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Sub-hertz optomechanically induced transparency with a kilogram-scale mechanical oscillator
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Optical interferometers with suspended mirrors are the archetype of all current audio-frequency gravitational-
wave detectors. The radiation pressure interaction between the motion of the mirrors and the circulating optical
field in such interferometers represents a pristine form of light-matter coupling, largely due to 30 years of effort
in developing high-quality optical materials with low mechanical dissipation. However, in all current suspended
interferometers, the radiation pressure interaction is too weak to be useful as a resource, and too strong to be
neglected. Here, we demonstrate a meter-long interferometer with suspended mirrors, of effective mass 125 g,
where the radiation pressure interaction is enhanced by strong optical pumping to realize a cooperativity of 50.
In conjunction with modest resolved-sideband operation, this regime is efficiently probed via optomechanically
induced transparency of a weak on-resonant probe. The low resonant frequency and high-Q of the mechanical
oscillator allows us to demonstrate transparency windows barely 100 mHz wide at room temperature. Together
with a near-unity (≈99.9%) out-coupling efficiency, our system saturates the theoretical delay-bandwidth
product, rendering it an optical buffer capable of seconds-long storage times.
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Interferometers with suspended end-mirror cavities are one
of today’s most sensitive instruments [1]. Suspending the
optics isolates them from technical noises of seismic and
anthropic origin. Once classical noises are mitigated, the
sensitivity of the interferometer increases with the intensity
of the optical field circulating within. However, high-power
operation is limited by classical and quantum mechanical
effects of radiation pressure [2–4]. The longitudinal motion
of the suspended end mirror, considered as a harmonic oscil-
lator, is susceptible to two effects arising from the coupling
between its motion and the circulating optical field. Classi-
cally, a radiation pressure force that depends on the oscillator
position—due to feedback from the arm cavity delay—can
lead to parametric instability [5,6]. Quantum mechanically,
the fluctuations in the number of photons recoiling off of the
end mirror—quantum radiation pressure noise—can perturb
the oscillator [7–10]. Whilst the former effect can be described
as a modification of the susceptibility of the oscillating mirror
due to its coupling to the optical field, the latter is a fluctuating
force originating from the same coupling. Generally it can
be shown that the two effects scale identically with power
[11]. This scaling is described by the dimensionless radiation
pressure coupling strength, quantified by the cooperativity
C (to be defined below). At present in the Advanced Laser
Interferometer Gravitational-Wave Observatory (LIGO), the
radiation pressure coupling between a higher-order mechani-
cal mode and transverse optical mode has been shown to be
strong enough (C ≈ 1) to initiate parametric instability [6],
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yet weak enough that quantum radiation pressure noise is
buried tantalizingly beneath technical noises [1,12].

Here we demonstrate a suspended-mirror interferometer
with a radiation pressure cooperativity an order of magnitude
larger (C ≈ 50) than what has previously been directly ob-
served in such an instrument [5,6,13–15]. In contrast to
nanofabricated optomechanical systems [16,17], our system
consists of a mechanical oscillator of effective mass 125 g —9
orders of magnitude more massive—susceptible to the recoil-
type radiation pressure coupling, and an interferometer that is
formed by a 1 m long suspended cavity, both of which make it
a mock-up of an Advanced LIGO arm. This system serves as a
general experimental platform for audio-band optomechanics
in a radiation-pressure-dominated regime [5,14,15].

The basic challenge of operating such an interferometer
in the high-cooperativity regime is the ability to store enough
photons in the cavity to amplify the radiation pressure
force without destabilizing it by other means. In order to
retain sufficient photons in the cavity with practical input
laser powers, it is necessary that the end-mirror optical
losses—already at a state-of-the art level of a few ppm—be
diluted by elongating the cavity. Operating a long cavity
with suspended mirrors introduces additional challenges
that must be overcome. In particular, maintaining alignment
requires seismic isolation whose fundamental suspension
mode is low frequency. Thermal noise requirements demand
the suspending fibers be thin. Thus, the suspensions are
necessarily “soft”, and their torsional modes are susceptible
to a radiation-pressure torque instability [18,19]—an effect
that has been a limiting factor in the high-power operation
of suspended interferometers [20–22]. On the one hand,
the magnitude of the resonant round-trip gain for the
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radiation-pressure-induced longitudinal coupling between
cavity frequency and length is the cooperativity

