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Solenoidal optical forces from a plasmonic Archimedean spiral
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The optical forces generated by a right-handed plasmonic Archimedean spiral (PAS) have been mapped and
analyzed. By changing the handedness of the circularly polarized excitation, the structure can switch from a
trapping force profile to a rotating force profile. The Helmholtz-Hodge decomposition method has been used
to separate the solenoidal component and the conservative component of the force and quantify their relative
magnitude. It is shown that the for right-hand circularly polarized excitation, the PAS creates a significant amount
of solenoidal forces. Using the decomposed force components, an intuitive explanation of the motion of micro-
and nanoparticles in the force field is presented. Vector field topology is used to visualize the force components.
The analysis is found to be consistent with numerical and experimental results. Due to the intuitive nature of the
analysis, it can be used in the initial design process of complex laboratory-on-a-chip systems where a rigorous
analysis is computationally expensive.
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I. INTRODUCTION

Since their introduction in the 1970s by Ashkin [1,2],
optical trapping and manipulation techniques have been used
in many fields of science and nanotechnology [3–8]. Con-
ventional single-beam optical tweezers can trap and manip-
ulate particles that are larger than the wavelength of the
light source. However, for subwavelength-sized nanoparticles,
optical tweezers fail to exert sufficient gradient force for
trapping due to the diffraction-limited spot size. To overcome
this limitation, near-field plasmonic traps have been devel-
oped [9–12]. Plasmonic structures utilize surface plasmon
polaritons (SPPs) to create strong localized field-intensity
enhancement in a spot size smaller than the diffraction limit.
The potential wells created by such a structure are much
narrower than that of optical tweezers [9]. In addition, the
planar geometry of plasmonic structures allows multiple traps
to be fabricated on the same chip for implementing laboratory-
on-a-chip (LOC) systems [13–17]. Understanding and mod-
eling the optical forces in the vicinity of a plasmonic trap
are necessary to design such systems. For this reason, works
related to the optical forces of near-field traps have received
significant attention in the literature.

One of the challenges in designing complex optical manip-
ulation platforms is the large computational cost associated
with the modeling step. Numerical simulation of a three-
dimensional (3D) system with more than three or four optical
traps becomes impractical due to the extremely lengthy run
time. Modeling and analysis techniques that provide intuitive
understanding along with numerical data can be very useful.
By understanding the optical forces from a single structure, it
can be possible to predict how forces from multiple such struc-
tures will interact. Thus, a complex system can be designed
without requiring a computationally expensive simulation of
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the whole device. In this work, we focus on understanding
the optical forces near a plasmonic Archimedean spiral (PAS)
and present some mathematical techniques that can be used
for that purpose.

Spiral plasmonic structures have been successfully used as
an on-chip polarimeter [18,19], optical antenna [20], vortex
lens [21], optical trap [22], etc. Plasmonic spirals have also
been used to generate orbital angular momentum (OAM) [23].
The optical responses of the structure are strongly depen-
dent on the polarizations of the incident light [24,25]. It is
possible to create two distinct near-field distributions from
the same plasmonic spiral by switching from left-hand cir-
cularly polarized (LHCP) excitation to right-hand circularly
polarized (RHCP) excitation. As the optical forces depend on
the gradient of the near-field intensity distribution, the optical
force field generated by the spiral can be altered by changing
the polarization of the input light. Tsai et al. reported an
excellent study where they demonstrated selective trapping or
rotation of dielectric microparticles using a PAS with LHCP
and RHCP excitations [22]. Usually, complex manipulation
of micro- and nanoparticles requires multiple closely placed
plasmonic structures [13–15,26]. This approach requires a
distinct configuration of plasmonic structures for a specific
motion. Having the ability to selectively apply different op-
tical forces to induce a variety of motions using a single
structure could be very useful. Such an approach would
reduce the number of plasmonic structures required to create
a specific particle motion in a LOC system. Also, the same
structures can be reused for a different set of motion by
controlling the polarization of light. Thus, understanding and
analyzing the polarization-dependent optical forces near a
PAS could be of significant importance in developing complex
LOC systems.

