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Steady-state population inversion of multiple �-type atoms by the squeezed vacuum in a waveguide
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We study the dynamics of multiple �-type atoms driven by a squeezed vacuum reservoir in a quasi-one-
dimensional waveguide. We show that the atomic system’s steady state is a pure state, and a complete population
inversion can occur when the dipole moment of the second transition is almost perpendicular to the polarization
of the incident squeezed light. We also prove that the steady state of the system is the direct product of that
in the single-atom case with modified squeezed vacuum even when dipole-dipole interaction is involved. This
steady-state population inversion may be used to study the two-photon laser or collective atomic effect.
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I. INTRODUCTION

The concept of population inversion is of fundamental
importance in laser physics because the population inversion
is a key step of generating laser. However, the population
inversion can never exist for a system at thermal equilibrium
because of the spontaneous emission. The achievement of
population inversion therefore requires pushing the system
into a nonequilibrated state [1]. Thus the spontaneous emis-
sion must be inhibited in order to maintain the population
inversion in a steady state. In 1946, Purcell showed that
the spontaneous decay rate of an emitter can be modified
by engineering the electromagnetic bath environment with
which the emitters interact [2]. One famous example of bath
engineering is the squeezed vacuum which leads to many
novel effects and techniques in quantum optics and atomic
spectroscopy. The reduction of quantum fluctuations below
vacuum level by the squeezed vacuum yields many interesting
phenomenons, for example, the suppression of dephasing rate
in one direction and enhancement in the other for a two-
level emitter [3–10], the subnatural linewidth of resonance
fluorescence [11,12], and improvement of an atomic clock
using squeezed vacuum [13]. The entanglement nature of
the squeezed vacuum also leads to interesting results like
pairwise excitation of atomic states [14–16]. In 1993, Ficek
and Drummond studied the dynamical properties of a single
three-level atom in the squeezed vacuum where they showed
that a single three-level atom in the cascade configuration
coupled to squeezed modes in a cavity can reach steady state
with level population inversion relative to the ordinary laser
spectroscopy [17–19]. In their model, they found a population
inversion of about 78%.

In our study, instead of a cavity, we consider the case in
a quasi-one-dimensional waveguide. Squeezing all modes in
the three-dimensional (3D) space is technically impractical. In

*liaozy7@mail.sysu.edu.cn
†zubairy@physics.tamu.edu

contrast, people have made a great achievement in generating
the squeezed vacuum reservoir in the quasi-one-dimensional
cavity. Suppression of the radiative decay of atomic coherence
and the linewidth of the resonance fluorescence have been
experimentally demonstrated in a one-dimensional (1D) mi-
crowave transmission line coupled to a single artificial atom
[12,20–24]. Recently, photon transport in a 1D waveguide
coupled to quantum emitters (well known as “waveguide-
QED”) has attracted much attention because it can not only
enhance the interaction but also transport information by guid-
ing the photon [25–31]. In these studies, the photon modes are
usually considered to be ordinary vacuum modes.

In this paper, we consider multiple �-type atoms coupled
to a broadband squeezed vacuum in the quasi-1D waveguide
where all resonant modes can be technically squeezed. We
show that, for a single atom, it can always reach a population
inversion of almost 100% or any other ratio as long as the
direction of its transition dipole moment is properly set. We
also mathematically prove that this result can be generalized
to an arbitrary number of atoms coupled to each other through
dipole-dipole interaction, which may be a scenario for study-
ing two-photon laser or collective atomic effect.

This paper is organized as follows. In Sec. II, we derive
the general master equation describing the dynamics of mul-
tiple three-level atoms coupled to squeezed vacuum in a 1D
waveguide. In Sec. III, we consider the single atom case and
study the steady state of the atom. In Sec. IV, we consider the
multiple-atom case with modified squeezed vacuum and show
that population inversion is also possible in the multiple-atom
case. Finally, we summarize the results.

II. MASTER EQUATION OF THREE-LEVEL ATOMS
IN THE SQUEEZED VACUUM

In this section, we consider a scenario where Na �-type
atoms are located inside a perfect rectangular waveguide with
the squeezed vacuum injected from both ends, as shown in
Fig. 1(a). The atomic electronic structure is shown in Fig. 1(b),
where the atomic states are labeled as |a〉, |b〉, |c〉, where
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FIG. 1. (a) Schematic setup: a �-type atom is located inside the waveguide with the broadband squeezed vacuum incident from both ends.
(b) The energy structure of the three level atom. Transition |a〉 → |c〉 is forbidden and ωac = 2ω0, where ω0 is the center frequency of the
squeezed vacuum. ωab and ωbc differ by a small amount 2δω0 and they are within the bandwidth of the squeezed vacuum reservoir.

|a〉 is the excited state, |b〉 is the middle state, and |c〉 is
the ground state. Different from the free space, the square
waveguide can only support certain photon modes, i.e., T Emn

and T Mmn modes with cutoff frequency c
√

( mπ
a )2 + ( nπ

b )2,

where a × b is the dimension of the waveguide’s cross section.
For the rectangular waveguide, there is no T M01 or T M10

mode. Assuming b < a, T E10 is the ground mode with the
lowest cutoff frequency. Thus the atom is only coupled to
the T E10 mode as long as πc

a < ωab, ωbc < min( πc
b , 2πc

a ). We
assume that ωac = 2ω0, where ω0 is the center frequency of
the broadband squeezed vacuum. We also assume that the
bandwidth of the squeezed vacuum reservoir is much larger
than |ωab − ωbc| so it can couple to both transitions.

