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Information-theoretical approach to the many-particle hierarchy problem
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We use the maximum entropy principle to circumvent the many-particle hierarchy problem that arises in
conventional equation of motion techniques. Our efficient approach enables us to numerically determine the full
density matrix of driven-dissipative quantum many-particle systems and gain access to all relevant expectation
values and the full statistics and not only moments and correlation functions. We compare the maximum entropy
method results with the numerically exact solution of the von Neumann-Lindblad equation for a four-level system
resonantly coupled to one cavity mode and demonstrate excellent agreement in terms of entropy, mean photon
number, autocorrelation function, and photon statistics. Moreover, we show that our approach can be used as a
tool for learning about the relevant processes of quantum systems.
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I. INTRODUCTION

Open quantum systems gained considerable attention due
to their ability to make the very heart of the quantum world
explorable. There, the interplay between driving mechanisms
and dissipation processes strongly influences coherence prop-
erties of the probed system, leading to the investigation of,
for instance, Bose-Einstein condensation of few photons [1],
Schrödinger cats in photon resonators [2], superradiance of
quantum dots (QDs) [3], cavity optomechanics [4], and the
spin-boson model in superconducting quantum circuits [5].

Among many others [6] one common approach to de-
scribe those driven-dissipative quantum many-particle sys-
tems is to combine equations of motion (EoM) techniques
with approximation schemes such as the cluster expansion
method [7]. In doing so, a set of differential equations is
derived describing the time evolution of several relevant quan-
tum mechanical expectation values. Although this approach
has been successfully applied to the microscopical description
of exciton dynamics in quantum wells [8], photoluminescence
[9–12], ultracold Bose gases [13], spin dynamics [14], cavity
phonons [15], QD lasers [3,16–21], and many more, there are
several down-sides to those techniques. Due to many-particle
coupling an infinite hierarchy of differential equations unfolds
that has to be truncated at a certain point. If not done carefully
this can lead to unphysical behavior such as the occurrence
of negative values for the photon autocorrelation function [7].
Consequently, the choice of truncation usually strongly de-
pends on the investigated system. Moreover, EoM techniques
only provide moments and correlation functions, but never
the full statistics of quantum mechanical observables. Fur-
thermore, the same moments and correlation function values
are compatible to radically different statistics, so access to
the full statistics is necessary to guarantee a clear physical
understanding [18,22]. Although it is in principle possible to
construct the full statistics out of moments alone [23] the full
density matrix is still not at hand and the problem of truncating
the infinite hierarchy remains.

In this paper, we use the maximum entropy method
(MEM) to calculate the full density matrix and thus make
all relevant expectation values and correlation functions as
well as the full statistics directly accessible. Importantly, a
truncation of the many-particle hierarchy in terms of fac-
torization schemes is completely avoided. Instead, we use
the knowledge about the stationarity of expectation val-
ues of several distinct observables and deduce the least
biased density matrix. To test our approach, we compare
the results for a four-level single QD microcavity laser
where the full density matrix is still available by numeri-
cally solving the von Neumann-Lindblad (vNL) equation for
the system of interest coupled to a Markovian environment.
Although we restrict ourselves to one specific system the
approach is neither limited to quantum optics nor to systems
described by the vNL equation but can in principle be applied
to all systems with stationary dynamics, i.e., in a steady state,
but not necessarily in thermodynamic equilibrium.

