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Second-order Talbot self-imaging effect in the time domain
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Different from classical Talbot self-imaging, second-order spatial Talbot effect is a kind of second-order
imaging, in which the self-imaging of an object is observed through intensity correlation measurement. Here,
in terms of space-time duality, we investigate the temporal counterpart of second-order Talbot self-imaging
with temporally incoherent light. Our work shows that second-order Talbot effect in the time domain is
related to the joint dispersion of light pulse in dispersive medium. Particularly, based on the discrete Fourier
transformation, the fractional Talbot self-imaging via intensity correlation doesn’t generally possess a definite
fractional period, which contradicts some articles’ results. Our results may be useful for implementing the
repetition-rate-multiplication technique and remotely transmitting the periodic temporal signals robustly.
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I. INTRODUCTION

The Talbot self-imaging effect as a kind of first-order
imaging was first observed through the intensity distribution
in 1836 by Henry Fox Talbot [1]. Lord Rayleigh later derived
the formula of Talbot length and interpreted this effect as a
consequence of Fresnel diffraction [2]. This phenomenon has
been used in many applications including optical measure-
ment [3], waveguide arrays [4], x-ray imaging [5], etc. Re-
cently, many studies have shown that the second-order Talbot
self-imaging effect in spatial domain can be performed either
with entangled photon pairs [6–8] or with pseudothermal
light [9–11]. The essential nature of the second-order Talbot
self-imaging, different from classical Talbot effect, lies in the
spatial correlation of entangled photons or thermal light fields.
Hence, similar to ghost imaging, the second-order Talbot self-
imaging effect also can be categorized to the second-order
imaging.

By taking into account the duality between the paraxial
diffraction of light beams in space and the temporal dispersion
of narrow-band pulses in dispersive medium, the temporal
analogies of many spatial systems were presented, such as
ultrahigh-speed optical signal processing [12], ultrafast opti-
cal oscilloscope [13,14], temporal imaging [15], and temporal
cloaking [16]. Recently, this duality has also been applied to
explore the temporal analog of ghost imaging [17–27].

Motivated by the similarity between ghost imaging and
second-order Talbot effect, in this paper, we investigate the
temporal counterpart of second-order Talbot self-imaging
with temporally incoherent light according to the space-time
duality. The second-order Talbot effect in the time domain
discussed here could be applied to remotely transmit the peri-
odic signal and multiply the repetition rate of periodical signal
without the need of the dispersion compensation or cancella-
tion. The paper is organized as follows. In Sec. II, we discuss
the wave equations describing the paraxial diffraction and
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dispersion, and then present the impulse response functions
in the time domain for several typical optical systems. The
analysis of the second-order Talbot effect in the time domain
is presented in Sec. III. Finally, we make the conclusion in
Sec. IV.

II. WAVE EQUATIONS AND IMPULSE RESPONSE
FUNCTIONS IN THE TIME DOMAIN

We adopt the wave equations to describe paraxial diffrac-
tion and the narrow-band dispersion [28], respectively. Con-
sidering that the paraxial rays lie close to the optical axis z,
i.e., the phase variation mostly exists along the axis z, we can
express the optical field distribution as

ψ (x, y, z) = E (x, y, z) exp(ikz), (1)

where k is the wave number and E (x, y, z) is a slowly varying
envelope function relative to k. Due to the wave equation
satisfying the Helmholtz equation

∇2ψ + k2ψ = 0, (2)

when substituting Eq. (1) into the Helmholtz equation, we can
obtain the reduced wave equation

∂2E

∂x2
+ ∂2E

∂y2
+ ∂2E

∂z2
+ 2ik

∂E

∂z
= 0. (3)

As E (x, y, z) is a slowly varying envelope function, the
paraxial approximation is usually taken into account,∣∣∣∣∂2E

∂z2

∣∣∣∣ <<

∣∣∣∣2k
∂E

∂z

∣∣∣∣. (4)

Under this approximation, Eq. (3) becomes

∂2E

∂x2
+ ∂2E

∂y2
+ 2ik

∂E

∂z
= 0. (5)

Equation (5) is called the paraxial wave equation characteriz-
ing paraxial diffraction. For simplicity, we just consider the
transverse one-dimensional case of the paraxial diffraction
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equation. One of its exact solutions is

E (x, y, z) =
∫∫

E (x0, y0, 0)h(x, y; x0, y0)dx0dy0, (6)

where E (x0, y0, 0) and E (x, y, z) are the optical field dis-
tributions at the initial position (x0, y0, 0) and a final posi-
tion (x, y, z), respectively, and h(x, y; x0, y0) is the impulse
response function in free space from the initial position to
the final position (x, y, z). This impulse response function
h(x, y; x0, y0) is written as

h(x, y; x0, y0) = k

i2πz
exp

{
ik

2z

[
(x − x0)2 + (y − y0)2

]}
.

