
PHYSICAL REVIEW A 100, 013841 (2019)
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The dynamical Lamb effect is predicted to arise in superconducting circuits when the coupling of a
superconducting qubit with a resonator is periodically switched “on” and “off” nonadiabatically. We show that
by using a superconducting circuit which allows one to switch between longitudinal and transverse coupling of
a qubit to a resonator, it is possible to observe the dynamical Lamb effect. The switching between longitudinal
and transverse coupling can be achieved by modulating the magnetic flux through the circuit loops. By solving
the Schrödinger equation for a qubit coupled to a resonator, we calculate the time evolution of the number of
excitations in the qubit and the resonator due to the dynamical Lamb effect. The number of excitations created in
the system is maximum when the coupling is periodically switched between longitudinal and transverse using a
square-wave or sinusoidal modulation of the magnetic flux with frequency equal to the sum of the average qubit
and photon transition frequencies.
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I. INTRODUCTION

According to quantum field theory, the vacuum is filled
with virtual particles which can be turned into real ones by
specific external perturbations [1]. Phenomena of this kind
are commonly referred to as quantum vacuum phenomena.
Several quantum vacuum phenomena related to the peculiar
nature of the quantum vacuum have been predicted [2–4],
some of which, such as the Lamb shift [5] and the Casimir
effect [2], have been experimentally found [6–11]. Other ex-
amples of quantum vacuum phenomena include the dynamical
Casimir effect (DCE) [12], which is the creation of real
photons from the vacuum, and the dynamical Lamb effect
(DLE) [13], which is the excitation of an atom in a cavity,
along with the creation of photons. Both the DCE and the
DLE arise due to the fast change in boundary conditions of
a cavity. The dynamical Lamb effect was first encountered in
Ref. [13], where the situation of an atom passing through a
cavity at relativistic speed was considered. In this case, the
excitation of the atom and the generation of photons was
thought to arise because of the sudden change of Lamb shift
of the atom. Therefore, the phenomenon was called dynamical
Lamb effect. In Ref. [14], the same setup of an atom in
its ground state accelerating through a cavity is considered.
There, the DLE was understood as an enhanced generation
of thermal radiation due to the nonadiabatic effects at the
cavity boundary and termed cavity-enhanced Unruh effect
[4]. Similarly to the dynamical Casimir effect, a nonadiabatic
change in the boundary conditions of the cavity is required for
the instantaneous change of the Lamb shift of the atom which
generates the dynamical Lamb effect. However, this is very
difficult to obtain in a setup with physical atoms and cavities.

Recently, the DCE has been experimentally observed
in superconducting circuits [15,16]. The latter provide a
way to model atoms and cavities using Josephson junctions
and superconducting transmission lines. The advantage of a

superconducting circuit setup over real atoms and cavities lies
in the possibility of tuning the parameters of the system in
a short time interval, allowing us to enter the nonadiabatic
regime where the mentioned quantum vacuum phenomena
may arise [17]. Following the case of the DCE, several
proposals have been made for the observation of the DLE
in superconducting circuits [18,19]. In Ref. [18], it was
suggested that by turning “on” and “off” the coupling of a
superconducting qubit to a resonator, one can induce a sudden
change in the Lamb shift of the qubit, while in Ref. [19], it
was proposed that in a superconducting circuit with a qubit
coupled to a resonator, the modulation of the qubit-resonator
coupling strength can be used to mimic the situation of an
atom passing through a cavity at relativistic speed. The pro-
posals of Refs. [18] and [19] generated a number of followup
publications [20–27]. Both proposals lead to the quantum
vacuum phenomena that we call the dynamical Lamb effect.
In fact, an atom entering a cavity at relativistic speed ex-
periences an instantaneous change in its Lamb shift due to
the nonadiabatic change in the electromagnetic environment
surrounding it. The nonadiabatic effects arising in a system
of a qubit coupled to a single mode of the electromagnetic
field were also studied in Ref. [28]. Similar results were ob-
tained for a polaritonic system where time modulations of the
vacuum Rabi frequency [29] were considered [30–32]. More
specifically, enhanced production of photons was predicted
for periodic modulations of the vacuum Rabi frequency. These
results have also been extended to superconducting circuit
setups [33–36], providing an open-system approach to the
study of quantum vacuum phenomena arising due to time-
dependent modulations of the system’s parameters. In facts,
the first experimental observation of a tunable Lamb shift was
achieved in a superconducting circuit [37].

