± 3.3stat ± 0.1sys)×10−27e cm (95% C.L.) [20]. It is still
possible to improve its limit by carrying out measurement
with a macroscopic number of confined atoms in a glass cell,
enabling long spin coherence times and large spin precession
signals. The theoretical foundations of the Xe EDM were laid
in a series of seminal papers by Flambaum and co-workers
[21–24]. There have been recent advances in the relativistic
many-body calculations of the EDM of this atom [8,25]. The
results of these calculations are necessary for extracting CP
violating coupling constants from the measured values of
the Xe EDM [8,25]. The relativistic coupled-cluster (RCC)
theory, which is widely considered as the gold standard for
the electronic structure of heavy atoms [26], was first applied
to the 129Xe EDM by Singh et al. by taking one particle–one
hole (1p1h), two particle–two hole (2p2h), and partial three
particle–three hole (3p3h) excitations [27]. In the present
work, we overcome some of the limitations of the previous
calculation by using two different variants of the RCC theory.
Higher order excitations built from different powers of the
1p1h and 2p2h excitations are included in the first approach in
a self-consistent manner in the evaluation of the EDM, which

2469-9926/2019/100(2)/020502(6) 020502-1 ©2019 American Physical Society

https://orcid.org/0000-0001-9292-3408
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.020502&domain=pdf&date_stamp=2019-08-28
https://doi.org/10.1103/PhysRevA.100.020502


SAKURAI, SAHOO, ASAHI, AND DAS PHYSICAL REVIEW A 100, 020502(R) (2019)

forms a nonterminating series. The second approach, which
is known as the relativistic normal coupled cluster (RNCC)
theory, does not treat the bra and ket on the same footing and
this enables the expectation value representing the EDM to
terminate naturally [28]. We had recently performed ground
state electric dipole polarizability calculations of 129Xe using
these two methods and obtained results that are in very good
agreement with its measured value [29]. Given the similarities
between the electric dipole polarizability and the EDM from
the viewpoint of relativistic many-body theory, it is indeed
appropriate to apply the two above-mentioned RCC methods
to the 129Xe EDM arising from the NSM and the T-PT
electron-nucleus interaction.

The T-PT Hamiltonian is given by [30–32]

HT-PT
int = i

√
2GFCT

∑
i

(σN · γi )ρN(r), (1)

where GF is the Fermi constant, CT represents the T-PT cou-
pling constant, γi’s are the Dirac matrices, σN = (σx, σy, σz )
where σx, σy, and σz are the Pauli spin operators for the
nucleus with spin I = 1/2, and ρN(r) is the nuclear charge
density.

The NSM interaction Hamiltonian in the atom is given by
[31,32]

HNSM
int = 3S · r

B
, (2)

where S = S I
I is the NSM, and B = ∫ ∞

0 dr r4ρN(r).
In this study, we only consider the first-order perturbation

in the P and T violating interaction. Therefore, the total
atomic Hamiltonian is expressed as

H = HDC + λHPTviol. (3)

where HDC is the Dirac-Coulomb (DC) Hamiltonian that is
given by

HDC =
Ne∑
i

[cα · p + mc2β + VN(ri )] + 1

2

∑
i, j

1

ri j
, (4)

and λHPTviol. corresponds to either of the P and T violating
Hamiltonians given by Eqs. (1) and (2). Here we assume that
the perturbation parameter λ is either S or GFCT〈σN〉. The
atomic wave function |�0〉 is written as

|�0〉 � ∣∣� (0)
0

〉 + λ
∣∣� (1)

0

〉
λ
, (5)

where the superscripts (0) and (1) represent the unperturbed
and the first-order perturbed wave functions due to HPTviol. ,
respectively.

The expectation value of the EDM in the ground state |�0〉
in an atom in our calculation is given by

da = 〈�0|D|�0〉
〈�0|�0〉 , (6)

where D is the electric dipole moment operator. From Eqs. (5)
and (6), we can equivalently express

da = 2λ

〈
�

(0)
0

∣∣HPTviol.

