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Dense ensembles of nitrogen-vacancy (NV) centers in diamond are of interest for various applications,
including magnetometry, masers, hyperpolarization, and quantum memory. All of the applications above
may benefit from a nonlinear response of the ensemble, and hence multiphoton processes are important. An
enhancement of the multiphoton response is demonstrated by coupling the NV ensemble to a superconducting
cavity. Moreover, the measured multiphoton response of the NV ensemble exhibits a regular pattern, which
suggests that a dipolar coupling to nitrogen-14 substitutional defects (P1) plays a role in this process. As an
example of an application, increased responsivity to magnetic field is demonstrated.
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I. INTRODUCTION

A two-level system (TLS) is perhaps the most ex-
treme manifestation of nonlinear response. Systems com-
posed of TLSs and other elements exhibit a variety of
nonlinear dynamical effects, including multiphoton reso-
nances (MPRs) [1-4], frequency mixing [5-7], fluores-
cence [8,9], dynamical instabilities [10,11], suppression
of tunneling [12,13], and breakdown of the rotating-wave
approximation [14].

Here we study nonlinear response of an ensemble of
nitrogen-vacancy (NV) defects in diamond [15]. Two mech-
anisms that allow the enhancement of MPR are explored. The
first one is based on an electromagnetic cavity mode that is
coupled to the spin ensemble [16-23]. The second one is
attributed to hyperfine splitting [24] of P1 defects [25-27]
and their dipolar coupling to the negatively charged NV
defects (NV™).

The NV~ defect has a spin-triplet ground state [28] with a
relatively long coherence time [29]. The NV~ spin state can be
initiated via the process of optically induced spin polarization
(OISP) [30,31] and can be measured using the technique of
optical detection of magnetic resonance (ODMR) [32-34].
These properties facilitate a variety of applications, including
magnetometry [26,35-41], sensing [29,36,42,43], and quan-
tum information processing [44,45].

Dipolar coupling between NV~ and other spin species in
diamond gives rise to intriguing effects, including hyperpo-
larization [46—49] and cross relaxation [27,50,51], and can
be exploited for optical detection of spin defects in diamond
other than NV~ [25,52-57].

The process of cross polarization between NV~ and P1
defects plays an important role in the MPR mechanism. In
general, the efficiency of cross polarization depends on the
rate of a competing effect of thermal polarization, which
is characterized by the longitudinal spin-relaxation rate. At
cryogenic temperatures the thermal polarization rate can be
significantly reduced, and consequently, the efficiency of
cross polarization is enhanced.
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II. LOW-MAGNETIC-FIELD ODMR

A spiral resonator [58] made of 500-nm-/10-nm-thick
niobium/aluminum with an inner radius of 0.7mm and
linewidth and spacing of 20 um is fabricated on a sapphire
substrate. Type-Ib [110] diamond is irradiated with 2.8 MeV
electrons at a dose of 8 x 10'® ¢/cm?, annealed for 2 h at
900 °C and acid cleaned. The sample assembly (see Fig. 1)
is placed at a cryostat with a base temperature of 3.6 K
and mechanically aligned along the magnetic field of an
external superconducting solenoid. The photoluminescence
light passes through an array of filters and is collected by a
photodiode. A microwave synthesizer is connected directly to
a loop antenna (shortened end of a coaxial cable) mounted
below the sapphire substrate, and the signal amplitude is
100% modulated with a low-frequency sine wave. The same
wave is used for the photodiode signal demodulation by a
lock-in amplifier. Microwave reflection measurements of the
resonator yield resonance frequency w. = 27 x 276 MHz,
unloaded quality factor Q = 96, and critical temperature T, =
7K. The rather low Q might be explained by the proximity
to irradiated diamond. The coupling coefficient g between the
resonator and the NV~ ensemble is given by [23]

. yZuohw. [ drnsP:|B.| sin® ¢
B [ dr[B]? ’

where P, =~ 0.15 [57] is the spin polarization, ns = 3 X
10'7 cm~3 is the NV~ ensemble number density, ¢ is the angle
between the NV~ axis and the cavity magnetic field B, 1 is
the free-space permeability, and y, = 27 x 28.03 GHzT ! is
the electron-spin gyromagnetic ratio. Assuming constant P,
throughout the diamond, g is readily calculated by means of
numerical simulation [see Fig. 1(b)] to be g = 8 MHz.