In Refs. [38,39], it was shown that it is possible to design a
superconducting circuit where the qubit-resonator coupling is
switched between longitudinal and transverse by modulating

2469-9926/2019/100(1)/013841(8) 013841-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.013841&domain=pdf&date_stamp=2019-07-22
https://doi.org/10.1103/PhysRevA.100.013841


AMICO, BERMAN, AND KEZERASHVILI PHYSICAL REVIEW A 100, 013841 (2019)

the magnetic flux through the circuit loops. A qubit-resonator
system longitudinally coupled can be seen as a decoupled
system with renormalized energy levels [40], whereas in a
qubit-resonator system with transverse coupling, the qubit and
the photons interact. Therefore, we suggest the possibility
of observing the dynamical Lamb effect by adopting the
circuit designed in Refs. [38,39] and periodically switching
between longitudinal and transverse qubit-resonator coupling.
This effectively corresponds to periodically switching on and
off of the qubit-resonator coupling, which has been shown to
give rise to the dynamical Lamb effect [18].

To demonstrate the presence of the dynamical Lamb effect,
we calculate the number of excitations in the qubit and the
resonator by solving the Schrödinger equation. In a previous
article [24], we used an open-system approach to the study of
the dynamics of the system. The results showed that dissipa-
tion can be neglected when typical values of the parameters
of the system are considered. This can be understood from the
nonadiabatic nature of the phenomenon under study, which
involves a much faster dynamic compared to the one char-
acteristic of dissipative effects. Therefore, even though open-
system approaches for the study of this problem exist, we do
not deem it necessary for this case. The calculations show that
the number of excitations in the qubit and resonator due to
the dynamical Lamb effect reaches its maximum values when
the coupling is periodically switched between transverse and
longitudinal using a square-wave or sinusoidal modulation
of the magnetic flux with frequency equal to the sum of the
average qubit and photon transition frequencies.

The article is organized as follows. In Sec. II, the Hamil-
tonian of a qubit-resonator system with longitudinal or trans-
verse coupling is described. In Sec. III, a superconducting cir-
cuit which allows for the switching between a longitudinally
coupled Hamiltonian and a transverse one is introduced. We
show how to switch between longitudinal and transverse cou-
pling by modulating the magnetic flux threading the circuit.
The results of numerical calculations of the time evolution of
the number of excitations in the qubit and the resonator for
different modulation of the magnetic flux are given in Sec. IV.
Conclusions follow in Sec. V.

II. LONGITUDINAL AND TRANSVERSE COUPLING

The possibility of switching between a transverse coupling
scheme and a longitudinal one was proposed in Refs. [38,39],
but this was not envisioned as a fast switching which can
lead to the observation of quantum vacuum phenomena. Fur-
thermore, the proposal of a periodic switching on and off of
the qubit-resonator coupling was originally made in Ref. [18]
without any specific suggestions of how to exactly achieve this
in practice. In fact, even though the ability of tuning the qubit-
cavity coupling is well established in superconducting circuits
[41–46], this usually entails a modification of the qubit and
resonator transition frequencies. The latter would make it
impossible to use a fixed frequency of switching on and off
of the coupling that is resonant with the sum frequency of
the cavity and resonator transition frequencies. Adopting the
circuit proposed in Refs. [38,39] for this purpose allows one
to achieve this goal because the influence of the switching on
the qubit and resonator transition frequencies is small enough.