II. MAXIMUM ENTROPY METHOD

The maximum entropy principle [24,25], originally intro-
duced to derive the density matrix in equilibrium statistical
mechanics, is nowadays used in various fields such as bio-
physics and nanoscience [26] and can straightforwardly be
applied to the quantum case [27,28]. It basically answers the
question: having given m pieces of incomplete information
about a quantum system, what would be a reasonable guess
for the density matrix ρ? The maximum entropy principle
suggests to chose the one that has maximum entropy, and
thus maximum indeterminateness or rather least bias, yet still
accounts for all given constraints. The information usually
comes as expectation values

〈Ai〉 = Tr(ρAi ), i = 1, . . . , m (1)

for quantum mechanical operators Ai and might stem from
experimental measurements or some other theory while
the measure of indeterminateness is given by the von
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FIG. 1. Four-level QD in a microcavity. The electronic energy
levels are denoted by |1〉, |2〉, |3〉, and |4〉. The inner levels are
resonantly coupled to the cavity mode with frequency ω and light-
matter coupling strength g. Interaction with the environment, namely
electronic relaxation with rates γi j , cavity losses with rate κ and inco-
herent pumping with rate P are shown in lighter color. E represents
an external field in the coherent pumping case.

Neumann entropy

S(ρ) = − Tr(ρ ln ρ). (2)

Alternatively, the procedure of entropy maximization can
be seen as basic self-consistency requirement when drawing
inferences form stochastic data [26,28]. Requiring the maxi-
mum entropy density matrix ρ̂ (we use a hat to label the MEM
density matrix) to fulfill the conditions

S(ρ̂) = max, Tr(ρ̂) = 1, Tr(ρ̂Ai ) = μi, i = 1, . . . , k, (3)

where all input information is contained within the given
expectation values μi leads to the maximum entropy density
matrix

ρ̂ = 1

Z (λ)
exp

(
−

m∑
i=1

λiAi

)
,

Z (λ) = Tr

[
exp

(
−

m∑
i=1

λiAi

)]
, (4)

where Z (λ) is referred to as generalized partition function.
The input information enters the maximum entropy density
matrix via the Lagrange multipliers λi = λi(μ1, . . . , μm) that
are functions of the given constraints. The main task is to find
suitable Lagrange multipliers such that

Tr[ρ̂(λ)Ai] − μi = 0, i = 1, . . . , m, (5)

is fulfilled, which can be done using a standard nonlinear
least-squares solver.

III. BENCHMARK MODEL

As a benchmark system we choose a four-level single QD
microcavity laser (see Fig. 1 and Refs. [29–31]) where a single
charge carrier from the ground state |1〉 is either pumped
incoherently with a pump rate P or coherently excited via
an external field E into the highest level |4〉. E is a pumping
rate (in units of ps−1) proportional to the field strength of the
driving field. It then relaxes nonradiatively via the inner levels
|3〉 and |2〉 with decay rates γ34, γ23, and γ12, into the lowest
level. The inner levels are resonantly coupled to the cavity
mode with frequency ω and light-matter coupling strength g.

Cavity losses occur at a rate κ . In the interaction picture the
interacting parts of the Hamiltonian read

HJC = g∗a†
2a3b† + ga†

3a2b, (6)

HE = ih̄E (a†
1a4 − a†

4a1), (7)

where the Jaynes-Cummings Hamiltionian HJC governs the
light-matter interaction in electric dipole and rotating-wave
approximation, while HE represents the coherent pumping
process via an external field, which is assumed to be in
resonance with the transition of the outer electronic levels.
In the equations above a†

i and ai are fermionic creation and
annihilation operators that create or annihilate an electron
in state |i〉 and b† and b are bosonic photon creation and
annihilation operators, respectively.

We focus on Markovian environments here by including
coupling to external reservoirs via Lindblad terms with rates
ϑi and associated Lindblad operators c†

i and ci resulting in the
vNL master equation for the full density matrix ρ

d

dt
ρ = − i

h̄
[H, ρ] +

∑
k

ϑk

2
(2ckρc†

k − c†
kckρ − ρc†

kck ) (8)

with H = HJC + HE . The summation runs over all included
processes, namely electronic relaxation (ck → a†

i a j, ϑk →
γi j), cavity losses (ck → b, ϑk → κ) as well as incoherent
pumping (ck → a†

4a1, ϑk → P). For nonvanishing rates the
system reaches a unique steady state [32]. We refer to
Refs. [29,30,33] for a detailed discussion of the differences
between incoherent and coherent pumping. Because of the
small system size, here the vNL equation is still solvable
numerically yielding the full density matrix ρ, which is in
general not the case for larger systems.