ODMR as a function of magnetic field and frequency is
shown in Fig. 2. The lines marked by crosses in Fig. 2 are
calculated by numerically diagonalizing the NV~ ground-
state spin-triplet Hamiltonian, which is given by [59,60]
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FIG. 1. (a) Experimental setup. The diamond is glued on top
of the spiral resonator, and two multimode optical fibers, F1 and
F2, are attached to the diamond top and side faces, respectively.
A 532-nm-wavelength laser is introduced from one of the fibers,
and the photoluminescence is collected from the other, providing a
geometrical filtering of the laser light. A microwave loop antenna
is placed below the sapphire at a location optimizing the resonator
coupling. (b) CST studio simulation of the spiral fundamental mode
magnetic field distribution.

where S = (Sy, Sy, S;) is a vector spin S = 1 operator, the
raising S; and lowering S_ operators are defined by Sy =
Sy £ 1Sy, the zero-field splitting induced by spin-spin inter-
action D is given by D = 2m x 2.87 GHz, the strain-induced
splitting E is about 2 x 10 MHz for our sample, and B is
the externally applied magnetic field. The field B has two
contributions, B = Bg + B, where Bg (By) is the stationary
(alternating) field generated by the solenoid (the loop antenna)
and is nearly parallel to the lattice direction [111] ([110]).
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FIG. 2. Low-magnetic-field ODMR. The overlaid crosses are
calculated by diagonalizing the NV~ spin Hamiltonian (2). The two
nearly straight diagonal curves (leftmost and rightmost) correspond
to the NV axis vector nearly parallel to the magnetic field, while
the two remaining curves in the middle correspond to the nearly
degenerate three other possible orientations of the NV axis vectors.
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FIG. 3. ODMR with low laser power. (a) The normalized ODMR
signal as a function of driving frequency fi . and magnetic field Bs.
The overlaid hyperbolas are calculated according to Eq. (3). (b) The
normalized steady-state polarization P, /P, is calculated according
to Eq. (4) with the following parameters: o, = 2w x 276 MHz, y, =
2.87MHz, y; = 20Hz, and y, = 30 MHz. In terms of the parameter
n the coupling coefficient B, is expressed as Ba = Baon/v/ 1+ 12,
where S50 = 10.

In a single-crystal diamond the NV centers have four
different possible orientations. When hyperfine interaction is
disregarded, each orientation gives rise to a pair of angular
resonance frequencies wy, corresponding to the transitions
between the spin state with magnetic quantum number O
and the spin state with magnetic quantum number 1. The
line marked by crosses in Fig. 2 with the smallest (largest)
frequency for any given magnetic field corresponds to the
angular frequency w_ (w,) of the NV~ defects with the axis
in the [111] lattice direction. The other two lines represent the
resonances due to the unparallel NV~ defects having an axis
in the lattice direction [111], [111], or [111].

III. NEAR THE LEVEL ANTICROSSING

Let w, denote the angular frequency w_ corresponding to
the NV~ defects with an axis in the [111] lattice direction.
Consider the case where the magnitude Bg of the solenoid
field Bs is tuned close to the value D/y, = 102mT. In the
vicinity of this level anticrossing point (LAC) the angular
frequency w, is approximately given by w, = wy+/1 + 12,
where w,y = «/EDQS is the lowest value of the angular fre-
quency w,, s < 1 is the angle between Bg and the lattice di-
rection [111] (fs = 1.5° and w,9/27r = 110 MHz for the data
shown in Figs. 2, 3, and 4), and the dimensionless detuning 7,
is given by n = y.8Bs/w,0, where §Bs = Bs — D/ .