In this paper, we propose to achieve nonadiabatically fast
periodic switching on and off of the qubit resonator coupling
[18] by adopting the superconducting circuit proposed in
Refs. [38,39]. This allows us to achieve the parameters regime
which satisfies the conditions necessary for the observation of
the dynamical Lamb effect.

As a first step, let us show how a system with longitu-
dinal qubit-resonator coupling can be seen as an uncoupled
system, in contrast to the case of transverse qubit-resonator
coupling. The Hamiltonians of a qubit longitudinally ĤL and
transversely ĤT coupled to a resonator, respectively, can be
written as

ĤL = h̄ω0σ̂
+σ̂− + h̄ωr â†â + h̄gzxσ̂z(â† + â), (1)

ĤT = h̄ω0σ̂
+σ̂− + h̄ωr â†â + h̄gxxσ̂x(â† + â), (2)

where ω0 is the transition frequency of the qubit, ωr is the
frequency of the photons in the resonator, σ̂+ = σ̂x+iσ̂y

2 , σ̂− =
σ̂x−iσ̂y

2 , and â†, â are the creation and annihilation operators
for excitations of qubit and photons, respectively, σ̂x, σ̂y,
and σ̂z are the Pauli x, y, and z operators, while gzx and
gxx are the longitudinal and transverse coupling strengths,
respectively. The terms σ̂+â and σ̂−â† in Hamiltonian (2)
conserve the number of excitations in the system and are
called rotating terms, while σ̂−â and σ̂+â† can decrease or
increase the number of excitations in the system and they are
called counter-rotating terms. Applying an appropriate unitary
transformation [40,47], the Hamiltonian (1) can be written in
a diagonal form as

Ĥ ′
L = h̄ω0σ̂

+σ̂− + h̄ωr â†â − h̄2g2
zx

ωr
Î, (3)

where Î is the identity operator. Since Ĥ ′
L and ĤL are related

by a unitary transformation, their eigenvalues are the same
and they describe a qubit and a resonator with the same tran-
sition frequencies. Therefore, the two Hamiltonians describe
systems which are characterized by the same observables.
However, in (3), the qubit is now decoupled from the resonator
and the zero-point energy is renormalized. In this case, the
Lamb shift of the qubit is absent. In contrast, in the case
of Hamiltonian (2), the qubit and the resonator cannot be
decoupled by any sort of unitary transformation. The latter
implies, for instance, that the energy levels of the qubit are
affected by the Lamb shift. So, we can regard the system
with longitudinal coupling given by Eq. (1) as a system of
a qubit and a resonator with the qubit-resonator coupling
turned off and the system with transverse coupling defined
by Hamiltonian (2) as the same qubit and resonator with
the qubit-resonator coupling turned on. Thus, the switching
between these two coupling regimes involves a change in the
Lamb shift of the qubit.

III. SUPERCONDUCTING CIRCUIT WITH TUNABLE
QUBIT-RESONATOR COUPLING

Let us consider the circuit in Fig. 1 and define the branch
fluxes associated with the qubit and the resonator as �q =
�a − �b and �r = �a + �b − 2�c, respectively, where �a,
�b, and �c are the magnetic fluxes at the nodes a, b, and
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FIG. 1. Superconducting circuit for a qubit coupled to a resonator with tunable qubit-resonator coupling. By turning on and off the magnetic
flux �x (t ), we can switch between a description of the circuit in terms of a transversely coupled Hamiltonian and a longitudinal one.

c. Following Ref. [48], one can write the Lagrangian for the
circuit in Fig. 1 by adding the contributions of each element
in terms of the branch fluxes [39],

L =
(

2Cq + C

4
�̇2

q + C

2
�̇2

r

)
− 1

4L

(
�2

q + �2
r

)

+ EJq cos

(
2π

�0
�q

)

+ kEJ1 cos

[
2π

�0

(
�q + �r

2k
+ �x(t )

k

)]