C ≡ 4g2

κ�m
, (1)

where g = (∂ωc/∂x)
√

h̄nc/(2m�m) is the optomechanical
coupling rate for an end mirror of effective mass m, oscillating
at frequency �m, which leads to a cavity frequency fluctuation
∂ωc/∂x = ωc/L for a cavity of length L, loaded with nc

photons on average. On the other hand, the gain for the
torque coupling scales as κncL/M, where M is the moment
of inertia [19]. The ratio of the round-trip gains of the two
processes (longitudinal and torsional radiation pressure) scale
as m−2L−3—heavier mirrors reduce the susceptibility to
radiation pressure force, while longer cavities enhance the
effect of radiation pressure torque.

The competing demands of being radiation-pressure-
dominated longitudinally while still maintaining angular sta-
bility are met in our experimental system, depicted in Fig. 1.
The optical cavity of interest is formed by two mirrors: an
end mirror (EM) weighing 1 g with a transmission of 3 ppm,
and an input mirror (IM) weighing 250 g with a transmission
800 ppm—suspended on 1 Hz pendulums placed 1 m apart.
To suppress extraneous beam-pointing noise, the experiment
is mounted on an actively damped seismic vibration isolation
platform, similar to the one used in Advanced LIGO [23],
which attenuates ground motion to a level of ≈10−9 m/

√
Hz

above a few Hz. The cavity is driven by laser light from a
master-oscillator power amplifier (MOPA) capable of deliver-
ing 10 W of continuous output at 1064 nm [24]. Extraneous
power fluctuations are reduced to a relative intensity noise
of ≈10−8/

√
Hz above 100 Hz; this, together with carefully

centering of the beam position on the mirrors (by minimizing
the transduction of the suspension pitch mode onto the phase
of the light leaking out of the cavity), reduces torque fluctua-
tions to insignificant levels. The laser is frequency-stabilized
to an independent reference cavity. In this configuration, op-
tical torque instabilities are not expected to limit high-power
operation, and it should be possible to realize C � 100.

Exploiting the slew of technical capabilities originally
developed for LIGO, we observe optomechanically induced
transparency (OMIT) [25–29] due to the coupling between the
drumhead mode of the IM [see Fig. 1(b)] and the intracavity
field. Modulating the incident laser at a variable frequency
offset � from its carrier creates an intracavity radiation pres-
sure at the same frequency. When � = �m ≈ 2π × 27 kHz,
the drumhead mode is resonantly excited by this intracavity
radiation pressure force; this displacement gets transduced
as phase-modulation sidebands back on the intracavity field,
which can interfere with the injected modulation sideband.
When the carrier is detuned from the cavity resonance by
the mechanical frequency (i.e., � = �m), the interference is
perfectly destructive.

In the experiment we probe the cavity response from within
the feedback loop used to stabilize its length. First, we acquire
lock of the cavity length to the laser by using a Pound-Drever-
Hall signal in reflection [see Fig. 1(a)]; we then hand over
the length control from the reflection signal to the transmis-
sion signal in order to be able to red-detune by � = −�m.
The cavity response is then probed by frequency-modulation

FIG. 1. Experimental system and schematic. (a) Laser light for
the experiment is derived from a master-oscillator power amplifier
(MOPA) that was developed for Initial LIGO. The 10 W output,
at 1064 nm, is spatially filtered by a pre-mode cleaner (PMC);
subsequently, its intensity (ISS) and frequency (FSS) are stabilized
using respective servos. The light then enters the experimental
cavity, whose reflection and transmission are monitored and used
for stabilizing the laser-cavity detuning. (b) Left: Picture of the
end mirror (EM), consisting of a 1.27 cm diameter mirror, weighing
1 g, suspended as a double pendulum. Right: Picture of the input
mirror (IM), consisting of a 7.3 cm diameter mirror, weighing
250 g, suspended as a single pendulum. Inset shows finite-element
model of the mirror’s fundamental drumhead mode, which is the
mechanical oscillator relevant to this work. (c) Simple scheme of
optomechanically induced transparency (OMIT). Left shows the bare
cavity response (blue), pumped by laser light red-detuned by a
mechanical linewidth (� = −�m), and its two sidebands filtered by
the cavity; the radiation-pressure-induced displacement is transduced
as additional sidebands (green), which interferes with the injected
sidebands. Right shows the resulting effective cavity response.