Measured ODMR near the LAC vs magnetic field Bs and
driving frequency fia = wra/2m of the signal injected into
the loop antenna is seen in Fig. 3(a). The overlaid gray dashed
lines are hyperbolas calculated according to fia = f;, where
the frequency of the /th hyperbola f; is given by

fi = /271 = waoy/1 + n2/27, 3)

where [ is an integer from 1 to 10. As can be seen from
Fig. 3, along the /th hyperbola the largest signal is obtained
when the driving frequency is tuned close to w. /2w, where
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FIG. 4. ODMR with high laser power. The overlaid hyperbolas
are calculated according to Eq. (3), and the locations of the crosses
are calculated according to Eq. (6).

w./2mr =276 MHz is the cavity resonance frequency. This
suggests that the spin MPRs are enhanced due to the inter-
action with the cavity mode.

IV. CAVITY SUPERHARMONIC RESONANCES

The effect of the coupled cavity mode on the spin MPR is
discussed in the Appendix. The theoretical model presented
in the Appendix describes the interplay between two mecha-
nisms. The first one is frequency mixing between transverse
and longitudinal spin driving. Near the avoided crossing point
the NV~ spin states with magnetic quantum numbers —1 and
0 are mixed, and consequently, the amplitudes of transverse
and longitudinal driving become strongly dependent on detun-
ing from the avoided crossing point (even when the external
driving is kept unchanged). The highly nonlinear nature of the
first mechanism results in the generation of harmonics of the
externally applied driving frequency. The second mechanism
is cavity resonance enhancement, which becomes efficient
when one of the generated harmonics coincides with the
cavity resonance band. Under appropriate conditions this may
give rise to a pronounced cavity-assisted multiphoton reso-
nance.

Consider the case where the frequency of excitation in-
jected into the loop antenna is tuned close to the /th super-
harmonic resonance, i.e., w, =~ lwya, where [ is an integer.
In that region, the relative change P, /P, s in spin polarization
in the NV~ triplet ground state is found to be given by [see
Eq. (A33) in the Appendix]

P. BAICI?
S [P/ L1 S 4
Py AT @

where [see Eq. (A43)]
2( wp
wh KJO (QTL)PZQ
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wy, 1s the amplitude of longitudinal spin driving [see Eq. (A8)],
the dimensionless coupling coefficient B, is given by
Ba = wa/\/y1y2, the dimensionless detuning coefficients
B and By are given by B = (0. —lwLa)/y. and By =
(wa — lwra)/y», respectively, w. is the cavity-mode angular
frequency, y. is the cavity-mode damping rate, y; and y, are
the longitudinal and transverse spin damping rates, respec-
tively, and k = g%/y» . is the cooperativity parameter. A plot
of the normalized steady-state polarization P./P, ¢ given by
Eq. (4) is shown in Fig. 3(b). The comparison between data
and theory yields qualitative agreement.

V. P1

ODMR data near the LAC with relatively high laser power
are shown in Fig. 4. The increase in laser power gives rise
to excessive heating, and consequently, the superconducting
resonator mode becomes undetectable (in a microwave re-
flectivity measurement) due to a superconduction to normal-
conduction phase transition of the spiral. The plot contains
a variety of peaks all occurring along the above-discussed
hyperbolas [see Eq. (3)], suggesting that some multiphoton
processes continue to exist regardless of the spiral resonator
state. Locations of all data peaks are determined by a single-
frequency denoted by f,. This can be seen from the cross
symbols added to Fig. 4. The frequency fi; of the kth cross
symbol overlaid on the /th hyperbola in Fig. 4 is given by

k
S = Tfmv (6)

where the frequency f, takes the value f,, = 86 MHz. This
pattern of peaks remains visible with the same value of f,
over a wide range of input microwave power (between 10
and 25dBm), tenfold laser power attenuation, few-degree
magnetic-field misalignments, and temperature change. With
temperature rising to 30 K, the signal from the higher-order
hyperbolas disappears, but the f;, beating remains on the main
hyperbola. The fact that some of the peaks do not appear at the
same frequency for different magnetic fields validates that the
pattern is not a measurement artifact of spurious resonances.
In addition, the synthesizer signal harmonics were carefully
examined with a spectrum analyzer to verify they are all well
below the ODMR sensitivity threshold. The measured value of
fm suggests a connection between MPRs in the NV~ defects
and P1 defect [61-64], as is discussed below.