The atom-field system is described by the Hamiltonian

H = HA + HF + HAF, (1)

where HA = ∑Na
l=1

∑
e=a,b,c h̄ωe,l |el〉〈el | is the atomic Hamil-

tonian and |el〉 is the energy state of the lth atom with
energy h̄ωe,l . The Hamiltonian of the EM field is HF =∑

ks h̄ωks(â
†
ksâks + 1

2 ), where âks and â†
ks are the anni-

hilation and creation operators of the field mode with
wave vector k, polarization s (in waveguide, it rep-
resents T Emn or T Mmn), and frequency ωk,s. The in-
teraction Hamiltonian in the electric-dipole approxima-
tion is HAF = −ih̄

∑
ks

∑
i=1,2

∑Na
l=1[μl,i · uks(rl,i )S+

l,iâks +
μ∗

l,i · uks(rl,i )S−
l,iâks − H.c.], where μl,i is the electric dipole

moment for the ith transition of the lth atom, where i = 1
denotes the transition from |a〉 to |b〉 and i = 2 denotes the
transition from |b〉 to |c〉. Here, S+

l,i and S−
l,i are the raising and

lowering operators for the transition i of the lth atom. The
mode function of the squeezed vacuum in the T E10 mode is
given by

uks(ri ) =
√

ωks

2ε0h̄V
x eik·(ri−oks ), (2)

where oks is a phenomenological parameter which includes
the effects of the initial phase and the position of the squeez-
ing source [16]. The correlation functions for the squeezed
vacuum are [32]

〈a†
k,sak′,s′ 〉 = sinh2 rδk′kδss′ ,

〈ak,sa
†
k′,s′ 〉 = cosh2 rδk′kδss′ ,

〈a†
k,sa

†
k′,s′ 〉 = −e−iθ Mδk′,2k0−kδss′ ,

〈ak,sak′,s′ 〉 = −eiθ Mδk′,2k0−kδss′ ,

(3)

where r is the squeezing parameter and M is bounded by
M � cosh(r) sinh(r). For simplicity, we can set the squeezing
parameter θ = 0 and assume that the dipole moments of all
atoms are aligned along the same direction. The dynamics of
the atomic system can be described by the following master
equation (see Appendix A for details of derivation):

dρS

dt
= − i

∑
i jkl

	i jkl [S
+
i, jS

−
k.l , ρ

S]ei(ω j−ωl )t − 1

2

∑
i jkl

γ i jkl (1 + N )(ρSS+
i, jS

−
k.l + S+

i, jS
−
k.lρ

S − 2S−
k.lρ

SS+
i, j )e

i(ω j−ωl )t

− 1

2

∑
i jkl

γ i jkl N (ρSS−
i, jS

+
k.l + S−

i, jS
+
k,lρ

S − 2S+
k,lρ

SS−
i, j )e

−i(ω j−ωl )t

− 1

2

∑
α=±

∑
i jkl

γ ′
i jkl M e2αik0zReiα(ω j+ωl −2ω0 )t

(
ρSSα

i, jS
α
k.l + Sα

i, jS
α
k,lρ

S − 2Sα
k,lρ

SSα
i, j

)
, (4)

where N = sinh(r)2, ω1 = ωab, ω2 = ωbc, and γ1(γ2) is the decay rate for transition |a〉 → |b〉(|b〉 → |c〉) in the ordinary
vacuum reservoir. The coefficients in Eq. (4) are

γi jkl = √
γ jγl cos(k0zrik ),

	i jkl =
√

γ jγl

2
sin(k0zrik ),

γ ′
i jkl = √

γ jγl cos[k0z(ri + rk )],

(5)
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where subscripts i, k label the atom index and j(l ) labels the transitions of the ith (kth) atom. Contrary to the free space where
the decay rate is independent of the dipole direction, the anisotropic character of the waveguide results in the sensitivity of the
atomic decay rate to its dipole direction. Thus γ j = γ jmax cos θ j , where γ jmax is the value of γ j when the transition dipole is
parallel to the polarization of the waveguide modes and cos θ j is the angle between them.

III. STEADY STATE OF A SINGLE ATOM

In this section, we study the steady state of a single atom in the squeezed vacuum reservoir. For a single three level atom,
we have ri = rk , and for simplicity we set ri = r j = 0 and the resonant condition ω1 + ω2 = 2ω0. It follows from Eq. (4) that
various matrix elements satisfy the following equation:

ρ̇aa = −γ1ch2ρaa + γ1sh2ρbb − 1

2
√

γ1γ2M(ρac + ρca), (6a)

ρ̇bb = γ1(ch2ρaa − sh2ρbb) + γ2(sh2ρcc − ch2ρbb) + √
γ1γ2M(ρac + ρca), (6b)

ρ̇cc = γ2ch2ρbb − γ2sh2ρcc − 1

2
√

γ1γ2M(ρac + ρca), (6c)

Re[ρ̇ac] = −1

2
(γ1ch2 + γ2sh2)Re[ρac] − 1

2
√

γ1γ2M(ρaa − 2ρbb + ρcc), (6d)

Re[eiδωt ρ̇ba] = −1

2
√

γ1γ2(M − 2sh2)sh Re[eiδωtρbc] − 1

2
[(γ1 + γ2)ch2 + γ1sh2 − γ1M]Re[eiδωtρba], (6e)

Re[eiδωt ρ̇bc] = 1

2
√

γ1γ2(2ch2 − M )Re[e−iδωtρab] − 1

2
[(γ1 + γ2)sh2 + γ2ch2 − 2γ2M]Re[eiδωtρbc], (6f)

where Re means real part, ch = cosh(r), sh = sinh(r), and
γ1 = γab(γ2 = γbc) is the decay rate from |a〉 to |b〉 (|b〉 to |c〉)
in ordinary vacuum due to the waveguide modes. Equations
(6e) and (6f) are for the off-diagonal elements ρab, ρbc. The
steady-state solution of these two equations is ρab = ρbc = 0
because they are homogeneous linear equations. The first
four Eqs. (6a)–(6d) also have a steady-state solution when
they are combined with the normalization condition ρaa +
ρbb + ρcc = 1. It is also worth noting that Eqs. (6a)–(6d) are
independent of δω, so the difference between ωab and ωbc

does not influence the steady state of the single atom case as
long as both ωab and ωbc are within the squeezing bandwidth.
Thus, considering the minimum uncertainty squeezed vacuum
where M = cosh(r) sinh(r), the steady-state solution is