∣∣� (1)
0

〉
g〈

�
(0)
0

∣∣� (0)
0

〉 , (7)

where |� (0)
I 〉g is the first-order perturbed wave function due to

the electric dipole, and it is written by

∣∣� (1)
0

〉
g = g

∑
I

∣∣� (0)
I

〉 〈� (0)
I

∣∣Dg

∣∣� (0)
0

〉
E (0)

0 − E (0)
I

(8)

with Dg = D/g for an arbitrary parameter g. In our calcula-
tion, we have used Eq. (7) for the calculation of an atomic
EDM. We present our T-PT and NSM results in terms of
η = da

〈σN〉CT×1020|e|cm and ζ = da

S×1017|e|cm/(|e|fm3 )
, respectively.

The ground state wave function of a closed-shell atom in
the RCC theory is expressed as [33]

|�〉 = eT |	0〉, (9)

where |	0〉 is the Dirac-Fock (DF) wave function, the cluster
operator T can be written as

T =
N∑

I=1

TI =
N∑

I=1

tIC
+
I , (10)

where I is the index for the particle-hole excitation from the
DF, closed-shell state, N is the maximum value for I , tI is
the excitation amplitude, and C+

I is a general I particle-hole
excitation operator consisting of a string of creation and an-
nihilation operators. In the singles and doubles approximation
in the RCC theory (RCCSD method), the maximum value of
I is restricted to 2; i.e., T = T1 + T2, where T1 and T2 are
one particle–one hole and two particle–two hole excitation
operators. We can express T as

T = T (0) + gT (1), (11)

where T (1) is the first-order excitation RCC operator due to
Dg. Therefore, the total wave function is given by

|�0〉 = eT (0)+gT (1) |	0〉. (12)

The amplitudes for T (0) can be obtained by solving the
equation [34]

〈	0|C−
I HDC|	0〉 = 0, (13)

where C−
I referred to as the deexcitation operators, are the

adjoint of C+
I . From here onward, we use the notation O =

e−T OeT = (OeT )c for a general operator O and the subscript
“c” stands for the connected terms [34]. Similarly, amplitudes
of T (1) are obtained by

〈	0|C−
I (HDCT (1) − Dg)|	0〉 = 0. (14)

Using Eqs. (7), (9), and (12), the expression for EDM in
the RCCSD method can be written as [28]

da

λ
= 2〈	0|eT (0) †

HPTviol. e
T (0)

T (1)|	0〉c

= 2〈	0|
[
HPTV + (

HPTviol. T
(0) + c.c.

)

+ (
T (0)†

HPTviol. T
(0) + c.c.

)

+ (
1
2 T (0)†

HPTviol. T
(0)2 + c.c.

) + · · · ]T (1)|	0〉c. (15)

In the relativistic coupled-cluster self-consistent [RCC(SC)]
approach, the combined power of T (0) and its adjoint T (0)†

increases in the successive terms in the above expression, and
they are computed systematically avoiding double counting
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TABLE I. Results for static dipole polarizability [ea3
0], η, and ζ for 129Xe using different theoretical methods. 
CPDF

Breit and 
(T3) are the
corrections due to the Breit interaction at the CPDF method and the partial triple excitations, respectively.

This work Others

Method αd η ζ αd η ζ

DF 26.87 0.45 0.29 26.87 0.45 0.26 [37]

26.92 0.45 0.29 [27]

CPDF 26.97 0.57 0.38 26.98 0.56 0.37 [37]

27.7 0.56 0.38 [27]


CPDF
Breit −0.001 −0.002

RCCSD 27.74 0.50 0.34 [27]

RCCSD(SC) 28.12 0.48 0.32 28.13 0.47 0.33 [37]


(T3) −0.107 ∼0 ∼0

RNCCSD 27.51 0.49 0.32

Experiment 27.815(27) [36]

until convergence is obtained. In the singles and double ap-
proximation, RCC(SC) will be referred to as RCCSD(SC).