The optical forces near a PAS are less well understood
than forces near other plasmonic structures such as nanopillars
[10,11], C-shaped engravings [13,27], and bow-tie apertures
[28]. Although the polarization response and field distribution
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around plasmonic spirals have been well studied [21,24,25],
the optical forces generated by the structures have not received
the same level of attention. The work of Tsai et al. [22]
is the only published literature on the topic to date. In that
work, the authors calculate one-dimensional (1D) force maps
(along the x and y directions) and show the generation of
trapping force and rotational force for LHCP and RHCP
excitations, respectively. However, they did not report the two-
dimensional (2D) or 3D force profile. Although the motion of
the microparticle was explained from the 1D force profiles, a
2D or 3D force profile can give more insights into the particle
dynamics. In this work, we calculate and analyze the optical
force field generated by a PAS in three dimensions. To analyze
the force lines in detail, the force field is decomposed into
a conservative component and a solenoidal component. The
Helmholtz-Hodge decomposition (HHD) technique [29,30]
is used to accomplish this. We show that the force is al-
most purely conservative for the LHCP excitation, whereas
the force has a strong solenoidal component for the RHCP
excitation (considering a right-handed PAS). By decomposing
the force field, the trapping force and the rotational force can
be easily understood. Vector-field topology [31,32] is used to
visualize the force components. An intuitive understanding of
the particle motion is achieved by observing the critical points
and the associated force lines (integral lines or streamlines) of
the decomposed components. In addition, the insight gained
from the analysis can be used for designing a platform with
multiple plasmonic structures capable of performing complex
manipulation of micro- and nanoparticles.

The HHD method used in this paper has been widely used
to analyze fluid flow [33] and electromagnetic fields [34,35].
It has only been recently used to analyze near-field optical
traps [30]. The HHD method allows a clearer understanding
of the optical force field and the motion of particles under
its influence. For trapping force fields, the steady-state po-
sition probability density of a micro- or nanoparticle can be
calculated from the decomposed components [30,36]. Thus,
computationally demanding Brownian dynamics simulation
can be avoided. The HHD method can be especially useful
for analyzing rotational motion as it can isolate the solenoidal
component of a vector field. Since a PAS can generate both
trapping forces (gradient forces) and rotational forces, the
HHD technique is ideal for analyzing its force field. Along
with mapping the force profile around a PAS, this work
highlights how the HHD method can be used to analyze
such forces. To the best of our knowledge, no such work has
appeared in the literature yet. The analysis presented in this
paper is general and can be applied to other near-field trapping
structures as well.

II. GEOMETRY OF THE STRUCTURE

A 3D schematic of a three-turn right-handed PAS is shown
in Fig. 1. A gold film is deposited on top of a glass substrate,
and the spiral shape is created by etching or milling the film.
A dilute aqueous solution of nano- or microparticles is placed
on top of the structure. Optical excitation is provided from the
bottom through the glass substrate. Note that the handedness
of the spiral is defined from the point of view of the input
excitation light. The locus of the Archimedean spiral in polar

FIG. 1. Schematic of a plasmonic Archimedean spiral.

coordinates is given by

r(φ) = r0 + φdarm/2π . (1)

Here r0 is the initial radius of the spiral, r is the polar radius
variable, φ is the azimuthal angle variable, and darm is the
radial separation between the arms. φ ranges from 0 to 6π

for a three-turn spiral. The structure can produce OAM and
rotational forces if the SPPs generated from different parts of
the spiral interfere in a coherent manner. This occurs when
darm = mλspp, where m is an integer [37]. Here λspp is the
SPP wavelength at the gold-water interface. The current work
focuses on the case darm = λspp [22,38].

Figure 2 shows the detailed geometry of the structure.
The gold film thickness and the air slot width (the width of
the spiral arms) are denoted by tgold and dair, respectively.
The value of dair should be set sufficiently small so that the
radial component of the input illumination can excite and
couple SPPs [38]. We consider the excitation wavelength to
be 1545 nm. The corresponding SPP wavelength at the gold-
water interface is calculated to be 1150 nm. The values of
all the geometrical and material parameters relevant for the
analysis are listed in Table I [22]. It should be noted that the
proper choice of the geometrical dimensions is dependent on
the excitation wavelength and material properties. For a differ-
ent excitation wavelength, the corresponding SPP wavelength
at the metal-liquid interface must be determined. From that,

TABLE I. Geometrical and optical parameters.

Parameter Value

Initial radius of the spiral r0 2.5 μm
Air slot width dair 300 nm
Thickness of the gold film tgold 250 nm
SPP wavelength at the gold-water interface λspp 1150 nm
Excitation wavelength λ 1545 nm
Nanoparticle radius rp 500 nm
Refractive index of water nw 1.33
Refractive index of polystyrene np 1.58
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FIG. 2. Geometry of the plasmonic Archimedean spiral. (a) Top view (xy plane). (b) Cross-sectional view (yz plane).

darm can be calculated. Then the geometry of the structure can
be determined using Eq. (1).