ρaa = sh2γ2

ch2γ1 + sh2γ2
,

ρcc = ch2γ1

ch2γ1 + sh2γ2
,

ρac = ρca = − chsh
√

γ1γ2

ch2γ1 + sh2γ2
,

ρbb = ρba = ρbc = 0,

(7)

which is in fact a pure state of a superposition of |a〉 and |c〉
|ψss〉 = sh

√
γ2√

ch2γ1 + sh2γ2

|a〉 − ch
√

γ1√
ch2γ1 + sh2γ2

|c〉. (8)

Since there is no population in the state |b〉, population
inversion can always occur between states |a〉 and |b〉 in the

steady state. If tanh r >
√

γ1

γ2
, population inversion can also

occur between the states |a〉 and |c〉. This result is similar to
the result in Ref. [19]. However, in our scheme, the population
inversion can approach 100% with zero population in the
ground state and the middle state if γ2 � γ1. In comparison,

the population inversion in the cavity case shown in Ref. [19]
is about 78%.

The steady-state population distribution for different ratios
of γab

γbc
is shown in Fig. 2(a). The mechanism of this population

inversion can be interpreted with the help of Fig. 3. In Fig. 3
we show that the direct transitions between |a〉, |b〉, and |c〉
are allowed just like the thermal reservoir case. However, in
the squeezed vacuum, there are additional paths for the popu-
lation flow: an atom in any of these three states can evolve into
the other two through an intermediate “state” ρac. Although
ρac is an off-diagonal element rather than a state, it can be
used to elucidate our idea. When γab 	 γbc, the transition rate
for the |a〉 → |b〉 transition is negligible compared to γbc and√

γabγbc. Thus the atom in the state |c〉 can be excited to |a〉
through |c〉 → |b〉 → ρac → |a〉, but |a〉 cannot decay back
to |c〉, which results in the population trapping in the level
|a〉. This phenomenon is similar to the coherent population
trapping, but here we achieve the trapping for � structure
with the squeezed vacuum reservoir, which cannot be realized
with coherent pump due to spontaneous emission. Since it is
hard to achieve perfect squeezing with M = √

N (N + 1) in
experiments, we also study the effect of different values of
M on the steady-state population with parameters γab = 1

4γbc

and r = 1, which is shown in Fig. 2(b). In general, there is
population in all three energy levels. Although the steady-state
population distribution is very sensitive to the value of M,
the population inversion between |a〉 and |b〉 still holds for
M = 0.8

√
N (N + 1). Only when M is larger than 0.95 can

the population inversion occur between the state |a〉 and the
state |c〉.

IV. STEADY STATE OF MULTIPLE ATOMS

In the last section, we demonstrated that arbitrary popula-
tion inversion can occur for a single �-type atom driven by the
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FIG. 2. (a) Steady-state population distribution for different μab

and μbc. The squeezing parameter r = 1 and the squeezing is perfect
[M = √

N (N + 1)]. (b) The steady-state population distribution for
nonideal squeezed vacuum, which is characterized by the ratio of M
and

√
N (N + 1). The squeezing parameter r = 1 and γab = 1

4 γbc.

squeezed vacuum reservoir. However, with Eq. (7), this result
cannot be simply generalized to the multiatom case since
γ ′

i ji j = √
γ jγ j cos[2k0zri], i.e., different atoms have different

γ ′
i ji j for the usual case unless all the atoms are periodically

distributed with period nλ/2. The squeezing term in Eq. (4)
vanishes for atoms located around ri = π

4k0z
+ nπ

2k0z
. Thus, for

a group of randomly located atoms, if we want to achieve
steady-state population inversion in the squeezed vacuum, we

FIG. 3. Allowed population flow in the squeezed vacuum.

need to modify our scheme. Here we consider the following
correlation functions:

〈a†
k,sak′,s′ 〉 = sinh2 rδk′kδss′ ,

〈ak,sa
†
k′,s′ 〉 = cosh2 rδk′kδss′ ,

〈a†
k,sa

†
k′,s′ 〉 = −e−iθ cosh(r) sinh(r)δk′,−(2k0−k)δss′ ,

〈ak,sak′,s′ 〉 = −eiθ cosh(r) sinh(r)δk′,−(2k0−k)δss′ ,

(9)

which indicates that the photons are entangled with those from
the opposite direction. In principle, we can split the squeezed
vacuum into two beams by a triangular prism and inject them
into opposite ends of the waveguide. Then the coefficients in
the master equation shown in Eq. (4) become

γi jkl = √
γiγk cos(k0zr jl ),

	i jkl =
√

γiγk

2
sin(k0zr jl ),

γ ′
i jkl = √

γiγk cos(k0zr jl ). (10)

We can see that γ ′
i ji j is now independent of the atomic

position because r j j = 0. The resulting master equation is the
traditionally studied master equation for atoms in squeezed
reservoir [14]. The detailed derivation of the coefficients
shown in Eq. (9) is given in Appendix B with the phase of
the squeezing source included. Based on the master equation
in Eq. (4) with coefficients given by Eq. (9), we can show that
a single atom can reach population inversion anywhere in the
waveguide, as discussed in Sec. III. When there are multiple
atoms in the waveguide where the dipole-dipole interaction
should be considered, our calculation shows that the popula-
tion inversion can still occur for all the atoms. In fact, it is
very interesting that the final state of the multiple-atom case
is just the direct product of the steady state of independent
atoms despite the dipole-dipole interaction. This result can be
proved by the mathematical induction.