IV. INPUT INFORMATION

Let us now review the concept of observation levels (OLs)
and give remarks on the used input information. For suc-
cessfully constructing a maximum entropy density matrix we
require the expectation values μi = 〈Ai〉 of a set of m quantum
operators {α} = {Ai : i = 1, . . . , m}. Following Ref. [27] we
refer to ρ̂{α} constructed according to Eq. (4) as density
matrix with respect to OL {α}. Whether an OL is sufficient
depends on the ability to predict the expectation values of
other observables 〈F 〉 = Tr (ρF ) ≈ Tr (ρ̂{α}F ) with sufficient
accuracy. Then the OL and therefore the choice of input
information is physically reasonable.

In contrast to prior works [23,34] we do not use expec-
tation values computed from EoM techniques here. Rather,
we exploit that, in steady state, the expectation value of any
observable Bi is constant in time. Hence, we use

d

dt
〈Bi〉 =

〈
dBi

dt

〉
= 0, i = 1, . . . , m (9)

as constraint [35], where the time evolution follows directly
from Eqs. (1) and (8)

d

dt
〈Bi〉 = i

h̄
〈[H, Bi]〉 +

∑
k

ϑk

2
〈2c†

kBick − c†
kckBi − Bic

†
kck〉.
(10)
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TABLE I. Added input information for the first four OLs {1}, {2},
{3}, and {4}. For each shown operator Bi we use d〈Bi〉/dt = 0 with
Eq. (10) as constraint. For higher OLs we also include the constraints
of all previous orders. Operators in the rightmost column are only
included for coherent pumping.

{1} n Ni i (a†
2a3b† − a†

3a2b) a†
1a4 + a†

4a1

{2} n2 nNi i (na†
2a3b† − a†

3a2bn) n(a†
1a4 + a†

4a1)

{3} n3 n2Ni i (n2a†
2a3b† − a†

3a2bn2) n2(a†
1a4 + a†

4a1)

{4} n4 n3Ni i (n3a†
2a3b† − a†

3a2bn3) n3(a†
1a4 + a†

4a1)

With this choice of input information our approach does not
depend on explicit numerical values for 〈b†b〉, etc., but can
be applied as a stand-alone method where the EoM (10)
themselves are used as constraints to derive the full density
matrix in the steady state. Note that we neither need to solve
the EoM nor to close the set of EoM by truncating the many-
particle hierarchy.

The choice of included operators follows naturally from
the observables of interest and the right-hand side of Eq. (10).
Here we consider the linearly independent operators n, N1, N2,
N3, and N4 where n = b†b and Ni = a†

i ai are the occupation
number operators as well as the photon-assisted polarization
i(a†

2a3b† − a†
3a2b). Congruously, we also take into account

a†
1a4 + a†

4a1 for coherently pumped systems. For higher OLs
we successively multiply the operators from the previous
order with n. This leads to a set of 6(7) pieces of information
and an equal number of Lagrange multipliers for the first OL,
12(14) for the second, 18(21) for the third, and 24(28) for the
fourth (see Table I). For ρ̂ to have the characteristics of a den-
sity matrix all given combinations of operators are required to
be self-adjoint and thus represent physical observables. This
also ensures the Lagrange multipliers to be real. Any linear
combination of the above-mentioned input information leads
to the same maximum entropy density matrix [27].

V. NUMERICAL RESULTS

To benchmark the MEM results we compare ρ̂ to the full
steady-state density matrix obtained by numerically solving
the vNL equation (8) for a range of coherent and incoherent
pump rates. It should be emphasized that both chosen methods
are radically different and do not rely on each other. Note that
also other approaches, such as a variational principle [36] or
computing the kernel of the Liouvillian [37], can be applied to
determine the steady state. For numerical implementation we
restrict the photonic Hilbert space to nmax = 40 and only store
the nonzero elements of the sparse square 164 × 164 density
matrix. We stress that no time evolution has to be calculated
using the MEM.