+ kEJ2 cos

[
2π

�0

(
�q − �r

2k
+ �x(t )

k

)]
. (4)

In Eq. (4), �x(t ) is the external magnetic flux threading
the areas enclosed by the left and right loops, k is the number
of Josephson junctions in a branch of the circuit, which are
the same in each branch, C and L are the capacitance and
the inductance of the loops, respectively, EJ1 and EJ2 are
the Josephson energies of the junctions in each branch, EJq

is the Josephson energy of the qubit junction, and Cq is its
capacitance. The Hamiltonian of the system can be found
by taking the Legendre transform of the Lagrangian: H =∑N

i=1
dL
d�̇i

�̇i − L, where i = q, r are the indices correspond-
ing to the qubit and resonator flux variables, respectively. This
leads to the following Hamiltonian for the circuit:

H(t ) = 1

2Cq + C
Q2

q + 1

C
Q2

r + 1

4L

(
�2

q + �2
r

)

− EJq cos

(
2π

�0
�q

)

− kEJ1 cos

[
2π

�0

(
�q + �r

2k
+ �x(t )

k

)]

− kEJ2 cos

[
2π

�0

(
�q − �r

2k
+ �x(t )

k

)]
. (5)

A quantum mechanical model of the circuit can be ob-
tained from its classical Hamiltonian by applying the standard
procedure of second quantization for the qubit and resonator
variables separately [39]. Let us first consider the quantization
of resonator variables by setting Qq = 0, �q = 0, and �x =
0. If the sum of the Josephson energies kEJ1 and kEJ2 of
the two junction arrays is much greater than the charging

energy Ec = e2

2C , where C is the capacitance in parallel to
each array of junctions, the cosine potential energy term in
Eq. (5), for small values of �r , can be well approximated by
a harmonic potential [38,49]. For the specific values of the
parameters of the circuit chosen in Sec. IV [see Eq. (16)],
we have kEJ1 = h × 734.4 GHz, kEJ2 = h × 705.6 GHz, and
Ec = h × 189.9 MHz. Therefore, kEJ1 + kEJ2 � Ec by about
four orders of magnitude. Thus, expanding the cosine in
terms of �r up to second order, and expressing the resonator
variables Qr and �r in terms of the operators of creation â†

and annihilation â of photons in the resonator as

Qr =
[(

h̄

2

)2 C(1 + η)

L

] 1
4

i(â† − â),

�r =
[

h̄2 L

C(1 + η)

] 1
4

(â + â†), (6)

we obtain

Ĥr = h̄ωr
(
â†â + 1

2

)
. (7)

In Eq. (7), ωr =
√

1+η

LC is the transition frequency between
the energy levels of the system and η is a dimensionless
parameter defined in Table II. This parameter accounts for
the flux dependence of the system. The Hamiltonian (7) is
the Hamiltonian of a harmonic oscillator. The operators of
creation and annihilation of photons in the resonator are
bosonic operators which satisfy the commutation relation
[â, â†] = 1. With the definitions given in Eq. (6) and the
commutation relation for â† and â, one can prove that the
variables �r and Qr satisfy the commutation relation for
conjugate variables [�r, Qr] = ih̄. Let us now turn back and
consider the quantization of qubit variables. Starting from
Hamiltonian (5), we set Qr = 0, �r = 0, and �x = 0 and
expand the cosine in terms of �q up to second order [49]. This
can be done because the above-mentioned Josephson energies
kEJ1, kEJ2, and EJq = h × 10 GHz are at least two orders of
magnitude greater than the charging energy Ec = e2

2(Cq+C) =
h × 119.6 MHz, for the values of the parameters of the circuit
chosen in Sec. IV [Eq. (16)]. Then, introducing the operators
of creation b̂† and annihilation b̂ of qubit excitations in terms
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of Qq and �q,