Considering the fact that |ω1 − ω2| � γi, it is reasonable
to apply the secular approximation on Eq. (4) such that those
terms with e±i(ω1−ω2 )t and e±i(2ωi−2ω0 )t are dropped and the
master equation is then given by

dρS

dt
= − i

∑
i,k, j

	i jkl [S
+
i, jS

−
k. j, ρ

S]

− 1

2

∑
i, j,k

γ i jkl (1 + N )({ρS, S+
i, jS

−
k, j} − 2S−

k, jρ
SS+

i, j )

− 1

2

∑
i, j,k

γ i jkl N ({ρS, S−
i, jS

+
k, j} − 2S+

k, jρ
SS−

i, j )

− 1

2

∑
α=±

∑
i,k, j 
=l

γ ′
i jkl M

({
ρS, Sα

i, jS
α
k,l

} − 2Sα
k,lρ

SSα
i, j

)
.

(11)

In the following, we use mathematics induction to prove
that the steady state of this system is a direct product of the
steady state of a single atom. Assume that the steady state of
N-atom system is ρS =ρ1ρ2 . . . ρN , where ρi = (A|ai〉+C|ci〉)
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(A〈ai|+C〈ci|) and A= sh
√

γ2√
ch2γ1+sh2γ2

,C =− ch
√

γ1√
ch2γ1+sh2γ2

. Then

for the (N + 1)-atom case, the extra terms induced by the
(N + 1)th atom on the right-hand side of Eq. (11) are com-
posed of three parts: i = k = N + 1 terms, i = N + 1, k =
1, 2, . . . , N terms, and i = 1, 2, . . . , N, k = N + 1 terms.
The i = k = N + 1 terms are the exact terms for the (N + 1)th
atom as a single independent atom, so the net result of this
term is zero. The terms with i = N + 1, k = 1, 2, . . . , N are

− i
∑

j,k

	N+1, j,k, j[S
+
N+1, jS

−
k. j, ρ

S]

− 1

2

∑
j,k

γ N+1, j,k, jch2({ρS, S+
N+1, jS

−
k, j} − 2S−

k, jρ
SS+

N+1, j )

− 1

2

∑
j,k

γ N+1, j,k, j sh2({ρS, S−
N+1, jS

+
k, j} − 2S+

k, jρ
SS−

N+1, j )

−
∑
α=±

∑
i,k, j 
=l

γ ′
N+1, j,k, j

M

2

({
ρS, Sα

N+1, jS
α
k,l

} − 2Sα
k,lρ

SSα
N+1, j

)
.

(12)

For the energy shift term (the first term) in expression (12),
we have

S+
N+1, jS

−
k. jρ

S = ρ1 . . . (S−
k. jρk ) . . . ρN (S+

N+1, jρN+1) = 0,

ρSS+
N+1, jS

−
k.l = ρ1 . . . (ρkS−

k.l ) . . . ρN (ρN+1S+
N+1, j ) = 0. (13)

For the thermal terms (the second and third terms) in expres-
sion (12), we have

ρSS+
N+1, jS

−
k, j = S+

N+1, jS
−
k, jρ

S = 0,

ρSS−
N+1, jS

+
k, j = S−

N+1, jS
+
k, jρ

S = 0,

S−
k, jρ

SS+
N+1, j = ρ1 . . . (S−

k. jρk ) . . . ρN (ρN+1S+
N+1, j )

= ρ1 . . . (S−
k.1ρk ) . . . ρN (ρN+1S+

N+1,1)

= ρ1 . . . (A|bk〉)(A〈ak| + C〈ck|) . . . ρN

⊗ (A|aN+1〉 + C|cN+1〉)(A〈bN+1|),
S+

k, jρ
SS−

N+1, j = ρ1 . . . (S+
k. jρk ) . . . ρN (ρN+1S−

N+1, j )

= ρ1 . . . (S+
k.2ρk ) . . . ρN (ρN+1S−

N+1,2)

= ρ1...(C|bk〉)(A〈ak| + C〈ck|) . . . ρN

⊗ (A|aN+1〉 + C|cN+1〉)(C〈bN+1|). (14)

For the squeezed vacuum terms (the fourth term), we have

ρSSα
N+1, jS

α
k,l = Sα

N+1, jS
α
k,lρ

S = 0,

S+
k,1ρ

SS+
N+1,2 = ρ1 . . . (S+

k,1ρk ) . . . ρN (ρN+1S+
N+1,2) = 0,

S+
k,2ρ

SS+
N+1,1 = ρ1 . . . (S+

k,2ρk ) . . . ρN (ρN+1S+
N+1,1)

= ρ1 . . . (C|bk〉)(A〈ak| + C〈ck|) . . . ρN

⊗ (A|aN+1〉 + C|cN+1〉)(A〈bN+1|),
S−

k,1ρ
SS−

N+1,2 = ρ1 . . . (S−
k,1ρk ) . . . ρN (ρN+1S−

N+1,2)

= ρ1 . . . (A|bk〉)(A〈ak| + C〈ck|) . . . ρN

⊗ (A|aN+1〉 + C|cN+1〉)(C〈bN+1|),
S−

k,2ρ
SS−

N+1,1 = ρ1 . . . (S−
k,2ρk ) . . . ρN (ρN+1S−

N+1,1) = 0.