(7)
The above exact solution Eq. (6) can also be obtained ac-
cording to Fresnel diffraction theory, which is called Fres-
nel diffraction integral [28,29]. This implies there is a link
between the paraxial wave equation and Fresnel diffraction
theory.

As for a differential equation that describes the temporal
dispersion of narrow-band pulses propagating in a dispersive
medium, we can utilize the similar approach as in the space
domain. In terms of the first-order dispersion approximation
[29], the differential equation in the time domain can be
written as

∂2E

∂τ 2
+ 2i

β

∂E

∂l
= 0, (8)

where β is the group velocity dispersion coefficient and E
denotes the optical field distribution which is related to both
the time τ and the distance l propagating in the dispersion
medium like single-mode optical fiber. Obviously, Eq. (8)
describing dispersion has the same form as the paraxial wave
equation. Hence the dispersion can be regarded as the tem-
poral analog of the paraxial diffraction, which is the duality
between the paraxial diffraction and the dispersion. Therefore,
the solution of Eq. (8) has the same mathematical form as that
of the paraxial wave equation, which is

E (l, τ ) =
∫

E (0, τ0)h(τ, τ0)dτ0, (9)

where h(τ, τ0) is the temporal impulse response function
characterizing the response at time τ to an input impulse at
τ0 in a dispersive medium. This impulse response function
h(τ, τ0) can be expressed as

h(τ, τ0) =
√

1

2π i�
exp

[
i

2�
(τ − τ0)2

]
, (10)

where � = βl indicates the group delay dispersion (GDD)
parameter of the dispersion medium. The GDD parameter can
be manipulated by l , the length of dispersion medium like
optical fiber.

Based on the duality between the paraxial diffraction
and the dispersion discussed above, the temporal impulse
functions of several typical optical systems can be obtained.
Similar to the spatial object, the impulse response function of
a temporal object can be expressed as

h(τ, τ0) = P(τ0)δ(τ − τ0), (11)

FIG. 1. Temporal lens is performed with an electro-optic modu-
lator. The light pulse inputs at time τ0 and outputs at time τ .

where P(τ ) is a function describing the temporal structure of
the temporal object.

For the temporal lens, it is used to imprint a quadratic
phase modulation on the envelope of a light pulse. An ultrafast
electro-optic modulator can act as a temporal lens, as shown
in Fig. 1. Therefore, the impulse response function of the
temporal lens can be expressed in the form

h(τ, τ0) = exp

(
− iτ 2

2� f

)
δ(τ − τ0), (12)

where � f characterizes the focal time of the temporal lens.
Two sections of dispersion fiber and a temporal lens can

form a temporal imaging system, as shown in Fig. 2. In terms
of Eqs. (10) and (12), we can express the impulse response
function of the temporal imaging system as

h(τ, τ0) =
∫

h(τ ′, τ0)h(τ ′′, τ ′)h(τ, τ ′′)dτ ′dτ ′′

= 1

2π i
√

�2�1
exp

(
iτ 2

0

2�1
+ iτ 2

2�2

)

×
∫

exp

[
iτ ′2

2

(
− 1

� f
+ 1

�1
+ 1

�2

)

− iτ ′
(

τ0

�1
+ τ

�2

)]
dτ ′, (13)

where �1 = βl1 and �2 = βl2.
If the imaging condition 1

�1
+ 1

�2
= 1

� f
is satisfied, the

term including τ ′2 in Eq. (13) will disappear. Thus Eq. (13)

  

  

  

FIG. 2. Schematic view of a temporal imaging system. l1 and l2

denote the length of two optical fibers and τ represents the time.
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FIG. 3. Schematic illustration for second-order temporal Talbot self-imaging effect with temporally incoherent light. (a) Scheme I;
(b) scheme II; (c) scheme III. TS denotes temporally incoherent light, TO is the temporal object, FBS is fiber beam splitter, TL is the temporal
lens, two detectors D1 and D2 are used to detect the temporal signal, C.M. means intensity fluctuation correlation measurement, and τ denotes
the time.