sidebands generated by dithering the frequency servo error
point, and demodulating the signal out of the photodetector in
transmission. We verify the detuning by fits to the broadband
response of the cavity (see Appendix B). Finally, we measure
the response in the vicinity of the cavity resonance in a
high-resolution scan to observe the narrow OMIT feature.
However, the response observed in this manner needs to be
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FIG. 2. Sub-hertz optomechanically induced transparency: main
figure shows zoom-in of the magnitude (top) and phase response
(bottom) of the cavity transmission in a 1 Hz span around resonance
at several values of the incident power (legend). Solid lines show
model curves. Inset shows the optomechanical cooperativity inferred
from the model.

corrected for the response of the frequency stabilization loop
through which both the probe and the measurement are made
(see Appendix B for details). Figure 2 shows the magnitude
and phase of this corrected response as the power in the
incident laser is increased. The gross features of the cavity
transmission can be understood from the approximate model,

T [�] ≈ T0[�]

(
1 − δ�m/2

(�m + δ�m)/2 + i(�m − �)

)
, (2)

where T0[�] is the cavity transmission without any op-
tomechanical coupling, and δ�m ≈ �m Ceff , is the optically
damped contribution to the mechanical decay rate; here Ceff =
C/[1 + (κ/4�m)2] is the effective cooperativity taking into
account the finite sideband resolution �m/κ ≈ 1.4, which
gives, Ceff ≈ 0.97C. The bare cavity transmission T0 is a
Lorentzian of width κ , while the second factor describes
an OMIT window of width given by the effective mechani-
cal linewidth, on cavity resonance. As the cooperativity in-
creases, T [�m]/T0[�m] ≈ 1/(1 + Ceff ) → 0. The expression
in Eq. (2) is, however, an approximation that disregards the
finite sideband resolution; in fact, it only describes the con-
tribution to the transmitted photodetector signal that arises
from the upper sideband of the intracavity field. A full model
accounting for both sidebands is shown as the fits in Fig. 2
(see Appendix A for the full model). These fits allow us to
extract the cooperativity, shown as the inset in the figure. At

the highest incident power of 1.2 W, we realize C ≈ 50 (see
inset of Fig. 2).

Our results demonstrate the narrowest OMIT windows yet
observed of �OMIT/2π � 100 mHz (a recent experiment at
dilution refrigerator temperature is comparable [30]). This
is largely due to the ability to operate an optomechanical
system in the high-cooperativity regime using a mechanical
oscillator with a long decay time. We achieve this by using a
low-frequency oscillator featuring a high intrinsic mechanical
quality factor of Qm = �m/�m ≈ 106, consistent with expec-
tations for bulk fused silica [31,32].

The sub-hertz OMIT feature is beneficial for various ap-
plications ranging from frequency-agile ultra-narrow filter
cavities [33], to coherent frequency converters [34,35], to
slow-light optical buffers [36] and quantum memories. In the
following we discuss the potential of our system as a highly
efficient slow-light buffer capable of seconds-long delays.

An optical buffer for coherent classical signals is character-
ized by the maximum possible delay that it can provide, and
the usable bandwidth; they are not independent for passive
systems, and in fact the delay-bandwidth product (DBP) is
bounded [36–40]. Further, if the buffer also features a near-
unity storage and retrieval efficiency, it may be used to store
weak incoherent classical signals. In the limit that the signal
is encoded in a pure quantum state—as required for various
quantum information processing tasks—the optical buffer be-
comes a quantum memory [41,42], if in addition to the above
requirements, it also features a coherence time longer than the
storage time.

In the case of OMIT, the group delay, τ =
(−∂φ[�]/∂�)�=�m , where φ is the phase response, is
explicitly given by

τ = 2Ceff

�OMIT
×

{−1, transmission,
ηR

1−ηR+Ceff
, reflection.