Qq = e

{[
EJq +

(
�0

2π

)2 1 + η

2L

]
2Cq + C

2e2

} 1
4

i(b̂† − b̂),

�q =
(

�0

2π

)[
2e2

2Cq + C

1

EJq + (
�0
2π

)2 1+η

2L

] 1
4

(b̂ + b̂†), (8)

we obtain the following quantum mechanical Hamiltonian:

Ĥq = h̄ωq
(
b̂†b̂ + 1

2

)
. (9)

In Eq. (9), ωq =
√

8[EJq+( �0
2π

)
2 1+η

2L ] 2e2
2Cq+C

h̄ is the transition fre-
quency between the first two energy levels of the system. The
operators of creation and annihilation of qubit excitations are
also taken to be bosonic operators satisfying the commutation
relation [b̂, b̂†] = 1. Again, one can prove that the variables
�q and Qq satisfy the commutation relation for conjugate
variables [�q, Qq] = ih̄ by using the commutation relation for
b̂† and b̂, together with the definitions given in Eq. (8). The
energy levels of the system for a weakly anharmonic potential
are not all equally spaced and, by addressing the system at the
right frequency, one can induce transitions between two levels
alone [50]. Therefore, we consider only two accessible levels,
namely, the ground and the first excited state, and replace the
creation and annihilation operators b̂ and b̂†, respectively, with
σ̂+ and σ̂−. The latter ones are used to describe excitations
in a two-level system. The transition frequency between the
first two levels is also adjusted to take into account the
anharmonicity by replacing ωq with ω0. Therefore, we rewrite
the Hamiltonian (9) as

Ĥ′
q = h̄ω0

(
σ̂+σ̂− + 1

2

)
. (10)

Hamiltonian (10) is the Hamiltonian of a quantum two-
level system. To obtain a quantum mechanical Hamiltonian
of the system, one can substitute the expressions for the
resonator and qubit variables given in Eqs. (6) and (8), respec-
tively, into Hamiltonian (5). In this way, one can also express
the terms in Hamiltonian (5) which involve both resonator and
qubit variables in the argument of the cosine, thus coupling
those variables, in terms of creation and annihilation operators
of the photons excited in the resonator and the qubit excita-
tion. Thus, we get

Ĥ(t ) = h̄ωr (t )

(
â†â + 1

2

)
+ h̄

ω0(t )

2
σ̂z + h̄gxx(t )σ̂x(â† + â)

+ h̄gzz(t )σ̂z(â† + â)2 + h̄gzx(t )σ̂z(â† + â)

+ h̄gxz(t )σ̂x(â† + â)2, (11)

where ωr (t ) is the transition frequency of the resonator, ω0(t )
is the transition frequency of the qubit, and gxx(t ), gzz(t ),
gzx(t ), and gxz(t ) are the coupling strengths. The expressions
of each of the parameters in Hamiltonian (11) are given in
Table II in the Appendix. It is important to note that all of
these parameters depend on time through their dependence on
the external magnetic flux �x(t ).

A. Square-wave modulation

We consider two forms of the magnetic flux modulation:
a square-wave and a sinusoidal one. Let us first focus on the
case of a square-wave modulation of the magnetic flux,

�x(t ) = kπ

2
θ

[
cos

(
�st + 3π

2

)]
, (12)

where θ (·) is the Heaviside function which switches on peri-
odically with period Ts = 1/�s, where �s is the frequency of
the switching of the magnetic flux. By switching the external
magnetic flux �x(t ) between the values 0 and kπ

2 , one can
tune the qubit and the resonator parameters in Hamiltonian
(11) at each instant of time. This gives the instantaneous
switching between transverse and longitudinal qubit-resonator
coupling, which can be used to give rise to the dynamical
Lamb effect. Although this kind of modulation is closest to the
ideal situation of instantaneous switching, it can be difficult
to achieve with the experimental instruments available now
because of the short period Ts of the square wave required.