will be reduced to

h(τ, τ0) = 1

i

√
�1

�2
exp

(
iτ 2

0

2�1
+ iτ 2

2�2

)
δ

(
τ0 + �1τ

�2

)
. (14)

If the imaging condition is not satisfied, Eq. (13) can be
written as

h(τ, τ0) = 1√
2π i�R

exp

{
i

2�R

[
τ 2

0

(
1 − �2

� f

)

+ τ 2

(
1 − �1

� f

)
− 2ττ0

]}
, (15)

where �R = �1 + �2 − �1�2
� f

.

III. SECOND-ORDER TEMPORAL TALBOT
SELF-IMAGING

In view of space-time duality, the temporal counterparts of
second-order spatial Talbot self-imaging can be constructed as
shown in Fig. 3, where three schemes are presented. Scheme I
for second-order temporal Talbot self-imaging is illustrated in
Fig. 3(a). We assume the source field E0(τ0) to be temporally

complete incoherent

〈E∗
0 (τ0)E0(τ ′

0)〉 = I0δ(τ0 − τ ′
0), (16)

where I0 is a constant with the same dimension as the intensity.
In practice, an amplified spontaneous emission source such
as a broad-area superluminescent diode light source can be
treated as a fully temporal incoherent light source approxi-
mately [30]. The pulse emitting from the source is coupled
into a dispersive medium such as a section of single-mode
optical fiber and then modulated by the temporal object. The
pulsed light carrying the object information is then divided
into two beams by the fiber beam splitter. In path 1, the pulse
after propagating through a dispersive medium is received
by the detector D1, while path 2 consists of a temporal lens
and the dispersive media. The detector D2 is employed to
measure the intensity of light at the end of path 2.

We now study the evolution of second-order temporal
Talbot imaging, which is represented by the evolution of the
intensity fluctuation correlation of the correlated pulsed light
propagating through two dispersive media in scheme I. With
the help of Eqs. (10)–(12), the impulse response functions
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from the temporal incoherent light source to the detectors D1

and D2 are, respectively, written as

h1(τ1, τ0) = 1

2π i
√

�0�1

∫
P(τ )

× exp

[
i

2�0
(τ − τ0)2 + i

2�1
(τ1 − τ )2

]
dτ,

(17)

h2(τ2, τ0) = 1

2π i
√

� f �0
exp

(
i
� f − �2

2�2
f

τ 2
2

)

×
∫

exp

[
i

2�0
(τ − τ0)2 − iττ2

� f

]
P(τ )dτ,

(18)

where �0, �1, and �2 are the GDD parameters of the dis-
persive medium between the source and the temporal object,
between the temporal object and D1, and between the tempo-
ral object and the temporal lens, respectively. In addition, � f

characterizes the focal time of the temporal lens, which can be
regarded as the effective GDD parameter of the temporal lens,
and the GDD parameter of the dispersive medium between
the temporal lens and D2 is also equal to � f . Let E1(τ1) and
E2(τ2) be the fields at D1 and D2, respectively. Substituting
Eqs. (17) and (18) into Eq. (9), we can obtain, according to
Eq. (16), the first-order correlation function between these two
fields, which is written as

〈E∗
1 (τ1)E2(τ2)〉

= I0

4π2�0
√

�1� f
exp

(
iτ 2

2
� f − �2

2�2
f

)

×
∫

exp

[
− i

2�1
(τ1 − τ )2 − iττ2

� f

]
|P(τ )|2dτ. (19)

In scheme I, D1 is a fast time-resolving detector. In the space
domain, a lens and a point detector located at the focus point
of the lens form a coherent detection system [31]. Correspond-
ingly, the whole of the temporal lens, D2, and the dispersive
medium between them act as a coherent detection system in
the time domain. Thus D2 should be a fast detector or a point
detector in the time domain. The response time of D2 is shorter
than the width of the pulse. Here we let τ2 = 0. For simplicity,
in this paper we assume the temporal structure function of the
temporal object to be real with only two values, zero and 1,
so that |P(τ )|2 = P(τ ). It is noted that the GDD parameter �0

has no impact on the field correlation 〈E∗
1 (τ1)E2(τ2)〉 since �0

contributes an equal phase change to the optical field E1(τ1)
and E2(τ2). Thus Eq. (19) reduces to