The P1 defect has four locally stable configurations. In
each configuration a static Jahn-Teller distortion occurs, and
an unpaired electron is shared by the nitrogen atom and by one
of the four neighboring carbon atoms, which are positioned
along one of the lattice directions [111], [111], [111], and
[111] [20,46,53,54,65-69] .

When both nuclear Zeeman shift and nuclear quadrupole
coupling are disregarded, the spin Hamiltonian of a P1 defect
is given by [20,63,70]1 H = y.B-S+ h'A (Sl + S,I,) +
h*1A||SZIZ, where S = (S;, Sy, S;) is an electronic spin-1/2
vector operator, I = (I, I, I;) is a nuclear spin-1 vector op-
erator, A; = 2w x 114.03MHz and A; =27 x 81.33MHz
are, respectively, the longitudinal and transverse hyperfine
parameters, and the z direction corresponds to the dia-
mond (111) axis. The electron spin resonance at angular
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frequency y.B is split due to the interaction with the nuclear
spin into three resonances, corresponding to three transi-
tions, in which the nuclear-spin magnetic quantum number
is conserved [27,52,55,65,71,72]. For a magnetic field larger
than a few milliteslas the angular resonance frequencies are
approximately given by y.B and y.B =+ we,, where w? =
Aﬁ cos? 6 + Aﬁ_ sin? 6 and where 6 is the angle between the
magnetic field B and the P1 axis [61].

Consider the case where B is in the lattice direction [111].
For this case, for 1/4 of the P1 defects we, = 2 x 114 MHz,
whereas for the other 3/4 of the P1 defects (unparallel to B
having an axis in one of the lattice directions [111], [111],
and [111]) wen = 27 x 85.6 MHz, close to the observed value
of the frequency f,, = 86 MHz. The fact that the parallel P1
defects do not have a significant effect on the ODMR data
can be attributed to the fact that these defects generate only
transverse driving for the NV~ defects with an axis parallel to
the crystal direction [111], whereas the unparallel P1 defects
generate both transverse and longitudinal drivings, which in
turn allow nonlinear processes of frequency mixing [73].

The effect of dipolar interactions on the measured ODMR
signal can be estimated using perturbation theory. To first
order the above-discussed hyperfine splitting has no effect.
However, as is argued below, a nonvanishing effect is obtained
from the second order. Consider a pair of P1 defects with
a dipolar coupling to a single NV~ defect [74—80]. Both P1
defects are assumed to be unparallel to B; that is, the frequen-
cies of their electroniclike transitions are approximately given
by y.B/2m and y.B/2m £ 85.6 MHz. The NV~ defect, on the
other hand, is assumed to be nearly parallel to B, thus having
an energy separation of 2/iy.B between the spin states with
magnetic number +£1.

OISP polarizes the NV~ to the mg; = 0 state. The re-
quired condition for the ODMR signal along the /th hy-
perbola is achieved by excitation at wya = w,/I, populat-
ing the my = —1 state, which has lower photoluminescence.
Let (m§Y, mE'® + mE™® mP1a + mP1®) designate a subspace,
where m§" is the NV~ electronic-spin magnetic number,

mgla (mg”’) is the first (second) P1 electronic-spin magnetic
number, and mP'® (mf'®) is the first (second) P1 nuclear-
spin magnetic number. Note that subspaces (—1, +1, j) and
(+1, -1, j) for j € {—2,—1,0, 1, 2} are energetically sepa-
rated by 7| j|wen. When w, = kwe, for integer k, transitions
are stimulated between (—1, 41, j) and (41, —1, j), further
reducing the population of (0, 41, j) and consequently en-
hancing the ODMR signal.