In order to avoid the nontermination problem in the above
expression of the RCC method, we use the RNCC method for
the evaluation of the 129Xe EDM. In this method the RCC bra
state 〈�| = 〈	0|eT †

is replaced by

〈�̃| = 〈�|(1 + T̃ )e−T , (16)

where T̃ = ∑N
I=1 T̃I = ∑N

I=1 t̃IC
−
I is a deexcitation operator

with amplitude t̃I , similar to T † = ∑N
I=1 T †

I = ∑N
I=1 t∗

I C−
I .

The RNCC bra state should satisfy

〈�̃|H = 〈�̃|E0. (17)

Furthermore,

〈�̃|�〉 = 〈	0|(1 + T̃ )e−T eT |	0〉 = 1, (18)

since the DF state |	0〉 is normalized. Making use of this
property, the expectation value of an operator O in the RNCC
method can be expressed as

〈O〉 = 〈�̃|O|�〉
〈�̃|�〉 = 〈	0(1 + T̃ )O|	0〉c. (19)

The above expression terminates unlike its counterpart in the
RCC.

In the RNCC method, T̃ is written as

T̃ = T̃ (0) + gT̃ (1), (20)

where T̃ (0) is the unperturbed deexcitation operator, and T̃ (1)

is the first-order correction to it due to Dg. Then, the total bra
state can be written as

〈�̃0| = 〈	0|(1 + T̃ (0) + gT̃ (1) )e−T (0)−gT (1)
. (21)

From Eq. (17), the amplitudes for T̃ (0) are obtained from

〈	0|(1 + T̃ (0) )[HDC,C+
I ]|	0〉 = 0. (22)

Similarly, the amplitudes for T̃ (1) are obtained from

〈	0|[T̃ (1)HDC+(1+T̃ (0) ){Dg+(HDCT (1) )c}]C+
I |	0〉=0.

(23)

Adapting Eq. (6) to the case where Dg is a perturbation in
the framework of RNCC, we get

da

λ
≡ 1

g

〈�̃0|H|�0〉
〈�̃0|�0〉

= 〈	0|T̃ (1)HPTviol. + (1 + T̃ (0) )HPTviol. T
(1)|	0〉c. (24)

This expression terminates unlike Eq. (15) which corresponds
to the RCC case. The RNCC method has the merit of satisfy-
ing the Hellmann-Feynman theorem [34] in contrast to that of
the RCC method.

In the present study, we have used Gaussian type of orbitals
(GTOs) to obtain the DF wave function. The details of the
optimized parameters that are needed to define the GTOs
are discussed in our previous work on the electric dipole
polarizability (αd ) study on the 129Xe atom [29]. Using these
basis functions, we present our results for η and ζ at different
levels of approximations of many-body methods in Table I.
One of the methods that has been employed earlier [32,35]
is the coupled-perturbed Dirac-Fock (CPDF) approximation,
which takes into account the perturbation of the core to first
order in the T and P violating interaction and all orders by the
residual Coulomb interaction. We had also performed these
calculations earlier using the RCCSD method, but considering
only some lower order nonlinear terms in Eq. (15) in contrast
to the self-consistent procedure in the present work. The DF
contribution as expected is the largest. The CPDF contribu-
tions are over 20% of the DF results in both cases. Our DF and
CPDF calculations are in good agreement with the previous
calculations [32,35]. The correlation effects beyond CPDF,
primarily those involving various classes of pair correlation,
collectively reduce the values of η and ζ as reflected in the
final results for the two versions of the RCC theory used in
the present work. We have also given the αd value obtained
using our methods in the same table and compared with
other available results. As can be seen, our RCCSD(SC) and
singles and doubles approximation RNCC theory (RNCCSD
method) calculations for αd are close to its measured value
[36]. Furthermore, our RCCSD(SC) results for this quantity
as well as η and ζ are in good agreement with those of
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TABLE II. Contributions for T-PT and NSM for 129Xe from
different terms in RCCSD(SC).