In particular, for �x = 0, we can write the Hamiltonian
(11) as

ĤT = h̄ωT
r

(
â†â + 1

2

)
+ h̄

ωT
0

2
σ̂z + h̄gT

xxσ̂x(â† + â)

+ h̄gT
zzσ̂z(â† + â)2, (13)

where the expression of the parameters {ωT
r , ωT

0 , gT
xx, gT

zz} is
given in Table I. In this case, {gxx, gzz �= 0; gzx, gxz = 0} and
the Hamiltonian (13) is instantaneously equivalent to the
Hamiltonian (2) of a transversely coupled qubit-resonator
system, with the exception of an extra coupling term.

On the other hand, for �x = kπ
2 , Hamiltonian (11) can be

reduced to the following form:

ĤL = h̄ωL
r

(
â†â + 1

2

)
+ h̄

ωL
0

2
σ̂z + h̄gL

zxσ̂z(â† + â)

+ h̄gL
xzσ̂x(â† + â)2, (14)

where the expressions of {ωL
r , ωL

0 , gL
xx, gL

zz} are also given in
Table I. Here, {gxx, gzz = 0; gzx, gxz �= 0}, which leads to an
instantaneous longitudinal qubit-resonator coupling as in (1),
with a spurious coupling term. To suppress the unwanted
terms gT

zz and gL
xz in Hamiltonian (13) and (14), respectively,

we choose specific values of the parameters of the circuit.

B. Sinusoidal modulation

While the square-wave modulation of the magnetic flux
�x(t ) comes closest to the requirement of periodic and instan-
taneous switching on and off of the qubit-resonator coupling
needed to observe the dynamical Lamb effect, this may be
difficult to achieve in a realistic experimental setting. For this
reason, we turn to another type of modulation, a sinusoidal
one, which can be easily obtained in experiments. In fact,
a high-frequency sinusoidal magnetic flux was used in the
first experimental observation of the dynamical Casimir effect
[15]. This models the more realistic situation where a finite
amount of time is needed to switch on and off the coupling of
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TABLE I. Instantaneous values of the parameters given in Table II for the case of square-wave modulation of the external magnetic flux �x .

Transverse coupling: �x = 0 Longitudinal coupling: �x = kπ

2

ηT = EJ1+EJ2
2k

(
2π

�0

)2
L ηL = 0

E∗T
Jq = EJq + (

�0
2π

)2 1+ηT

2L E∗L
Jq = EJq + (

�0
2π

)2 1
2L

ωT
r =

√
1+ηT

LC ωL
r =

√
1

LC

ωT
0 =

√
8EcE∗T

Jq − Ec
EJq+(

�0
2π )

2 ηT

2k2L
E∗T

Jq
ωL

0 =
√

8EcE∗L
Jq − Ec

EJq

E∗L
Jq

gT
xx = EJ1−EJ2

2k2
4

√
2EC
E∗T

Jq

π

�0

4

√
L
C

1
1+ηT gL

xx = 0

gT
zz = − EJ1−EJ2

16 k3

√
2EC
E∗T

Jq

(
π

�0

)2
√

L
C

1
1+ηT gL

zz = 0

gT
zx = 0 gL

zx = − EJ1−EJ2
8 k2

√
2EC
E∗L

Jq

π

�0

4

√
L
C

gT
xz = 0 gL

xz = − EJ1−EJ2
4 k2

4

√
2EC
E∗L

Jq

(
π

�0

)2
√

L
C

the qubit with the resonator. Thus, we take �x(t ) as

�x(t ) = kπ

2

[
1

2
+ 1

2
cos (�st )

]
. (15)

In this case, the magnetic flux does not instantaneously
switch on and off, but continuously increases or decreases to
its maximum or minimum value, respectively. However, the
rise time trise = t (�x = kπ

2 ) − t (�x = 0), which is the time
required to increase the magnetic flux from the minimum
value to the maximum value, and vice versa, the fall time
tfall = t (�x = 0) − t (�x = kπ

2 ), which is the time needed
to decrease it from the maximum value to the minimum
value, are shorter than any parameter with dimension of time
(trise, tfall � ω−1

0 , ω−1
r ). Therefore, one can still consider this

modulation to be nonadiabatic. The parameters of Hamilto-
nian (11) do not take the simple form shown in Table I for the
case of square-wave modulation, but vary continuously with
the magnetic flux �x(t ). These parameters can be found by
substituting the sinusoidal modulation of the magnetic flux in
the corresponding expressions from Table II in the Appendix.