Providing more information, i.e., increasing the OL, in
general leads to a density matrix with less entropy thus less
uncertainty S(ρ̂ ) (cf. Fig. 2). The entropy decreases for higher
OLs and finally tends towards the numerically exact steady-
state solution of the vNL equation. This is true for all pump
rates for both coherently and incoherently pumped systems.
For higher pump rates a higher OL is required, whereas for
low pump rates even the first OL is sufficient. To measure the

FIG. 2. Entropy S for (a) incoherent and (b) coherent pumping.
Solid black curves show S(ρ ) for the steady-state solution of the vNL
equation. Other curves show S(ρ̂{α}) for the first four OLs. For the
inset in (b) input information of the type a†

1a4 + a†
4a1 was excluded.

Throughout all calculations we use the following parameters: γ12 =
γ34 = 1 ps−1, γ23 = 0.01 ps−1, κ = 0.02 ps−1, and g = 0.2 meV.

quality of the maximum entropy density matrix ρ̂ compared to
the numerically exact ρ we use the quantum relative entropy

S(ρ||ρ̂ ) = Tr[ρ(ln ρ − ln ρ̂ )]. (11)

It measures how much information is lost when choosing
the approximation ρ̂ instead of the exact density matrix ρ.
Alternatively, one could use the trace distance T (ρ, ρ̂ ). Both
are connected via the quantum Pinsker inequality S(ρ||ρ̂) �
2[T (ρ, ρ̂ )]2 [38]. Higher OLs lead to a decrease of relative
entropy hence the maximum entropy density matrix ρ̂ tends
towards the density matrix ρ of the steady-state solution of
the vNL equation (see Fig. 3).

The insets in Figs. 2 and 3 show that an appropriate choice
of input information indeed is essential. There, the results are
depicted when information about the stationarity of the co-
herent pumping process and its correlations is missing, hence
input information of the form a†

1a4 + a†
4a1 is not included

throughout all OLs (cf. Table I). Withholding it dramatically
effects the results for the coherently pumped system, yielding
less approximation quality, whereas for incoherent pump-
ing this information is completely obsolete. Even explicitly
adding it leads to vanishing of the corresponding Lagrange
multipliers throughout the whole range of pump rates and for
all OLs. This corresponds to the notion that in the incoherent
excitation regime averages of the form 〈a†

1a4〉 and 〈a†
4a1〉

vanish [17,39]. In that sense the MEM can be understood
as a trial-and-error method for learning and identifying the
relevant processes within physical systems.

FIG. 3. Relative entropy S(ρ||ρ̂{α}) for (a) incoherent and (b) co-
herent pumping up to fourth OL. For the inset in (b) input informa-
tion of the type a†

1a4 + a†
4a1 was excluded.
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FIG. 4. Mean photon number 〈n〉 [(a) and (d)] and second- and
third-order autocorrelation function g(2) [(b) and (e)] and g(3) [(c) and
(f)] for (a)–(c) incoherent and (d)–(f) coherent pumping. Solid black
curves show the results for the steady-state solution of the vNL
equation. Other curves show the MEM results for the first four OLs.
For the insets in (d)–(f) input information of the type a†

1a4 + a†
4a1

was excluded.

From the full density matrix, relevant physical observables,
namely the mean photon number 〈n〉 = 〈b†b〉 and autocorrela-
tion functions g(k)(0) = 〈(b†)kbk〉 / 〈b†b〉k are directly accessi-
ble, see Fig. 4. Contrary to naive expectation, for low pump
rates the second-order autocorrelation function is not close
to zero because of the high-quality mode and the associated
low loss rate. For a higher loss rate though, g(2)(0) is close to
zero and the QD microcavity system operates as single-photon
source.