〈E∗
1 (τ1)E2(0)〉 ∝

∫
exp

[
− i

2�1
(τ1 − τ )2

]
P(τ )dτ, (20)

which characterizes the dispersion of the temporal object
in the dispersive media similar to the near-field diffraction
of an object in the space domain. According to Gaussian
moment theorem, the intensity fluctuation correlation can be

expressed as

〈	I1(τ1)	I2(0)〉 = |〈E∗
1 (τ1)E2(0)〉|2

∝
∣∣∣∣
∫

exp

[
− i

2�1
(τ1 − τ )2

]
P(τ )dτ

∣∣∣∣
2

.

(21)

Specially, we assume the temporal object to be a temporal
grating. The temporal grating is a cycle square pulse sequence
which can be constructed by a continuous-wave light source
passing through an electro-optic pulse generator. Therefore,
the temporal structure function of the temporal grating can be
written in the Fourier series

P(τ ) =
∞∑

n=−∞
Cn exp

(
i2πnτ

T

)
, (22)

where Cn = sin(naπ )
nπ

, n is an integer, and T and a are the
period and duty cycle of the temporal grating, respectively.
Substituting Eq. (22) into Eq. (21), we obtain

〈	I1(τ1)	I2(0)〉

∝
∣∣∣∣∑

n

Cn exp

(
iπ

n2

T 2
2π�1

)
exp

(
i2π

n

T
τ1

)∣∣∣∣
2

. (23)

On the condition that

�1 = q
T 2

π
= q�T , (24)

where q is an integer number and �T = T 2/π is defined as
the Talbot GDD parameter similar to the Talbot length in the
space domain, Eq. (23) thus reduces to

〈	I1(τ1)	I2(0)〉 ∝ |P(τ1)|2. (25)

From the above equation, we can find that the temporal Talbot
self-imaging can be achieved through intensity fluctuation
correlation measurement.

Furthermore, Eq. (23) can also characterize the fractional
Talbot effect. We define

an = exp

(
iπ

n2

T 2
2π�1

)
, (26)

g(τ1) =
∣∣∣∣ ∑

n

Cn exp

(
iπ

n2

T 2
2π�1

)
exp

(
i2π

n

T
τ1

)∣∣∣∣
2

.

(27)

If q in Eq. (24) is a fraction number, we write Eq. (24) as

�1 = r

p
�T , (28)

where r and p are coprime integers. Substituting Eq. (28) into
Eq. (26), we have

an = exp

(
i2πn2 r

p

)
, (29)

an+p = exp

[
i2π (n + p)2 r

p

]
= exp

(
i2πn2 r

p

)
= an. (30)
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Due to the periodicity of an, we can expand an in discrete
Fourier series as

an = 1

p

p−1∑
m=0

Am exp

(
i2πn

m

p

)
, (31)

where the discrete Fourier coefficient Am satisfies

Am =
p−1∑
l=0

exp

(
i2π l2 r

p

)
exp

(
− i2π l

m

p

)
. (32)

In terms of the above equation, we get

g(τ1) =
∣∣∣∣∑

n

Cnan exp

(
i2π

n

T
τ1

)∣∣∣∣
2

=
∣∣∣∣∑

n

Cn
1

p

p−1∑
m=0

Am exp

(
i2πn

m

p

)
exp

(
i2π

n

T
τ1

)∣∣∣∣
2

=
∣∣∣∣1

p

p−1∑
m=0

Am

∑
n

Cn exp

[
i2πn

(
τ1 + m

p
T

)/
T

]∣∣∣∣
2

.

Combining Eq. (22), we obtain

g(τ1) =
∣∣∣∣1

p

p−1∑
m=0

AmP

(
τ1 + m

p
T

)∣∣∣∣
2

. (33)

It shows that the intensity fluctuation correlation
〈	I1(τ1)	I2(0)〉, which is proportional to g(τ1), can be
expressed as a superposition of finite copies of the original
temporal gratings P(τ ) shifted by multiples of T

p and properly
modulated. Moreover, we can prove that, for p = 2, the
fractional Talbot image indicated by g(τ1) is reproduced
exactly but is shifted by half-period T/2. For �1 = 1