Leading RCC terms η ζ

HPTviol. T
(1)

1 + H.c. 0.5387 0.3524

T (0)
1

†
HPTviol. T

(1)
1 + H.c. 0.0023 0.0011

T (0)
1

†
HPTviol. T

(1)
2 + H.c. −0.0003 0.000036

T (0)
2

†
HPTviol. T

(1)
1 + H.c. −0.0610 −0.0354

T (0)
2

†
HPTviol. T

(1)
2 + H.c. 0.0016 0.000789

other calculations of αd and the two quantities related to the
EDM, but with different GTO basis functions [27,37]. The
values of the latter two quantities cannot be determined from
experiments, but since the two P and T violating interactions
related to them have the same rank and parity as the electric
dipole operator, we expect our calculated values of η and ζ to
be accurate.

The leading contributions from the terms in Eq. (15)
are listed in Table II. The most important of these is
〈	0|HPTviol. T

(1)
1 |	0〉, which we refer to as the HPTviol. T

(1)
1

term. It consists of the DF and certain classes of correlation
effects to all orders in the residual Coulomb interaction such
as those represented by the CPDF approximation [29]. In
particular it subsumes an important correlation effect involv-
ing the simultaneous excitation of two core electrons [29].
Its magnitude is equal to that of its Hermitian conjugate
(H.c.). The results of our RNCCSD calculations for η and
ζ are given in Table I. The breakdown of the contributions
from the individual terms are given in Table III. The leading
contributors are 〈	0|HPTviol. T

(1)
1 |	0〉 and 〈	0|T̃ (1)

1 HPTviol. |	0〉.
The latter is the counterpart of the Hermitian conjugate
(H.c.) of the former term. The two largest contributions
in the case of RCCSD(SC), i.e., 〈	0|HPTviol. T

(1)
1 |	0〉 and

〈	0|T (0)
2

†
HPTviol. T

(1)
1 |	0〉, and their counterparts for RNCCSD

are not very different. The final results for the two methods
given in Table I differ by only 2.0% (T-PT) and are in
complete agreement for the NSM case.

We have evaluated the numerical error in our RCC calcula-
tions by estimating the contributions from the leading electron
correlation and relativistic effects that have been omitted in
our calculations. The former is characterized by the 3p3h
(triples) excitations and the latter by the Breit interaction,
which is the leading relativistic correction to the electron-
electron Coulomb interaction [38]. The error due to the first
source has been estimated by calculating the perturbed triple
excitation amplitudes [29] and the absolute values of this

TABLE III. Contributions for T-PT and NSM for 129Xe from
different terms in RNCCSD.

Leading RNCC terms η ζ

HPTviol. T
(1)

1 0.269 0.176

T̃ (1)
1 HPTviol. 0.256 0.169

T̃ (1)
1 HPTviol. T

(0)
2 −0.029 −0.017

contribution for η and ζ in the present study is 3.9×10−5

and 1.3×10−4, respectively. In this work, the Breit interac-
tion contributions were found to be 0.6% and 0.9% of the
total Dirac Coulomb contributions in the CPDF and RCCSD
approximations, respectively. Our net estimate of the error in
our calculations from these two sources are 1.1×10−3 for the
T-PT interaction and 2.1×10−3 for the NSM.

The latest reported experimental result for the EDM
of 129Xe is |da| < 1.5×10−27|e|cm with 95% C.L. [19].
Combining this result with our present RNCCSD
calculations, da = 0.49×10−20〈σ 〉CTe cm and da = 0.32×
10−17 S/(|e|fm3) |e|cm, and assuming that the EDM is due to
a single source of either the NSM or the T-PT interaction, we
obtain, respectively, the following upper limits:

|S| < 4.7×10−10|e|fm3 (25)

and

|CT| < 6.1×10−7 (26)

for the value 〈σN〉 = 1/2.
It is important to notice here that the status of nuclear