(15)

On substituting from Eqs. (13)–(15) into expression (12),
we have

∑
k

γ N+1,1,k,1(ch2)S−
k,1ρ

SS+
N+1,1 +

∑
j,k

γ N+1,2,k,2sh2S+
k,2ρ

SS−
N+1,2 +

∑
α=±

∑
i,k, j 
=l

γ ′
N+1, j,k,l chshSα

k,lρ
SSα

N+1, j

=
∑

k

γ N+1,1,k,1(ch2)ρ1 . . . (A|bk〉)(A〈ak| + C〈ck|) . . . ρN (A|aN+1〉 + C|cN+1〉)(A〈bN+1|)

+
∑

k

γ N+1,2,k,2sh2ρ1 . . . (C|bk〉)(A〈ak| + C〈ck|) . . . ρN (A|aN+1〉 + C|cN+1〉)(C〈bN+1|)

+
∑

k

γ ′
N+1, j,k,l chsh[ρ1 . . . (C|bk〉)(A〈ak| + C〈ck|) . . . ρN (A|aN+1〉 + C|cN+1〉)(A〈bN+1|)

+ ρ1 . . . (A|bk〉)(A〈ak| + C〈ck|) . . . ρN (A|aN+1〉 + C|cN+1〉)(C〈bN+1|)]
=

∑
k

(γ N+1,1,k,1ch2A2 + γ N+1,2,k,2sh2C2 + 2γ ′
N+1, j,k,l chshCA)

× ρ1 . . . (|bk〉)(A〈ak| + C〈ck|) . . . ρN (A|aN+1〉 + C|cN+1〉)(〈bN+1|). (16)

It is not difficult to prove that ch2A2γ N+1,1,k,1 +
sh2C2γ N+1,2,k,2 + 2chshCAγ ′

N+1, j,k,l = 0 by substituting
the expressions of A, B, C, and Eq. (10). Hence the extra
terms with the atom index i = N + 1 and k = 1 ∼ N when
we add the N + 1th atom are zero. Similarly, the terms with
i = 1 ∼ N and k = N + 1 also vanish. Thus we prove that
the right-hand side of Eq. (11) is zero when the state of the

system is a direct product of the steady state of a single atom.
This indicates that the direct product of the steady state of a
single atom is the steady state of the multiple atoms driven
by the squeezed vacuum shown in Eq. (9). It is interesting
to note that, while introducing the dipole-dipole interaction
between the atoms affects the evolution of the system, the
final steady state still remains unaffected. Therefore, for
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multiple atoms, a population inversion of almost 100%
can also be achieved, even the dipole-dipole interaction is
considered, under the condition that the dipole direction for
all atoms are properly oriented to satisfy γab 	 γbc. Actually,
in the normal squeezed vacuum with correlation shown in
Eq. (3), the steady state of the atoms can also be a direct
product of the steady state of a single atom if all the atoms are
in the nodes of the standing wave. In this case, the coefficients
in the master equation are the same as those shown in Eq.
(10).

We also numerically show that the steady state of multiple
atoms is indeed the direct product of the steady state of a
single atom. Since the cost for numerical simulation increases
exponentially as the number of atoms increases, we only show
the fidelity of a two-atom state with respect to theoretical
steady state as a function of time in Fig. 4, where the system
is initially in the ground state. From Fig. 4(a), we can see
that different atom separations have different evolution dy-
namics because they have different dipole-dipole interactions.
However, we can see that the system finally evolves into
the following equation regardless of the atomic separation,
squeezing parameter, and the ratio of decay rate γab/γbc:

|ψss〉 =
(

sh
√

γ2√
ch2γ1 + sh2γ2

|a1〉 − ch
√

γ1√
ch2γ1 + sh2γ2

|c1〉
)

⊗
(

sh
√

γ2√
ch2γ1 + sh2γ2

|a2〉 − ch
√

γ1√
ch2γ1 + sh2γ2

|c2〉
)

.

(17)

From Fig. 4(b), we see that the system takes less time to
evolve into the steady state for a smaller squeezing parameter.
Figure 4(c) shows that while smaller γab results in higher
population inversion, it takes much longer for the system to
evolve into the steady state.

V. SUMMARY

We studied the �-type atoms coupled to a broad-
band squeezed vacuum reservoir in a quasi-one-dimensional
waveguide, with the overall transition frequency ωac = 2ω0.
We showed that a single atom evolves into a steady state
which is a superposition of the second excited state and
the ground state. If the decay rate from the second excited
state to the first excited state is much smaller than that from
the first excited state to the ground state, the population can
be almost 100% trapped in the second excited state, which is a
great improvement compared to the maximum ratio of 78% in
Ref. [19]. What is more, we proved that the above result can be
generalized to an arbitrary number of atoms interacting with
each other via dipole-dipole interaction and the system’s final
steady state is a direct product of that in the single-atom case
with modified squeezed vacuum shown in Eq. (9). This is one
of the most interesting results here and its physical insight still
needs further studies. We also argued that the arbitrary ratio of
the two transitions’ decay rates can be effectively controlled
by different waveguide structure. This population-inversed
system is experimentally feasible since the experiments on the
broadband squeezed vacuum coupled to the artificial atom in
a 1D cavity have been widely conducted [12,20–24].