4�T , the
period of the Talbot image is T/2. However, for p = 3, r = 1,
according to Eqs. (32) and (33) and the periodicity of temporal
grating, we can obtain

g(τ1) = 1

3

[
|P(τ1)|2 +

∣∣∣∣P
(

τ1 + T

3

)∣∣∣∣
2

+
∣∣∣∣P

(
τ1 + 2T

3

)∣∣∣∣
2

+ 2P

(
τ1 + T

3

)
P

(
τ1 + 2T

3

)

− P(τ1)P

(
τ1 + T

3

)
− P(τ1)P

(
τ1 + 2T

3

)]


= g

(
τ1 + T

3

)

= g

(
τ1 + 2T

3

)
, (34)

and thus the period of Talbot image isn’t T
3 or 2T

3 for this
case. Furthermore, for p = 6, 8, in the same way we prove that
the fractional Talbot image hasn’t a definite fractional period,
which contradicts the results of some articles [9,32].

Accordingly, we plot in Fig. 4 the second-order temporal
Talbot carpet, given by the evolution of intensity fluctuation
correlation with the GDD parameter �1. To be specific, the
period and duty cycle of temporal grating for both Fig. 4 and
the following figures are T = 20 ps, a = 0.15, and −100 �
n � 100, respectively. Hence the Talbot GDD parameter is
�T = 127 ps2. From Fig. 4, we can see that the reproduced
imaging of temporal grating can be reconstructed when the

τ1 (ps)

Φ
1 (p

s2 )

 

 

0 20 40 60 80
0

127

254

381

508

0

0.5

1

FIG. 4. Temporal Talbot carpet for scheme I, given by the in-
tensity fluctuation correlation with the GDD parameter �1 and the
time τ1.

self-imaging condition �1 = q�T is satisfied. However, for
�1 = �T /2, we can also find that the Talbot image is repro-
duced exactly but is shifted by T/2. For �1 = 1

4�T , the period
of the Talbot image shown in Fig. 4 is T/2. These results
coincide with our theoretical analysis.

Next we will discuss scheme II as shown in Fig. 3(b)
for second-order temporal Talbot self-imaging effect. The
difference between scheme II and scheme I is that no temporal
lens exists in scheme II. Following the same way as used in
scheme I, the first-order correlation function between the two
light fields at the detection plane in scheme II can be expressed
in the form

〈E∗
1 (τ1)E2(τ2)〉

= I0

4π2�0
√

�1�2
exp

[
i(τ1 − τ2)2

2(�2 − �1)

]

×
∫

P(τ ) exp

[
i

2�eff

(
τ − �1τ2 − �2τ1

�1 − �2

)2]
dτ,

(35)

where �eff = �1�2
�1−�2

denotes the effective GDD parameter.
Letting τ2 = 0, we can express the intensity fluctuation cor-
relation as

〈	I1(τ1)	I2(0)〉

∝
∣∣∣∣
∫

P(τ ) exp

[
i

2�eff

(
τ − �2τ1

�2 − �1

)2]
dτ

∣∣∣∣
2

. (36)

In terms of the self-imaging condition �eff = �1�2
�1−�2

= q�T

and Eq. (36), the self-imaging for the temporal grating can be
achieved as P( �2τ1

�2−�1
). Consequently, the temporal object is

changed by a factor | �1
�eff

| = |1 − �1
�2

|, that is to say, the image
of the temporal grating can be enlarged or shrunk. Moreover,
the effective GDD parameter for self-imaging can be adjusted
not only by the parameter in path 1 but also by path 2 since
�1 = q�T �2

q�T −�2
.

According to Eq. (36) and assuming the GDD parameter
�1 = 254 ps2, we plot the temporal Talbot carpet in Fig. 5,
that is, the evolution of intensity fluctuation correlation as a
function of the effective GDD parameter �eff . From Fig. 5,
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FIG. 5. Temporal Talbot carpet for scheme II, given by the
intensity fluctuation correlation with the effective GDD parameter
�eff and the time τ1.

we can see that, when �eff = 127 ps2, the image is enlarged
with a period of 40 ps, yet when �eff = 508 ps2, the image is
shrunk with a period of 10 ps. Furthermore, we can see, when
�eff is equal to �1, the temporal grating is reproduced.