IV. RESULTS AND DISCUSSION

We numerically solve the Schrödinger equation for the
Hamiltonian (11) in the case of periodic switching between
transverse and longitudinal coupling with the initial condition
|ψ (t = 0)〉 = |g, 0〉, where g denotes the qubit in the ground
state and 0 is the number of photons in the resonator. In
the numerical calculations of the number of excitations in
the qubit and resonator, we use the following values of the
parameters of the circuit [39]:

k = 9, EJq = h × 10 GHz,

EJ1 = h × 81.6 GHz, EJ2 = h × 78.4 GHz,

C = 102 fF, Cq = 60 fF, L = 5 nH. (16)

The results of our calculations are presented in Figs. 2
and 3. In Figs. 2(a) and 2(b), the time dependence of the
expected number of excitations in the qubit and the resonator
for a square-wave and a sinusoidal modulation, respectively,
of the coupling is presented. The plots shown correspond
to specific values of the frequency of switching �s of the

magnetic flux for the two different types of modulation. In
both cases, the value of the frequency of switching of the
magnetic flux which maximizes the number of excitations in
the qubit and the resonator is �s = ω̄r + ω̄0, which is the
sum of the time-averaged qubit transition frequency ω̄0 =
1
T

∫ T
0 ω0(t ′)dt ′ and the time-averaged photon transition fre-

quency ω̄r = 1
T

∫ T
0 ωr (t ′)dt ′ over a period of oscillation of the

magnetic flux. Because of the different time dependence of
the qubit and resonator transition frequencies for the different
modulations, the number of excitations in the qubit and the
resonator reach their maximum value at a different frequency
of switching of the magnetic flux. In the case of a square-wave
modulation, the number of excitations is maximum for �s =
ω̄r + ω̄0 = 13.75 GHz, while for the case of a sinusoidal mod-
ulation, the maximum is at �s = 13.90 GHz. Moreover, there
are no excitations in the system for almost all other values of
the frequency of switching of the magnetic flux different from
�s = ω̄r + ω̄0. Figure 3 shows the time dependence of the
number of excitations in the qubit and the resonator for a range
of frequencies of switching �s of the magnetic flux. Since the
counter-rotating terms in the Hamiltonian (2), which cause
the |g, 0〉 → |e, 1〉 transition, become relevant for frequency
of switching of the coupling equal to the sum frequency of
the qubit and resonator transition frequencies, the results of
Fig. 3 may seem trivial, but they are instructive. In fact,
because of the slight modification of the qubit and cavity
transition frequencies during the modulation of the magnetic
flux, the sum frequency is not fixed. Indeed, the frequency
of switching of the coupling that makes the counter-rotating
terms stationary is given by the time average of the sum
frequency of the transition frequencies of qubit and resonator.
The counter plots in Fig. 3 clearly show that there are no other
values of the switching frequency which have any effect on
the system. Figures 3(a) and 3(b) depict the results obtained
in the case of a square-wave modulation of the magnetic flux,
while the results obtained in the case of sinusoidal modulation
of the magnetic flux are shown in Figs. 3(c) and 3(d).