FIG. 4. (a) Fidelity evolution with different atomic separa-
tions. The atomic separations of λ0, 0.1λ0, and 0.2λ0 are plot-
ted. Squeezing parameter r = 1, decay rate γ1

γ2
= 1

4 , and time unit
τ = 1/

√
γabγbc is the geometric mean of the transition |a〉 → |b〉

and |b〉 → |c〉’s spontaneous emission rates in ordinary vacuum.
(b) Fidelity evolution with different squeezing parameters. Decay
rate γ1

γ2
= 1

4 and atomic separation r12 = λ0. (c) Fidelity evolution
with different decay rates. Squeezing parameter r = 1 and atomic
separation r12 = λ0.
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APPENDIX A: DERIVATION OF EQ. (4)

Here we show how to derive the master Eq. (4). The interaction Hamiltonian is

V (t ) = −ih̄
∑

ks

[D(t )aks(t ) − D+(t )a†
ks(t )], (A1)

where

D(t ) = ∑
l,i

[μl,i · uk,s(rl,i )S
†
l,i(t ) + μ∗

l,i · uk,s(rl,i )S−
l,i(t )]. (A2)

The reduced master equation of atoms in the reservoir is

dρS

dt
= − 1

h̄2

∫ t

0
dτTrF {[V (t ), [V (t − τ ), ρS (t − τ )ρF ]]}

= − 1

h̄2

∫ t

0
dτ TrF {V (t )V (t − τ )ρS (t − τ )ρF + ρS (t − τ )ρFV (t − τ )V (t )

− V (t )ρS (t − τ )ρFV (t − τ ) − V (t − τ )ρS (t − τ )ρFV (t )}. (A3)

Here we just show how to deal with the first term in Eq. (A3); the remaining terms can be calculated in the same way. For the
first term, we have

− 1

h̄2

∫ t

0
dτ TrF {V (t )V (t − τ )ρS (t − τ )ρF }

=
∫ t

0
dτ

∑
ks,k′s′

{D(t )D(t − τ )TrF [ρF aks(t )ak′s′ (t − τ )] − D(t )D+(t − τ )TrF [ρF aks(t )a†
k′s′ (t − τ )]

− D+(t )D(t − τ )TrF [ρF a†
ks(t )ak′s′ (t − τ )] + D+(t )D+(t − τ )TrF [ρF a†

ks(t )a†
k′s′ (t − τ )]}ρS (t − τ ) (A4)

Under the rotating wave approximation (RWA), we have

− 1

h̄2

∫ t

0
dτ TrF {V (t )V (t − τ )ρS (t − τ )ρF }

=
∑
i jlm

∑
ks,k′s′

∫ t

0
dτ {μl,i · uks(rl,i )S

+
l,ie

iωitμm, j · uk′s′ (rm, j )S
+
m, je

iω j (t−τ )e−i(ωks+ωk′s′ )t+iωk′s′ τ [−Mδk′,2k0−kδss′ ]

− μl,i · uks(rl,i )S
+
l,ie

iωitμ∗
m, j · u∗

k′s′ (rm, j )S
−
m, je

−iω j (t−τ )e−iωk′s′ τ cosh2 rδkk′δss′

− μ∗
l,i · uks(rl,i )S

−
l,ie

−iωitμm, j · u∗
k′s′ (rm, j )S

+
m, je

iω j (t−τ )e−iωk′s′ τ cosh2 rδkk′δss′

− μ∗
l,i · u∗

ks(rl,i )S
−
l,ie

−iωitμm, j · uk′s′ (rm, j )S
+
m, je

iω j (t−τ )eiωk′s′ τ sinh2 rδkk′δss′

− μl,i · u∗
ks(rl,i )S

+
l,ie

iωitμ∗
m, j · uk′s′ (rm, j )S

−
m, je

−iω j (t−τ )eiωk′s′ τ sinh2 rδkk′δss′

+ μ∗
l,i · u∗

ks(rl,i )S
−
l,ie

−iωitμ∗
m, j · u∗

k′s′ (rm, j )S
−
m, je

−iω j (t−τ )ei(ωks+ωk′s′ )t−iωk′s′ τ [−Mδk′,2k0−kδss′ ]}ρS (t − τ ), (A5)

where l, m are used for labeling different atoms and i, j are used for transitions within an atom. Here we just calculate the first
and second term to show how to get the master Eq. (4). Since all atoms are identical, ωl,i = ωi, |μl,i| = |μi|, and rl,i = rl can
be used to simplify Eq. (A5). For simplicity, we define μ j to be the projection of μ j on the x axis. For the second term (thermal
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term), we have

−
∑

kz

∫ t

0
dτ μl,i · uks(rl )S

+
l,ie

iωitμ∗
m, j · u∗

k′s′ (rm)S−
m, je

−iω j (t−τ )e−iωk′s′ τ cosh2 rρS (t − τ )δkk′δss′

= − L

2π
ei(ωi−ω j )t

∫ ∞

−∞
dkz

∫ t

0
dτ eiω jτ e−iωkz τ

ωkμiμ j

ε0LSh̄
eikz (rl −rm ) cosh2 rS+

l,iS
−
m, jρ

S (t − τ )

≈ − L

2π
ei(ωi−ω j )t

∫ ∞

0
dkz

∫ t

0
dτ eiω jτ e−i[ω j+c2k jz (kz−k jz )/ω j ]τ

ωkμiμ j

ε0LSh̄
[eikz (rl −rm ) + e−ikz (rl −rm )] cosh2 rS+

l,iS
−
m, jρ

S (t − τ )

≈ − L

2π
ei(ωi−ω j )t

∫ ∞

−k0z

dδkz

∫ t

0
dτ e−iτc2k jzδkz/ω j

ωkμiμ j

ε0LSh̄
[ei(k jz+δkz )(rl −rm ) + e−i(k jz+δkz )(rl −rm )] cosh2 rS+

l,iS
−
m, jρ

S (t − τ )

≈ − L

2π
ei(ωi−ω j )t

∫ ∞

−∞
dδkz

∫ t

0
dτ e−i(c2k jzδkz/ω j )τ

ωkμiμ j

ε0LSh̄
[ei(k jz+δkz )(rl −rm ) + e−i(k jz+δkz )(rl −rm )] cosh2 rS+

l,iS
−
m, jρ

S (t − τ )