(3)

It is negative (advance) or positive (delay) depending on
whether the signal sideband is transmitted or reflected
[26,27,43]. Note that ηR = κI/κ ≈ 0.999 is the efficiency of
the reflection port, given by the fractional contribution of the
input-mirror decay rate κI to the total cavity decay rate. From
the measured phase response, we are able to extract the delay
in transmission and reflection, shown in the inset of Fig. 3.
The inferred absolute delays, in the range of several (tens of)
seconds, are more than an order of magnitude larger than what
has previously been demonstrated using an optomechanical
system [43], and approaching what has been demonstrated
using atomic EIT [44]. Further, the signal efficiency in our
system is near-ideal (ηR ≈ 0.999), largely due to the pristine
optical quality, and significantly exceeds prior demonstrations
of OMIT and even atomic EIT [45], to the best of our knowl-
edge. Finally, the combination of long delays, and near-ideal
coupling efficiency, allows for a delay-bandwidth product
(DBP) that is very large. From Eq. (3), the DBP is given by

DBP = τ�OMIT = 2Ceff ×
{−1, transmission,

ηR

1−ηR+Ceff
, reflection.

(4)

The DBP takes a maximum value of 2 for readout in
reflection. Figure 3 shows that our system saturates this upper
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FIG. 3. Plot shows delay-bandwidth product in transmission
(red) and reflection (blue); dashed lines show models based on
Eq. (4). Inset shows the delay in transmission (red) and reflection
(blue), with dashed lines showing models based on Eq. (3).

bound, which is also comparable with what is in principle
achievable with atomic EIT systems [36,37].

The potential of our system as a quantum memory is
currently limited by the decoherence time of the mechanical
mode (≈0.2 μs), and the associated thermal noise. Recent
work has demonstrated record low-noise quantum memory
using an intracavity Raman medium to suppress nonlinear
mixing processes [46], however, at the expense of efficiency.
In principle, optomechanical systems with macroscopic os-
cillators and low-loss mirrors can be free of optical and me-
chanical nonlinearities—respectively of the Duffing and ther-
mal types—while preserving optical efficiency. With further
improvements employing recently demonstrated techniques
for mechanical Q enhancement [47,48], it is conceivable that
the regime of quantum coherent mechanical oscillation (Q �
nth, where nth is the average thermal phonon occupation of
the oscillator) can be achieved even in a suspended-optic
interferometer. In conjunction with adiabatically varying the
pump amplitude [49,50], a long-lived on-demand OMIT-
based quantum memory may be realized.

The ability to realize an optically tunable nearly lossless
dispersive element that shares the same footprint and technol-
ogy of the LIGO interferometer makes our system intriguing
for other applications in LIGO that do not rely on thermal
noise reduction to the few-quantum level. For example, a
tunable signal-recycling cavity—which determines the broad-
band response of the interferometer and is at present fixed by
choice of mirror transmissivity—could be realized that can be
used to dynamically track astrophysical signals as they transit
the detection band.

Ultimately, the combination of high cooperativity and ideal
out-coupling efficiency are also the same requirements for
using radiation pressure quantum fluctuations as a useful
metrological resource in an interferometer [51]. At the mo-
ment, the cooperativity we achieve is limited by a new source
of angular instability. Our observations are consistent with the
conjecture that surface roughness on the cavity mirror leads to
scattering of the cavity’s fundamental mode into a few higher-
order modes, which causes radiation pressure torques. With
mitigation of this problem we expect the current system to be a

test bed for studying and reducing the effects of quantum noise
on a suspended interferometer with macroscopic test masses.
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APPENDIX A: THEORETICAL MODEL FOR OMIT

In the following we recapitulate the model used to interpret
the OMIT data presented in Fig. 2 of the main manuscript. The
presentation largely follows the standard treatment adopted in
the cavity optomechanics community [26,27].