By employing perturbation theory [81] we find that the
effective Rabi rate for these tripolar transitions is roughly
given by wpipiny = (nsypl/nD)zD, where ns pi is the density
of P1 defects (which is assumed to be about 100 times larger
than the density of NV~ defects and which can be expressed
in terms of the relative concentration of nitrogen atoms py as
nsp1 = 1.8 x 102 cm~3 py) and where np = 4w D/uoy2h =
5.5 x 10%2 cm~3. The roughly estimated value of py = 1074
yields the rate wpipinv/27 2~ 300 Hz. In a similar setup [57],
at T = 3.5K the maximal OISP rate was found to be T, ~
200 Hz and y; =~ 25 Hz; hence this mechanism is expected to
be significant to a low-temperature ODMR measurement.

Note that the transition between (—1,+41,0) and
(41, —1,0) does not require additional energy. Stimulated
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FIG. 5. Derivative of the ODMR photoluminescence signal /
with respect to the driving signal frequency fia at high laser
power. The absolute maximal values are achieved not along the
single-photon curve (bottom right diagonal), but rather at the spots
attributed to P1 hyperfine processes on the NV MPR curves
(top left diagonals).

nuclear-spin rotation with w, = kwe,/2 for integer k allows
population of (41, —1, j;) for j; € {—2,—1, 1, 2} via pro-
cesses of sequential photon absorption. This effect gives rise
to the weak peaks on the second (I = 2) hyperbola in Fig. 4.

The MPR can be employed to enhance the responsivity of
diamond-based magnetometry. Consider a setup with a small
frequency modulation about a central frequency f; » and pho-
toluminescence signal / demodulation readout. To maximize
the responsivity, the bias magnetic field Bs and f; o should be
set to maximize the derivative |dI/dfia|. As can be seen in
Fig. 5, |dI/dfia| is maximal near the spots associated with P1
hyperfine transitions at the MPR of N'V. This enhancement is
attributed to the relatively narrow resonance of the P1 process
compared to the NV MPR.

VI. SUMMARY

Multiphoton processes are surprisingly very measurable
in Ib diamonds, making this mode of operation preferable
for enhanced sensitivity in multiple applications. Of partic-
ular interest is the interaction of the optically measurable
and polarizable NV ensemble with the naturally occurring
P1 ensemble. The unexpected strength of coupling to the
hyperfine transitions of the P1 requires further investigation
to determine the nature of the interaction. The NV defects
can potentially provide optical access to a much denser and
coherent (nuclear) ensemble of the P1.
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APPENDIX: DRIVEN SPINS COUPLED TO A RESONATOR

Consider a cavity mode coupled to a spin ensemble. The
Hamiltonian of the closed system is taken to be given by
—1 ‘ SZ M Z -
where . is the cavity-mode angular frequency, ATA is a
cavity-mode number operator, X = (X, X, X;), and the spin
operators X, Xy = (¥, +1X,)/2 and X_ = (X, —iX,)/2
are related to the eigenvectors |t) of the operator X, by

X = H)(F ===l (A2)
Xy =)=l (A3)
o= [=)(+]. (A4)

The effective magnetic field 2(¢) is expressed in terms of
the angular frequency wr and amplitude w; of transverse
driving, the longitudinal magnetic-field component wy(t), and
the transverse one wa

Q(1) = wi[cos(wrt)X + sin(wrt)Y] + woZ + waX  (AS)
or
Q1) = w1 (e iy + M) + wo(1)2
+ (g +100), (A6)
where w, is a real constant and
iy = (1/2)& £ i§). (A7)

While w; and wr are both assumed to be real constants, wq is
allowed to vary in time according to

wy = w, — wyp sin(wr t), (A8)

where w,, wp, and wy are all real constants.

The Bose
[A,AT]=1 (A9)
and spin

(2, 2] =2%,, (A10)
[T, 5 ]=-2%_, (A11)
[, 2 ]=%; (A12)

commutation relations are assumed to hold. The Heisenberg
equations of motion are generated according to

dO
— = —i[0, i~ "Ho],

7 (A13)
where O is an operator; hence
dA . .
I = —iwA —igx_, (A14)
dx, ¥
Pl Wi, +W'X_, (A15)
and
ds, w/
e =iwy X4 — TEZ, (A16)

where
Wi = —i(w1e " + wa + 2gA). (A17)
Averaging
(A) = «a, (A18)
(X)) =P, (A19)
(B4) =Py (A20)
and introducing damping lead to
da . .
T —(iwc + ye)a — igP_, (A21)
dP, .
T QiPy + QiP_ — (P, — Pyy), (A22)
and
dP . QF
d—: = iwgPy — TIPZ — yoPy, (A23)

where y, is the cavity-mode damping rate, y; and y, are the
longitudinal and transverse spin damping rates, respectively,
and

Q) = —i(wie " + wp + 2ga). (A24)

For our experimental conditions the term proportional to w;
in Eq. (A24) can be disregarded.