Although the mean photon number already accords well
within the first OL (cf. Fig. 4), to obtain reasonable values
for the autocorrelation functions one needs to include higher-
order moments. While OL {α} contains information about the
stationarity of operators of the form n(α−1)B̃i (cf. Table I), the
autocorrelation function of order k contains information about
moments 〈nk〉. Hence, to get good accordance for g(k), OL
{k + 1} is sufficient. For lower pump rates though, we observe
the autocorrelation functions to behave quite oddly [cf. second
OL in Figs. 4(c) and 4(f)]. This is due to the restriction of the
maximum photon number n to a finite value nmax that leads to
an artificial increase of the probability values pn close to nmax.
This results in an overestimation of higher-order moments that
is highly dependent on the choice of nmax. A truncation closer
to the relevant part of the photon distribution (e.g., nmax = 10)
leads to better accordance for low pump rates as well. A more
detailed discussion on the problem of restricting the maximum
entropy distribution to a finite range can be found in Ref. [23].
We point out that the Lagrange multipliers are system-size
dependent throughout all OLs. Nevertheless, for intermediate
and high pump rates the values for entropy, relative entropy,
various expectation values as well as the photon statistics
remain almost unchanged for different choices of nmax.

FIG. 5. Photon statistics pn for pump rates (a) P = 0.01 ps−1,
(b) P = 0.04 ps−1, (c) P = 1 ps−1 for incoherent pumping, and
(d) E = 0.05 ps−1, (e) E = 0.1 ps−1, (f) E = 10 ps−1 for coherent
pumping, respectively. Solid black curves show the photon statistics
for the steady-state solution of the vNL equation. Other curves show
pn obtained by the MEM for the first four OLs. For the insets in
(d)–(f) input information of the type a†

1a4 + a†
4a1 was excluded. In

(a) and (d) the steady-state solution and the results for second, third,
and fourth OL nearly lie on top of each other.

For both coherent and incoherent pumping, the MEM
photon statistics tend towards the steady-state solution of
the vNL equation (Fig. 5). Remarkably, already the second
OL reproduces the photon statistics for low pump rates.
For higher pump rates though, more information is required
to reproduce the more complicated structure of the photon
statistics; but still, the third OL distribution resembles the
steady-state solution. Only for low photon numbers n the
MEM tends to overestimate the probability pn. In the case of
insufficient information (see insets) only low pump rates are
in agreement, whereas for higher pumping the MEM solution
is far away from the original one. This fact again can be
interpreted as a hint that operators of the form a†

1a4 + a†
4a1

are of crucial importance especially for stronger coherent
pumping while being less important for weak pumping and
completely obsolete in the incoherent pumping case.

VI. CONCLUSION

We demonstrated how the MEM can be used to derive the
full density matrix of open quantum systems completely inde-
pendent of EoM techniques and without the need for neither
any factorization-based truncation schemes concerning the
many-particle hierarchy nor a costly time integration. Instead,
we used a finite set of input information leading to a self-
consistent inference for the least biased full density matrix. As
a benchmark we compared MEM results to the steady-state
(but thermodynamical nonequilibrium) solution for a single
QD microcavity laser described by a vNL equation for both
coherent and incoherent pumping. By computing the entropy,
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relevant expectation values, and the full photon statistics we
demonstrated remarkable accordance and showed how the
MEM can be used as trial-and-error method for learning about
the relevant physical processes within the system. We point
out the possibility to treat non-Markovian situations (see,
e.g., Ref. [40]), where one would also include observables
from the environment as input information. Furthermore, for
systems with multiple steady states, the MEM would result
in a unique unbiased mixture of the corresponding steady
states, which is a considerable advantage whenever the initial
state is not known. Consequently, the MEM opens up the

possibility to circumvent numerous down-sides of EoM tech-
niques, gives an information theoretical perspective on the
infinite many-particle hierarchy and provides the full density
matrix making the full statistics and all relevant operators
directly accessible.
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