The basic optomechanical Hamiltonian that describes the
radiation pressure interaction between the cavity field (a),
end-mirror displacement (x), and the driving laser field (ain)
is [17]

H = h̄(ωc − G x)a†a +
(

p2

2m
+ m�2

mx2

2

)

+ ih̄
√

κI(ain(t )a† − a∗
in(t )a), (A1)

where

ωc bare cavity resonance frequency
G bare optomechanical coupling strength

G ≡ ∂ωc/∂x = ωc/Lc

x, p displacement and momentum of the oscillator
m effective mass of oscillator
�m frequency of oscillator
ain input laser field (in units of

√
photons/s)

κI,E cavity loss rate through IM/EM
κI,E = c

4Lc
TI,E; TI,E–IM/EM transmission

The Heisenberg equations that follow from Eq. (A1) are

da

dt
=

(
iωc − κ

2

)
a − iGxa + √

κIain,

dx

dt
= p

m
,

d p

dt
= −m�2

mx − �m p − h̄Ga†a, (A2)

where �m is the mechanical decay rate, and κ = κE + κint + κI

is the total loss rate of the cavity including from the EM,
any internal loss, and the IM. Note that since the mechani-
cal oscillator is high Q (Qm ≈ 106), and since we are only
interested in its response near resonance, we have adopted
a velocity-damped model for its loss. Further, since we are
interested in the driven response of the system, optical and
mechanical input noises are omitted.

The input field that drives the cavity (ain) is derived from a
laser oscillating at ω
 with sidebands δain imprinted on it; it is
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thus described by

ain(t ) = [(āin + δain(t )]e−iω
t . (A3)

When Eq. (A3) is substituted into the equation of motion in
Eq. (A2), we arrive at a set of coupled nonlinear equations that
describe the full radiation pressure optomechanical dynamics
which features a static optical bistability and static spring
shifts of the mechanical oscillator. In the regime where the
carrier flux is fixed and much larger than the sideband, i.e.,
|āin| � |〈δain〉|, these equations can be linearized about a
given operating point. These linearized equations, expressed
in the frame rotating at the laser frequency ω
, take the form(

d

dt
− i�̄ + κ

2

)
δa = −iGā δx + √

κIδain,

m

(
d2

dt2
+ �m

d

dt
+ �2

m

)
δx = −h̄Gā(δa + δa†). (A4)

Here, we have defined an effective detuning,

�̄ = (ω
 − ωc) − Gx̄,

that contains the bare laser-cavity detuning (first term) and a
term due to the static cavity frequency shift from radiation
pressure coupling; x̄ is the static mirror displacement, while

ā =
√

κI āin

−i�̄ + κ/2
(A5)

is the mean intracavity field amplitude; and δx, δa are the
fluctuations on top of these mean values. [Note that we have
omitted the phase of the intracavity field in Eq. (A4) with the
understanding that it is a constant offset from the phase of
the input laser for fixed detuning.] It is convenient to express
Eq. (A5) in terms of the incident power, Pin = h̄ω
|āin|2, and
the mean intracavity photon number, nc = |ā|2, as

nc = 4ηI

κ

Pin/h̄ω


1 + (2�̄/κ )2
, (A6)

where we have defined ηI = κI/κ , the cavity coupling ef-
ficiency from the incident port. Henceforth we will rede-
fine �̄ 
→ � for notational convenience; further, we take ā
to be real by absorbing its (frequency-independent) phase,
tan−1(2�/κ ), into the input, with the understanding that such
static phase shifts are irrelevant in our measurement.

The OMIT phenomenon entails a modification of the cavity
response via its radiation pressure interaction with the end
mirror. In the experiment, we measure the magnitude and
phase of this modified response at frequency offsets � from
the incident pump laser, using probe sidebands at these fre-
quencies, described by

δain(t ) = δA+
ine−i�t + δA−

inei�t , (A7)

where δA±
in are the amplitudes of the upper and lower side-

band, respectively; since the sidebands are imprinted by phase
modulation,

δA−
in = −δA+

in = −(δA+
in )∗ = (δA−

in )∗. (A8)

Such a drive produces intracavity fields and oscillator dis-
placements at the same frequency since the equations of

motion in Eq. (A4) are linear. In order to track these we
introduce the ansatz

δa = δA+e−i�t + δA−ei�t , δx = δXe−i�t + δX ∗ei�t ,

(A9)

into Eq. (A4), and separate out terms oscillating at the two
sideband frequencies; this gives the closed set of coupled
equations:

χ−1
c [� + �] δA+ = −iGā δX + √

κI δA+
in,

χ−1
c [� − �] (δA−)∗ = +iGā δX + √

κI (δA−
in )∗,

2m�m χ−1
m [� − �m] δX = −ih̄Gā[δA+ + (δA−)∗], (A10)

where we have defined the optical and mechanical suscepti-
bilities,

χ−1
c [�] = κ

2
− i�, χ−1

m [�] = �m

2
− i�. (A11)

Note that in going to Eq. (A10), we have approximated the
mechanical susceptibility using a single-pole response,

m
(
�2

m − �2 − i��m
) = m[(�m − �)(�m + �) − i��m]

≈ m (−2i�m)

(
�m

2
+ i(�m − �)

)
,

which is effectively a rotating-wave approximation valid in
the high-Q limit, Qm = �m/�m � 1.

Solving Eq. (A10) for the mechanical motion excited by
the intracavity field,

2m�mχ−1
m,eff [�]δX

= −ih̄Gā
√

κI[χc[� + �]δA+
in + χc[� − �](δA−

in )∗],

(A12)

where the effective mechanical susceptibility,

χ−1
m,eff [�] = χ−1

m [� − �m] + g2(χc[� + �] − χc[� − �]),
(A13)

describes the radiation pressure modification of the mechan-
ical response, whose strength scales with the optomechani-
cal coupling rate, g = Gā

√
h̄/2m�m. When optomechanical

coupling is weak enough to not lead to normal-mode splitting
(i.e., when g � κ), the effective mechanical susceptibility can
be approximated in terms of a modified mechanical linewidth
(optical damping) and resonance frequency (optical spring),
viz.,

χ−1
m,eff [�−(�m + δ�m)] ≡ �m+δ�m

2
− i[�−(�m + δ�m)],

where δ�m and δ�m are identified by separating the real and
imaginary parts of the second term in Eq. (A13). We are
interested in these expressions for the case of red-sideband
pumping, i.e., � = −�m; in this case,

δ�m

�m
= C

(4�m/κ )2

1 + (4�m/κ )2
,

δ�m

�m
= 2C

Qm

4�m/κ

1 + (4�m/κ )2
,

(A14)
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where

C ≡ 4g2

κ�m
(A15)

is the optomechanical cooperativity, which quantifies the
fractional effect of the radiation-pressure modification of the
mechanical susceptibility. Note that in our case, characterized
by Qm > C > 1, the optical spring is weak for red-sideband
pumping, and we henceforth neglect δ�m. The oscillator
response is thus described by χm,eff [� − �m] featuring a
modified linewidth.

The effect of the modified oscillator is to scatter phase-
modulation sidebands on the intracavity field, which can
then interfere with the sidebands already present from the
modulation imprinted on the incident field. The resulting
intracavity field can be obtained by inserting Eq. (A12) back
into Eq. (A10) and solving for δA±, viz.,

δA± = √
κI χc[� ± �] δA±

in ×
{

K[� − �m]

K∗[� − �m],
(A16)

where

K[�] ≡ χ−1
m [�]

χ−1
m,eff [�]

≈ 1 − δ�m

(�m + δ�m) − 2i�
. (A17)

In writing these expressions, we have used the fact that the
input laser is phase-modulated. Note that in the absence
of optomechanical coupling (i.e., g = 0), χm,eff = χm, and
Eq. (A16) simply describes the cavity response χc filtering
the incident field. The effect of optomechanical coupling is
captured by the factor K[�] —featuring the shape of the
modified mechanical susceptibility—which is superimposed
on top of the (relatively) slowly varying cavity response. It
is this superimposed feature that manifests as an optome-
chanically induced transparency window. Note that as the
optomechanical coupling is increased by strong pumping,
δ�m � �m, we have on resonance, K[� − �m]|�→�m → 0,
leading to complete transparency.