The effect of OISP can be accounted for by adjusting the
values of the longitudinal damping rate y; and steady-state
polarization P, and making them both dependent on laser
intensity [23,32]. In this approach y; is given by y; = yi1 +
y10, Where yt is the rate of thermal relaxation and y,o is the
rate of OISP (proportional to laser intensity), and the averaged
value of steady-state polarization P, g is given by

vitP. st + Y0P s0
P = y .
|

While P, st represents the steady-state polarization in the limit
yit > vio (i.e., when OISP is negligibly small), the value
is P, so for the other extreme case of y;o > y7 (i.e., when
thermal relaxation is negligibly small).

By employing the transformation

(A25)

P, =e%Py,, (A26)

where

b4 = / dr’ [wo(t) + A] (A27)

and A is a real constant (to be determined later), Eqs. (A21),
(A22), and (A23) become

dol . . (O] § * *
E = —(io. + J/c)a - lg(%l) Pd+a (A28)
dP, -
o oaA(CPay + 7Py — vi(P, — Prg), (A29)
and
dP, .
LV I N (A30)

dt
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where

= &659(1 )
WA

(A31)

When ¢ is treated as a constant, the steady-state solution of
Eqgs. (A29) and (A30) reads

*P,
Py = & (A32)
2(—iA — yr)
and

lwat?

P loall”
wa

o8 I+ "y2 + )/_22

With the help of the Jacobi-Anger expansion, which is
given by

o0
exp(izcosf) = Z i"J,(z)e™?, (A34)
n=—00
one obtains [see Eqgs. (A8) and (A31)]
QI _im o . /
f=—tem Y Jp(&)e’(“’”AH @l (A35)
WA oo wr,

Consider the case where w, =~ lwy,, where [ is an integer. For
this case the detuning A is chosen to be given by A = lw, —
w,, and consequently, ¢ becomes

o0
Q i Z N O R e
{=—e “ 1 Jl/ — ]e .
WA w

I'=—00 L

(A36)

The driving term of Eq. (A28) —ig(wal /)" Py, is ap-
proximated by keeping only the term !” = 0 in Eq. (A36).
When Py, is treated as a constant, Eq. (A28) yields a
steady-state solution given by o = age"“'', where

e 1 () pr
ige™ Jo( 2 ) Py

A37
Ye(l +iBu) (A3

oy =

and
w. — lwy,

Ve

Be = (A38)

To lowest nonvanishing order in the coupling g the coefficient
P}, in Eq. (A37) is evaluated using Eq. (A32) by keeping only
the term I’ = —I in Eq. (A36) and keeping only the term —iw
in Eq. (A24),

L

_lop
i'lem o wpd_ (ﬂ>PZ s

. .
= . , (A39)
o 2y>(1 + iBu)
where
Wy — la)L
Bag = ——, (A40)
V2
and thus [see Eq. (A37)]
2l gon Jo(2)00(2)Pes
oy = ———S2A - (A41)

vev: 200+ iBe)(1 +iBu)

It is assumed that the dominant contribution of ¢ to the
equation of motion (A29) and (A30) comes from a term
labeled ¢,, which is given by [see Egs. (A24) and (A36)]

i, 2
e ¢, = i—’J_Z(ﬂ> + g“OJo(ﬂ) (A42)
wr, WA wr,
With the help of Eq. (A41) this becomes
(2P
ey, :J,<ﬁ) th S ) (a)
wL (A +iBe)(1 +ifa)
where the cooperativity parameter « is given by
K = g . (A44)
Y2Ve

The above results (A33) and (A43) lead to Eq. (4) in the main
text for the steady-state polarization.
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