III. OPTICAL-FORCE CALCULATION

It is necessary to calculate the electromagnetic-field distri-
bution near the PAS in order to calculate the generated optical
forces. For a sufficiently narrow air gap, an approximate
analytical equation of the field distribution can be derived
for circularly polarized incident light. The expression has the
following form [19,39,40]:

Espp(r, θ, z) ∝ ẑ e−kzzeikr r0 Jq(krr). (2)

Here Espp is the electric field generated by the SPPs, ẑ is the
unit vector along the z direction, (r, θ, z) is the cylindrical
coordinate of the observation point, kz and kr are the wave
numbers in the z and the radial directions, respectively, q is
an integer referred to as the topological charge, and Jq(·) is
the qth-order Bessel function of the first kind. The topological
charge is given by q = s + m, where s is the spin angular mo-
mentum of the incident light and m is related to the geometry
of the spiral. For the given geometry (dair = λspp), m = 1.
The incident light is considered to be circularly polarized
(propagating along +z), which implies s = +1 for RHCP and
s = −1 for LHCP. So we would expect a field distribution that
resembles J2(krr) for RHCP excitation and J0(krr) for LHCP
excitation. Although the analytical formulation is approximate
and lacks the accuracy for our current analysis, it is helpful in
demonstrating that the spiral can create significantly different
field distributions depending on the polarization of the input
light.

To calculate the field distributions more accurately, we use
a commercial finite-element solver (COMSOL MULTIPHYSICS).
The optical responses of the structure for LHCP and RHCP
excitations are shown in Figs. 3 and 4, respectively. The input
field intensity was assumed to be 1mW/μm2 for both cases.
While localized near-field intensity enhancement can be ob-
served for both cases, the spatial distribution of the near fields
is significantly different. In accordance with the analytical
formulation, the field distributions shown in Figs. 3(a) and

4(a) resemble the shape of J0(krr) and J2(krr), respectively.
It should be noted that the choice of selecting the z = 10 nm
plane for Figs. 3(a) and 4(a) was arbitrary. However, a plane
close to the gold surface (z = 0) is preferred for visualization
as the strong intensity enhancements occur there.

FIG. 3. Field-intensity enhancement for LHCP incident light.
(a) z = 10 nm plane view, (b) y = 0 plane view, and (c) x = 0 plane
view.
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FIG. 4. Field-intensity enhancement for RHCP incident light.
(a) z = 10 nm plane view, (b) y = 0 plane view, and (c) x = 0 plane
view.

The optical force can be calculated from the
electromagnetic-field distribution using the Maxwell
stress-tensor formulation:

↔
T = εw

(
EE − 1

2
|E|2

↔
I
)

+ μw

(
HH − 1

2
|H|2

↔
I
)

, (3)

〈F〉t =
∫

S
〈
↔
T〉t · n̂ dS. (4)

Here
↔
T is the Maxwell stress tensor, E is the electric field, H is

the magnetic field, εw and μw are the permittivity and perme-

ability of the surrounding medium (water), respectively,
↔
I is

the identity tensor, F is the net electromagnetic force acting on
the particle, S is the outer surface of the nanoparticle, and n̂ is
the surface normal to S. Here 〈·〉t represents the time-averaged
value. The time-averaged quantities can be directly obtained
from the finite-element solver. Note that fields E and H in
Eqs. (3) and (4) depend on the position of the particle. So for
calculating force at a given point, the fields must be solved
with the particle placed on that point. To map out the entire
force field, the particle position is swept in a discrete 3D grid,
and the fields and force values are recalculated for each case.
The force value at an arbitrary point can be calculated from
the discrete data set using interpolation. The force profiles
obtained from this approach are shown in Figs. 5 and 6. For

FIG. 5. Force profile for LHCP excitation at the z = 660 nm
plane. (a) x component of the force Fx , (b) y component of the force
Fy, (c) force lines in the xy plane, and (d) z component of the force
Fz. Equations (3) and (4) were used to calculate the force.

visualization, z = 660 nm was selected as the representative
surface because the force values in this plane are such that
color map can show sufficient details for a wide region with-
out saturating out the color in the strong-force areas. The force
profile along the yz plane is shown in Fig. 7. It can be seen
that the force magnitude decreases as the distance from the
plasmonic surface increases. This is due to the exponentially
decaying nature of the evanescent fields generated by the
plasmonic structure [41].