It is crucial to note that the state |e, 1〉, where e stands for
the qubit in the excited state, can only be reached from the
initial state |g, 0〉 through the counter-rotating terms â†σ̂+ +
âσ̂− in Eq. (11). Since the counter-rotating terms are also
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FIG. 2. Time dependence of the number of excitations in the qubit and the resonator for a frequency of switching of the magnetic flux
�s = ω̄r + ω̄0 for (a) a square-wave modulation and (b) a sinusoidal modulation of the magnetic flux.

responsible for the presence of the Lamb shift, the excitations
of the system generated by the nonadiabatic switching on and
off of these terms can be seen as the result of a nonadia-
batic change in Lamb shift. Therefore, the dynamical Lamb
effect is the main channel of excitation of the qubit and the
creation of photons. By considering Hamiltonian (11) in a
frame rotating at the qubit and photon transition frequencies
(interaction picture), one has that the counter-rotating terms
become dominant over the rotating terms when the qubit-
resonator coupling is periodically switched on and off at a
frequency equal to the sum of the qubit and the resonator
time-averaged frequencies. In fact, for the specific modulation

of the qubit-resonator coupling chosen, the counter-rotating
terms become stationary while the rotating terms acquire a
phase oscillating at high frequency, thus averaging them to
zero. In Ref. [20], it is shown that the interplay between
rotating and counter-rotating terms in the Hamiltonian allows
for the emission of any number of photons, in principle.
However, when the contribution of the rotating terms becomes
negligible, as in our case, this ceases to be true and only
transitions caused by the counter-rotating terms are effectively
allowed. So, if we consider a qubit and a resonator initially in
the ground state, the transitions |g, 0〉 → |e, 1〉 and |e, 1〉 →
|g, 0〉, which create and destroy two excitations in the system,

FIG. 3. Time dependence of the number of excitations in the qubit and the number of photons in the resonator for a range of frequencies of
switching �s of the magnetic flux. We take �s ∈ [ 3

4 (ω̄r + ω̄0), 5
4 (ω̄r + ω̄0)]. The color scale in the figures indicates the number of excitations.

Expectation value of the number of excitations in the (a) resonator and (b) qubit, for a square-wave modulation of the magnetic flux. (c) Number
of photons and (d) probability of excitation of the qubit, for a sinusoidal modulation of the magnetic flux.
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respectively, will dominate the dynamics of the system. A
comparison of Figs. 3(a) and 3(b), and Figs. 3(c) and 3(d),
clearly shows that the number of excitations in the resonator
and the qubit coincide and periodically reaches its maximum
at one, indicating that the system is undergoing the transitions
described above. Experimentally, the state of the qubit can
be measured to have an indication of the transition. This is
done by using an additional resonator coupled to the qubit.
In fact, the resonant frequency of the resonator, and thus
its reflection coefficient, depends on the state of the qubit
[51]. Although the coupling of the qubit to the read-out
resonator causes a Lamb shift of the energy levels of the
qubit, this shift remains constant during the dynamics of the
qubit-resonator system described above. Thus, the possibility
of generating the nonadiabatic Lamb shift of the qubit needed
for the DLE is not affected by the presence of a read-out
resonator.

V. CONCLUSION

In conclusion, we predict that the dynamical Lamb effect
could arise in superconducting circuits when the coupling
of a superconducting qubit with a resonator is periodically
switched on and off nonadiabatically, and demonstrate that by
using a superconducting circuit which allows one to switch
between longitudinal and transverse coupling of a qubit to

a resonator, it is possible to observe the dynamical Lamb
effect. In particular, the switching between longitudinal and
transverse coupling which gives rise to the dynamical Lamb
effect is achieved by turning on and off the magnetic flux
through the loops of the superconducting circuit. If the mag-
netic flux is periodically turned on and off as a square-wave
or a sinusoidal modulation with a frequency of switching
equal to the sum of the average qubit and photon transition
frequencies, then the calculated number of excitations in the
qubit and the resonator due to the dynamical Lamb effect
reaches its maximum values.
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APPENDIX

The analytical expressions of the parameters for the Hamil-
tonian (11) used in the calculations of the time evolution of the
number of excitations in the qubit and resonator are given in
the table below [39].

TABLE II. Expressions of the parameters introduced in Eq. (5).
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