Finally we analyze the second-order temporal Talbot effect
with scheme III as shown in Fig. 3(c). The temporal object
is placed in path 1 after the fiber beam splitter similar to
the temporal ghost imaging. In the same way, the first-order
correlation function can be expressed in the form

〈E∗
1 (τ1)E2(τ2)〉

= I0

2π
√

�1(�2 − �0)
exp

[
i(τ1 − τ2)2

2(�2 − �1 − �0)

]

×
∫

exp

{
i

2�eff

[
τ + τ1(�2 − �0) − τ2�1

�1 − �2 + �0

]2}
P(τ )dτ,

(37)

where �0, �1, and �2 are the GDD parameters of the dis-
persive medium between the source and the temporal object,
between the temporal object and D1, and between the source
and D2, respectively. In addition, the effective GDD parameter
is defined as �eff = �1(�2−�0 )

�1−(�2−�0 ) . The intensity fluctuation
correlation then can be written as

〈	I1(τ1)	I2(τ2)〉

∝
∣∣∣∣
∫

exp

{
i

2�eff

[
τ − τ2�1 − τ1(�2 − �0)

�1 − �2 + �0

]2}
P(τ )dτ

∣∣∣∣
2

.

(38)

The above equations imply that the second-order temporal
Talbot self-imaging effect can be considered as the conse-
quence of the joint dispersion, which plays the same role
as that of the joint diffraction in second-order spatial Talbot
effect, between the correlated fields.

From Eq. (38), one can see that the image of the temporal
grating now can be obtained as P( τ2�1−τ1(�2−�0 )

�1−�2+�0
). For scheme

III, the image of temporal grating can be enlarged or shrunk
if D1 or D2 is a point detector in the time domain. Here let
τ1 = 0 and �1 = 127 ps2. Accordingly, the temporal Talbot
carpet for scheme III is plotted in Fig. 6 in terms of Eq. (38),
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Φ
ef
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FIG. 6. Temporal Talbot carpet for scheme III, given by the
intensity fluctuation correlation with the effective GDD parameter
�eff and the time τ2.

where we can also see that the image of temporal grating can
be recovered, enlarged, or shrunk. This result implies that the
Talbot effect based on intensity fluctuation correlation could
be useful to multiply the repetition rate of the temporal signal
[33]. As for special case �2 = �0, the image of the temporal
object with period unchanged can be reconstructed. For this
case scheme III resembles the temporal ghost imaging scheme
where the temporal object can be nonperiodic. In addition,
if the path 2 is removed, a computational correlated Talbot
self-imaging scheme can be constructed. In this computational
correlated Talbot self-imaging scheme, a point detector in the
time domain can be used to detect a fast periodic pulse signal.

Remark. Due to the fact that the temporal Talbot effect
is a near-field dispersion effect, the quadratic phase factor
τ 2/(2�1) in Eq. (21) can’t be neglected for the scheme
I. In terms of the near-field dispersion condition and our
theoretical analysis, in the experimental application, for a
temporal grating with a limited length τmax, it is appropriate
that �T /4 < �1 < τ 2

max/2. To be specific, we assume the
dispersive media are standard silica fibers. The group-velocity
dispersion coefficient β ∼ 50 ps2/km in the visible light re-
gion [34]. Accordingly, for a temporal grating with the length
τmax ∼ 102 ps and the period T = 25 ps, the experimental
scale of the propagation distance l1, between the source and
the detector D1, is 1 km < l1 = �1/β < 100 km. In addition,
the response time of the detectors, which is shorter than the
pulse width of the temporal grating, is of the magnitude of
picosecond in favor of experimental observation. For schemes
II and III, the corresponding experimental scales can also be
taken in the same way.

IV. CONCLUSION

In conclusion, we have investigated the second-order Tal-
bot self-imaging effect with temporally incoherent light. The
results have shown that the self-imaging of a periodic signal
can be extracted through the intensity fluctuation correlation
measurement. In view of space-time duality, this second-order
temporal Talbot self-imaging effect can be considered as the
consequence of the joint dispersion between the correlated
fields. Furthermore, one could use a point detector to de-
tect a fast signal based on computational correlated Talbot
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effect in the time domain. According to the discrete Fourier
transformation, we find the fractional Talbot self-imaging
doesn’t generally possess a definite fractional period, which
contradicts some articles’ results.

The temporal pulses traveling in dispersive media usu-
ally appear as distortion and interference due to the dis-
persion. However, based on the Talbot effect via intensity
fluctuation correlation, our results could have potential ap-
plication in transferring a periodic signal in optical fiber or
multiplying the repetition frequency of the input light pulse

sequence without the requirement of dispersion cancellation
or compensation.
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