For LHCP excitation, the force profile bears the character-
istics of a conventional near-field trap. The particle is pulled
towards the center of the structure. The force lines highlight

FIG. 6. Force profile for RHCP excitation at the z = 660 nm
plane. (a) x component of the force Fx , (b) y component of the force
Fy, (c) force lines in the xy plane, and (d) z component of the force
Fz. Equations (3) and (4) were used to calculate the force.
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FIG. 7. z component of the force at the x = 0 plane for (a) LHCP
excitation and (b) RHCP excitation. The plots share the same color
bar. Equations (3) and (4) were used to calculate the force.

the gradient nature of the force. The force profile is much
more complex for the RHCP excitation. Unlike the previous
case, it is not intuitively obvious how a micro- or nanoparticle
may move in such a force field. The usual approach of predict-
ing a particle motion in a complex field involves simulating
a large number of Brownian trajectories and conducting a
statistical analysis. However, a deeper analysis of the force
field may yield additional insight into the particle dynamics.

IV. THE HELMHOLTZ-HODGE DECOMPOSITION

In order to obtain a more intuitive understanding of the
optical-force profiles, we decompose the vector field using
the HHD method. According to the fundamental theorem
of vector calculus, any sufficiently smooth vector field can
be decomposed into a conservative (irrotational or curl-free)
component Fcons and a solenoidal (divergence-free) compo-
nent Fsol:

F = Fcons + Fsol = −∇u + ∇ × A . (5)

Here u is a scalar potential function related to the conservative
component, and A is a vector potential function related to the
solenoidal component. For an optical force field F defined
in a bounded domain � with a smooth boundary ∂�, the
HHD method can be applied to separate the components.
The process involves solving the following partial differential
equation (PDE) [42]:

∇2u = −∇ · F on � , (6)

with the boundary conditions

∇u · n̂ = F · n̂ on ∂� . (7)

Using the calculated optical force field F, the PDE can be
solved numerically to obtain u. Then, the two components can
be easily calculated from Fcons = −∇u and Fsol = ∇ × A =
F − Fcons.

To determine which of these components is dominant, it
is necessary to define parameters that quantify their relative
magnitude. One such parameter could be the average ratio of
their norms squared:

rnorm =
(‖Fcons‖2

‖Fsol‖2

)
avg.

. (8)

TABLE II. Relative magnitude of the conservative component of
the force.

Excitation
Ratio of the norm

squared
Ratio of the squared

volume integral
polarization rnorm 〈rvol〉�

LHCP 257.03 67.80
RHCP 98.02 8.89

The following volume integral ratio could also be used for the
same purpose:

〈rvol〉� =
∫
�

‖Fcons‖2 d�∫
�

‖Fsol‖2 d�
. (9)

Low values of rnorm and 〈rvol〉� indicate the presence of a
strong solenoidal component. It should be noted that there is
always the possibility of misinference when two vector fields
are compared using a scalar number (such as the ratio of
norms). To minimize the probability of such an occurrence,
we use two parameters (rnorm and 〈rvol〉�) that represent the
same property but are calculated differently.

The decomposed components of the force field near a PAS
for LHCP and RHCP excitations are shown in Figs. 8 and
9, respectively. The relative magnitudes of the components
are listed in Table II. For LCHP excitation, Fcons makes
up almost the entirety of the force field. This is expected
as the force profile is similar to that of a gradient-trapping
field. Particles in this force field are expected to be trapped
near the center of the structure. More interesting results can
be observed for the RHCP excitation case. For this case,
the solenoidal component is much more prominent. Despite
Fcons being larger (indicated by the fact that rnorm > 1 and
〈rvol〉� > 1), the effect of Fsol cannot be ignored. The force
lines of Fcons show a few sink points. Looking at the lines
more carefully, it can be inferred that Fcons may trap a particle
in an annular region near the center of the structure. On
the other hand, Fsol shows counterclockwise rotational force
lines, suggesting that it would induce a rotational motion on a
particle.

The force fields can be visualized more intuitively by using
the vector-field-topology (VFT) method [31,32]. VFT is a
representation of the global topology based on the analysis
of critical points and their connections. By displaying only
the critical points and the key integral lines (or streamlines)
associated with those critical points, a vector field can be
visualized more efficiently. By removing unimportant field
lines, VFT produces a compressed intuitive representation of
the field without losing relevant information. The codes used
in this paper for the VFT visualization have been uploaded
to GitHub [43]. For LHCP excitation, the VFT representation
of the conservative component is shown in Fig. 8. Since the
solenoidal component is negligible, a VFT visualization of
that component is omitted. It can be noted that the conserva-
tive force component has two attracting nodes and one saddle
point. Thus, the force acts like a near-field trap with two
closely separated focal points. Figures 9(d) and 9(h) show
the VFT representation of the conservative component and the
solenoidal component, respectively, for the RHCP excitation
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FIG. 8. Components of the optical force for LHCP excitation at the z = 660 nm plane. (a)–(d) The conservative component and (e)–(g) the
solenoidal component. (a), (b), (e), and (f) share the same color bar. (d) is a visualization obtained using the vector-field topology method. The
different colored points correspond to different types of critical points as described in the legend below (d). Equations (5), (6), and (7) were
used on the LHCP force data to calculate force components.