≈ − L

2π
ei(ωi−ω j )t

∫ t

0
dτ

ω jμiμ j

ε0LSh̄
2π

[
eik jz (rl −rm )δ

(
(rl − rm) − c2k jz

ω0
τ

)
+ e−ik jz (rl −rm )δ

(
(rl − rm) + c2k jz

ω0
τ

)]

× cosh2 rS+
l,iS

−
m, jρ

S (t − τ )

≈ − L

2π
eik jzrlm

ω jμiμ j

ε0LSh̄
2π

ω j

c2k0z
cosh2 rS+

l,iS
−
m, jρ

S (t )ei(ωi−ω j )t

≈ −
[√

γiγ j

2
cos(k0zrlm) + i

√
γiγ j

2
sin(k0zrlm)

]
cosh2 rS+

l,iS
−
m, jρ

S (t )ei(ωi−ω j )t , (A6)

where emitter separation rlm = |rl − rm|, collective decay rate γi = 2μ2
i ω

2
i /h̄ε0Sc2kiz, and collective energy shift 	i j =

√
γiγ j sin(k0zri j )/2. In the third line we expand ωk = c

√
( π

a )2 + (kz )2 around kz = k0z since resonant modes provide dominant

contributions. In the fifth line we extend the integration
∫ ∞
−k jz

dkz → ∫ ∞
−∞ dkz because the main contribution comes from the

components around δkz = 0. In the next line, Weisskopf-Wigner approximation is used. Thus we have obtained γi j and 	i j as is
shown in Eq. (7).

Next we need to calculate the first term (squeezing term) in Eq. (A5); putting aside the overall factor ei(ωi+ω j−2ω0 )t , we have

∑
kz

∫ t

0
dτ μl,i · u2k0−k(rl )S

+
l,iμm, j · uk(rm)S+

m, je
i(ωk−ω j )τ (−M )ρS (t − τ )

= − L

2π

∫ 2k0z

0
dkz

∫ t

0
dτ ei(ωkz −ω j )τ ei(2k jz−kz )(rl −o1 )eikz (rm−o1 )

√
ωkzω2k0z−kzμiμ j

ε0LSh̄
MS+

l,iS
+
m, jρ

S (t − τ )

− L

2π

∫ 0

−2k0z

dkz

∫ t

0
dτ ei(ωkz −ω j )τ ei(−2k jz−kz )(rl −o2 )eikz (rm−o2 )

√
ωkzω−2k0z−kzμiμ j

ε0LSh̄
MS+

l,iS
+
m, jρ

S (t − τ ). (A7)

For terms with rl = r j , Eq. (A7) reduces to

∑
kz

∫ t

0
dτ μl,i · u2k0−k(rl )S

+
l,iμl, j · uk(rl )S

+
l, je

i(ωk−ω j )τ (−M )ρS (t − τ )

= − L

2π

∫ 2k0z

0
dkz

∫ t

0
dτ e

i
c2k jz
ω j

(kz−k jz )τ
ei2k0z (rl −o1 )

√
ωkzω2k0z−kzμiμ j

ε0LSh̄
MS+

l,iS
+
l, jρ

S (t − τ )

− L

2π

∫ 0

−2k0z

dkz

∫ t

0
dτ e

i
c2k jz
ω j

(kz−k jz )τ
e−i2k0z (rl −o2 )

√
ωkzω−2k0z−kzμiμ j

ε0LSh̄
MS+

l,iS
+
l, jρ

S (t − τ )

= − L

2π
[ei2k0z (rl −o1 ) + e−i2k0z (rl −o2 )]

√
ωiω jμiμ j

ε0LSh̄

∫ t

0
dτ 2πδ

(
c2k jz

ω j
τ

)
MS+

l,iS
+
l, jρ

S (t − τ )

= − ei2k jzR ω2
0μiμ j

ε0h̄Sc2k0z
cos(2k0zrl )MS+

l,iS
+
l, jρ

S (t )

= − ei2k0zR
√

γiγ j

2
cos(2k0zrl )MS+

l,iS
+
l, jρ

S (t ), (A8)
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where we have used the fact that the origin of the coordinate system is at equal distance from two sources (i.e., o2 = −o1 = R)
in the second last line. Incorporating index l into i, we have γ ′

i j = √
γiγ j cos(2k0zri ). For ri 
= r j , Eq. (A7) reduces to

∑
kz

∫ t

0
dτ μl,i · u2k0−k(rl )S

+
l,iμm, j · uk(rm)S+

m, je
i(ωk−ω j )τ (−M )ρS (t − τ )

= − L

2π

∫ 2k0z

0
dkz

∫ t

0
dτ e

i
c2k jz
ω j

(kz−k jz )τ
ei2k0z (rc−o1 )e−i(kz−k0z )(rl −rm )

√
ωkzω2k0z−kzμiμ j

ε0LSh̄
MS+

l,iS
+
m, jρ

S (t − τ )

− L

2π

∫ 0

−2k0z

dkz

∫ t

0
dτ e

i
c2k jz
ω j

(−kz−k jz )τ
e−i2k0z (rc−o2 )e−i(kz+k0z )(rl −rm )

√
ωkzω−2k0z−kzμiμ j

ε0LSh̄
MS+

l,iS
+
m, jρ

S (t − τ )

= − L

2π
ei2k0z (rc−o1 )

√
ωiω jμiμ j

ε0LSh̄

∫ ∞

−∞
dkz

∫ t

0
dτ e

i
c2k jz
ω j

(kz−k jz )τ
e−i(kz−k0z )(rl −rm )MS+

l,iS
+
m, jρ

S (t − τ )

− L

2π
e−i2k0z (rc−o2 )

√
ωiω jμiμ j

ε0LSh̄

∫ ∞

−∞
dkz

∫ t

0
dτ e

i
c2k jz
ω j

(kz−k jz )τ
ei(kz−k0z )(rl −rm )MS+

l,iS
+
m, jρ

S (t − τ )