The experimentally observed fields are the ones leaking
out of the cavity, either in transmission or in reflection. The
transmitted and reflected fields are [52]

aout,T(t ) = √
κE a(t ), aout,R(t ) = ain − √

κI a(t ), (A18)

where a(t ) = |ā| + δa(t ) is the intracavity field in the rotating
frame of the input laser. In the following we focus on the
transmitted field, with the understanding that the reflected
field can be computed similarly. Using Eqs. (A5), (A8), and
(A16) in Eq. (A18), the transmitted field is

aout,T(t ) = √
κEκIāin(χc[�]

+ χc[� + �]K[� − �m]e−i�tβ

− χc[� − �]K∗[� − �m]e+i�tβ ), (A19)

where β ≡ δA+
in/āin is the modulation index. The first term

in parentheses describes the portion of the input pump that
is transmitted, while the second and third terms describe
the upper and lower sidebands, respectively. Equation (2) of
the main text is just the second term, describing the trans-
mission of the upper sideband alone. However, due to the
finite sideband resolution of our system, a sizable fraction,

|χc[� − �]/χc[� + �]|, of the lower sideband is also trans-
mitted. In our experiment, where the pump is red-detuned
(� = −�m) and at Fourier frequencies close to mechanical
resonance (� = �m), this ratio is (κ/4�m)2 ≈ 3.8%.

When the transmitted field is detected on a photodetector,
the detector output voltage is VT(t ) ∝ |aout,T(t )|2; in the ex-
periment we detect the voltage that is phase-coherent with the
input modulation. We are thus interested in the in-phase and
quadrature-phase components of the voltage oscillating at �.
This oscillating component is

δVout,T(t ) ∝ √
κEκI Re

(
χc[� + �]K[� − �m]e−i�t

−χc[� − �]K∗[� − �m]e+i�t
)

≡ δV I
out,T[�] cos(�t ) + δV Q

out,T[�] sin(�t ). (A20)

Note that here we have omitted the phase of χc[�] which
is a frequency-independent phase offset. The final line
in Eq. (A20) implicitly separates out the in-phase and
quadrature-phase components of the photodetector signal
measured by the network analyzer; the complex response—
the measured cavity transmission coefficient—is then T [�] ≡
δV I

out,T[�] + iδV Q
out,T[�]. Explicitly computing this gives

T [�] = √
κEκI(χc[� + �] − χ∗

c [� − �])K[� − �m],
(A21)

which can be understood as the upper sideband contribution
diminished by the undesired lower sideband transmitted by
the cavity. This is the full model used to fit the data in the
main text. The reflection coefficient R[�] can be calculated in
a similar fashion.

1. Delay, bandwidth, and their product

Both cavity outputs, transmission and reflection, feature
the conventional cavity response χc on top of which is su-
perimposed the OMIT feature described by K[�]. The former
varies in frequency over a scale given by the cavity FWHM κ ,
while the latter varies within a much smaller interval, which
can be read off from Eq. (A17) to be the modified mechanical
linewidth �m + δ�m. Thus the bandwidth of the OMIT feature
is

�OMIT = �m + δ�m ≈ �m(1 + Ceff ), (A22)

where we have defined the effective cooperativity,

Ceff ≡ C
(4�m/κ )2

1 + (4�m/κ )2
, (A23)

which characterizes the efficacy of dynamical radiation pres-
sure effects for a system with finite sideband resolution. In the
limit of infinite sideband resolution, i.e., �m � κ , we have
Ceff → C, and the expression for �OMIT reduces to the one in
the literature [26–28,53].

The delay experienced by the probe depends on whether
it is detected in transmission or reflection. When detected in
transmission, the resonant group delay is given by

τT =
[
− ∂

∂�
(arg T [�])

]
�=�m

.

Evaluating this using the expression for the transmission
coefficient [Eq. (A21)] and the expression for K [Eq. (A17)],
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FIG. 4. Loop diagram of the OMIT measurement. Red shows
optical path, black shows electronic path.

we get

τT = −
(

2

κ
+ 2Ceff

�OMIT

)
≈ − 2Ceff

�OMIT
, (A24)

where the first term is the delay due to the effect of the bare
cavity, while the second term is from OMIT. Since κ � �OMIT

(in the weak-coupling regime we operate in), we can safely
neglect the first term.