case. The presence of two attracting nodes and two saddle
points in an elliptical region along with a repelling node in
the center can be observed in Fig. 9(d). This would imply

that a particle would be repelled from the center and attracted
towards the rim of an annular region. Figure 9(h) shows that
the solenoidal component contains a repelling focus at the
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FIG. 9. Components of the optical force for RHCP excitation at the z = 660 nm plane. (a)–(d) The conservative component and (e)–(h)
the solenoidal component. (a), (b), (e), and (f) share the same color bar. (d) and (h) are visualizations obtained using the vector-field topology
method. The different types of critical points are represented using the color scheme mentioned in Fig. 8(d). Equations (5), (6), and (7) were
used on the RHCP force data to calculate force components.
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FIG. 10. The z component of the torque experience by the parti-
cle for RHCP excitation. (a) Torque calculated from the total force
field and (b) torque calculated from the solenoidal component of the
force. The axis of rotation is assumed to be the z axis. The plots share
the same color bar.

origin which creates a counterclockwise rotational motion.
Thus, combining the effect of both components suggests that
a particle immersed in this force field would rotate counter-
clockwise along an annular ring. This is consistent with the
experimental results reported in [22].

The rotational motion can also be visualized by plotting
the torque the particle experiences due to the generated force
field. The torque can be easily calculated from the force field
by using the point-particle approximation. Figure 10 shows
the calculated torque. As the rotational motion occurs in the xy
plane, we focus on only the z component of the torque. The z
axis is assumed to be the axis of rotation for this calculation. It
can be seen that the z component of the torque calculated from
the solenoidal force has positive values around a circularly
shaped region. This indicates a counterclockwise rotation
along this path. Note that such a clear conclusion cannot be
reached by observing the torque calculated from the total
force. Hence, the advantage of using the HHD for intuitive
understanding of optical forces is observed.

V. PARTICLE-POSITION DISTRIBUTION

The HHD gave us an intuitive understanding of how micro-
or nanoparticles may behave in the optical force field near
a PAS. The predictions made by the HHD analysis can be
verified by calculating the position probability density func-
tion (pdf) of a micro- or nanoparticle in the force field. The
position pdf can be approximated from Brownian dynam-
ics simulation of a large number of independent trajectories
[14,27]. It can also be approximated from the optical trapping

FIG. 11. For a PAS excited by 1545-nm LHCP light, (a) the
position probability density of a particle calculated from the optical
potential and (b) the final position of 25,000 Brownian trajectories.

FIG. 12. For a PAS excited by 1545-nm RHCP light, (a) the
position probability density of a particle calculated from optical
potential and (b) the final position of 25,000 Brownian trajectories.

potential [30,36]. The calculated position distributions are
shown in Figs. 11 and 12. It can be noted that for LHCP
excitation, the particle position distribution is concentrated in
two closely separated points near (0,0) in the xy plane. The
position of the high-probability region is consistent with the
position of the attracting nodes shown in the VFT representa-
tions in Fig. 8(d). For RHCP excitation, the particle-position
distribution is concentrated in an annular region. This is in
agreement with the predictions of the HHD analysis. It should
also be noted that the experimental results reported in [22] are
also consistent with these results.

It can be noted from Fig. 12 that for the RHCP excitation
case, the particle-position distribution does not follow a per-
fectly annular shape. One would expect a rotating particle mo-
tion would result in a uniform circular shape. The existence of
two high-probability regions in the position density suggests
that a particle is likely to spend more time on those regions
compared to the others. So during the rotational motion of the
particle, it would occasionally linger in these regions briefly.
These high-probability regions coincide with the locations
of the attracting nodes shown in Fig. 9(d). Thus, these two
points act like localized traps and slow down the rotational
motion of the particle. This behavior is also consistent with
the experimental video provided in [22].

VI. CONCLUSIONS

The force field near a PAS has been mapped and decom-
posed into conservative and solenoidal components. It has
been found that for RHCP excitation, the structure produces
a significant amount of solenoidal force, which induces ro-
tational motion in trapped particles. This assessment is con-
sistent with Brownian dynamics simulation and experimental
results. The proposed decomposition technique can be used to
gain intuitive understanding of the force near an optical trap.
This can be beneficial in the design process of LOC systems.
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