structure calculations for 129Xe is far more satisfactory than
that for 199Hg. The first calculation of the Schiff moment
for 129Xe [39] was carried out by taking into full account
core-polarization effects in the single neutron outside a core
approximation of an even-even nucleus. More recently, a
substantially improved large-scale calculation based on the
pair-truncated shell model approach [6] has been reported.
Results of this calculation are of the same sign and of the
same order of magnitude as the previous calculation, unlike
the case of 199Hg [8,11]. Thus, both the atomic and the
nuclear calculations are now more reliable for 129Xe than
those for 199Hg. Turning to the cases of nuclei exhibiting
octupole deformation and vibration collectivities, theoretical
calculation of the Schiff moment for 129Xe could be even more
reliable. The isotopes of such kind, however, are all found
(at least until present) to be unstable, radioactive ones, for
which experimental precision is largely limited and therefore,
reaching the sensitivities to CP violating coefficients of levels
achieved by 199Hg and 129Xe requires a long journey of
technical developments. Thus, the EDM of the 129Xe atom
would be among the leading probes of CP violating funda-
mental parameters for the diamagnetic atoms that are under
experimental consideration.

It is obvious from the above discussions that the EDM
of 129Xe depends on two coupling constants ḡ(0), ḡ(1) (note
that the ḡ(2) term is expected to be negligible) and one T-PT
electron-nucleus coupling constant, |CT| [40]. The predictions
for the relative strengths of these three coupling constants
vary for different models proposed for new physics. Limits for
these three coupling constants have been obtained by consid-
ering the EDM results for three different systems, one of them
being 129Xe [40,41]. Clearly when the sensitivity of the129Xe
EDM experiment improves, the former two limits in tandem
with quantum chromodynamics [42–44] will give improved
limits for |d̄u − d̄d |, |d̄u + d̄d |, and |θ̄ |, where d̄u and d̄d are
the up- and down-quark chromo-EDMs and θ̄ is a parameter
associated with CP violation in quantum chromodynamics.
These new limits are likely to provide useful information on
the character of new physics beyond the standard model [8]. In
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addition, as mentioned earlier, three experiments on the 129Xe
EDM are in progress, and improved limits for this quantity are
expected in the near future [13–15]. These experiments aim to
improve the current limit, which is of the order of 10−27|e|cm,
by as much as three orders of magnitude [15]. If that comes
to fruition, then the sensitivity of the 129Xe EDM experiment
could match or even surpass that of the Hg experiment, for
which the upper limit (7.4×10−30|e|cm [10]) is currently the
best that has been obtained for any elementary particle or
composite systems. It is necessary to emphasize that the theo-
retical results for 129Xe EDM reported in the present work are
more accurate and reliable than those obtained for 199Hg EDM
[45]. The contributions of the higher-order many-body effects
are not as large for the former as they are for the latter. This
is evident from the distinctly smaller differences between the
EDM results of the lowest-order and self-consistent RCCSD
levels for 129Xe (see Table I) compared to those of 199Hg
[45]. Furthermore, the latter result is in excellent agreement
with that of the RNCCSD method. Therefore based on both
experimental and theoretical considerations, it appears that the
129Xe EDM has the potential to be a more promising candidate
for probing new physics beyond the standard model than the
199Hg EDM.

The self-consistent and the normal versions of the rela-
tivistic coupled cluster singles and doubles method have been
employed to calculate the ratios of the atomic EDM of 129Xe
to the T-PT interaction coupling constant η and the Schiff
moment ζ . The results from the two methods disagree only by
2% for the former and are in perfect agreement for the latter.
A comparison of these results with that of the lowest-order
relativistic coupled-cluster singles and doubles method show
that the higher-order many-body effects converge rapidly,
unlike in the case of the 199Hg EDM. For the 129Xe EDM, the
estimated errors are 0.2% for the T-PT interaction and 0.7%
for the NSM. The high accuracy that has been achieved in
the present calculations of η and ζ for 129Xe suggests that the
results of these quantities in combination with the improved
results of the future EDM experiments on 129Xe could serve
as a reliable probe for new physics beyond the standard model
of elementary particle physics.

Computations reported in this work have been performed
using the Tokyo Institute of Technology cluster Chiyo and
super computer TUBAME 3.0. B.K.S. would like to acknowl-
edge use of Vikram-100 HPC of Physical Research Labora-
tory, Ahmedabad, India for the computations.
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