≈ − L

2π
ei2k0zR ω2

0μiμ j

ε0LSh̄

∫ t

0
dτ 2π

[
ei2k0zrcδ

(
rl − rm − c2k0z

ω0

τ

)
+ e−i2k0zrcδ

(
rl − rm + c2k0z

ω0

τ

)]
MS+

l,iS
+
m, jρ

S (t − τ )

≈ −ei2k0zR ω2
0μiμ j

ε0h̄Sc2k0z
ei2k0zrcsgn(rl −rm )S+

l,iS
+
m, jρ

S (t ) → −
√

γiγ j

2
ei2k0zR cos[k0z(rl + rm)]S+

l,iS
+
m, jρ

S (t ), (A9)

where sgn(rl − rm) is the sign function. The last arrow is because we need to sum over i, j, so the imaginary part of ei2k0zrcsgn(i− j)

vanishes; the neat result is that γ ′
i jkl = ei2k0zR√

γ jγl cos[k0z(ri + rk )]. As for S+
i ρS (t )S+

j terms, the combination of the last two
terms in Eq. (A3) makes the imaginary part of ei2k0zrcsgn(rl −rm ) vanish. Thus we have γ ′

i jkl in Eq. (7).

APPENDIX B: DERIVATION OF EQ. (9)

Here we show how to derive the master equation with coefficients Eq. (B1). The mode function of the squeezed vacuum is
given by

uks(ri ) =
√

ωks

2ε0h̄V
ekse

ik·(ri−oks ), (B1)

where oks is a phenomenological parameter which includes the effects of the initial phase and the position of the squeezing
source [16]. The correlation functions for the squeezed vacuum are [32]

〈a†
k,sak′,s′ 〉 = sinh2 rδk′kδss′ ,

〈ak,sa
†
k′,s′ 〉 = cosh2 rδk′kδss′ ,

〈a†
k,sa

†
k′,s′ 〉 = −e−iθ cosh(r) sinh(r)δk′,2k0−kδss′ ,

〈ak,sak′,s′ 〉 = −eiθ cosh(r) sinh(r)δk′,2k0−kδss′ . (B2)

For simplicity, we can set the squeezing parameter θ = 0 and all atoms to align along the same direction.
Since the only difference is the squeezing terms 〈a†

k,sa
†
k′,s′ 〉, 〈ak,sak′,s′ 〉, we just start from Eq. (A7). Apart from the factor

ei(ωi+ω j−2ω0 )t , when ri 
= r j , Eq. (A7) becomes

∑
kz

∫ t

0
dτ μl,i · u−2k0+k(rl )S

+
l,iμm, j · uk(rm)S+

m, je
i(ωk−ω0 )τ (−M )ρS (t − τ )

≈ − L

2π

∫ 2k0

0
dk

∫ t

0
dτ e

i c2k0
ω0

(k−k0 )τ
e−i(2k0−k)(rl −o2 )+ik(rm−o1 )

√
ωkzω2k0z−kzμiμ j

ε0LSh̄
MS+

l,iS
+
m, jρ

S (t − τ )

− L

2π

∫ 0

−2k0

dk
∫ t

0
dτ e

i c2k0
ω0

(−k−k0 )τ
ei(2k0+k)(rl −o2 )+ik(rm−o1 )

√
ωkzω−2k0z−kzμiμ j

ε0LSh̄
MS+

l,iS
+
m, jρ

S (t − τ )

= − L

2π

∫ 2k0

0
dk

∫ t

0
dτ e

i c2k0
ω0

(−k0 )τ
e−i(2k0 )(rl −o2 )e

ik( c2k0
ω0

τ+rl −o1+rm−o2 )
√

ωkzω2k0z−kzμiμ j

ε0LSh̄
MS+

l,iS
+
m, jρ

S (t − τ )

− L

2π

∫ 2k0

0
dk

∫ t

0
dτ e

i c2k0
ω0

(−k0 )τ
ei(2k0 )(rl −o2 )e

ik( c2k0
ω0

τ−rl +o1−rm+o2 )
√

ωkzω−2k0z−kzμiμ j

ε0LSh̄
MS+

l,iS
+
m, jρ

S (t − τ )
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≈ − L

2π

∫ t

0
dτ e

i c2k0
ω0

(−k0 )τ
e−i(2k0 )(rl )e2ik0o2 2πδ

(
c2k0

ω0

τ + 2rc − o1 − o2

)√
ωiω jμiμ j

ε0LSh̄
MS+

l,iS
+
m, jρ

S (t − τ )

− L

2π

∫ t

0
dτ e

i c2k0
ω0

(−k0 )τ
ei(2k0 )(rl )e−2ik0o2 2πδ

(
c2k0

ω0

τ − 2rc + o1 + o2

)√
ωiω jμiμ j

ε0LSh̄
MS+

l,iS
+
m, jρ

S (t − τ )

≈ − L

2π
ei(−k0 )|2rc−o1−o2|esgn(rc−o1−o2 )i(2k0 )(rl )e−2ik0o2 2π

ω2
0μiμ j

ε0LSh̄c2k0z
MS+

l,iS
+
m, jρ

S (t )

= − L

2π
esgn(2rc−o1−o2 )ik0(rl −rm )eik0(o1−o2 )2π

ω2
0μiμ j

ε0LSh̄c2k0z
MS+

l,iS
+
m, jρ

S (t ). (B3)

Since we need to sum over l, m, i, j, the imaginary part of esgn(2rc−o1−o2 )ik0(rl −rm ) gets canceled, which yields γ ′
i jkl =√

γiγk cos[k0z(r jl )]. The above calculation is also valid when ri = r j .
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