When detected in reflection, as in the case of single-port
cavities [26–28,53], the group delay is affected by the out-
coupling efficiency. To wit,

τR =
[
− ∂

∂�
(arg R[�])

]
�=�m

≈ 2Ceff

�OMIT

ηI

1 + Ceff − ηI
. (A25)

The delay-bandwidth product (DBP),

DBP ≡ τ�OMIT, (A26)

is thus different when the probe is measured in transmission
or reflection. In fact,

DBPT = −2Ceff , DBPR = 2CeffηI

1 + Ceff − ηI
. (A27)

Note that when the out-coupling efficiency through the reflec-
tion port is ideal (ηI → 1), DBPR → 2.

APPENDIX B: EXPERIMENTAL DETAILS

1. Calibration of OMIT response

In the experiment, both the excitation to probe the cavity
and the readout are done inside the frequency stabilization
servo loop, as shown in Fig. 4. To isolate the OMIT response
it is necessary to measure and calibrate out the responses of
the other elements of the loop.

In the experiment, a network analyzer (SR785) is used
to apply a stimulus Vexc at the input of the “common-mode
board” (CMB)—a custom-built configurable electronic hard-
ware [54] used as the length control servo here—which
causes the laser frequency to modulate via the FSS (frequency
stabilization servo) loop. This modulation is incident on the
cavity, essentially sensing the OMIT response TOMIT, and gets
detected at a photodiode (with response GPD). The resulting
signal is processed via an analog loop filter with response Gfb

and a pre-amplifier (SR560) with response Gpre. A part of the
output (V1) is detected phase coherently with the excitation
using the network analyzer, while the rest is passed onto the
CMB (with response GCMB). A part of the CMB’s output is

FIG. 5. Measured responses of the various elements in the mea-
surement loop.

also picked off after being summed with the excitation (V2) to
be independently detected using the same network analyzer.
This loop is shown in Fig. 4.

We use the network analyzer to measure the response V1/V2

(vis-á-vis the ratio of the two response measurements V1/Vexc

and V2/Vexc). From the loop diagram we can understand
how to disentangle the information we need —the OMIT
response—from this measurement. Going around the loop
diagram we find for V1

(V1GCMB + Vexc)GfreqGactTOMITGPDGfbGpre = V1,

which implies

V1 = Vexc
G

1 − G

1

GCMB
(B1)

where G = GCMBGfreqGactTOMITGPDGfbGpre is the open-loop
gain of the loop.

Performing a similar calculation for V2 gives

V2 = Vexc
1

1 − G
. (B2)

Combining Eqs. (B1) and (B2),

V1

V2
= G

GCMB
, (B3)

013853-7



T. BODIYA et al. PHYSICAL REVIEW A 100, 013853 (2019)

FIG. 6. Example of a wide-band response measurement of the
cavity taken at 60 mW incident power. The dashed line shows fits.
Note that due to the sparse sampling of frequency, the OMIT dip is
not visible in such measurements.

and so

TOMIT = V1/V2

GfreqGactGPDGfbGpre
. (B4)

Figure 5 shows the measured responses that are used in
conjunction with Eq. (B4) to infer the OMIT response. Note
that we are interested in the shape of the OMIT response and

not its absolute magnitude, which can be established from
the independently measured broadband cavity transmission
(shown in Fig. 6); thus the measured responses in Fig. 5 omit
overall dimensions for GPD.

2. Data analysis

After the data have been corrected, we adopt the following
procedure to extract the relevant optomechanical parameters.
The broadband cavity response, such as the one shown in
Fig. 6, is used to infer the detuning � and the total cavity
linewidth κ . Using these values, we then fit the narrow-band
cavity response, containing the OMIT feature, to extract the
mechanical frequency �m, its effective linewidth �m + δ�m,
and effective mass m, while the bare optomechanical coupling
G = ωc/L ≈ 2π × 0.28 GHz/μm is assumed. The fits to the
data at each value of the incident power give the following
estimates for the various parameters:

κ/2π 21.4 ± 0.3 kHz
�m/2π 23.8 ± 3.2 mHz
�m/2π 27.5 kHz
m 133.7 ± 9.6 g
�/�m −0.96 ± 0.01
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