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Transport and entanglement for single photons in optical waveguide ladders
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Transfer and scattering matrix theories are derived for studying single-photon (SP) transport in optical
waveguide ladders (OWLs). The OWLs consist of two one-dimensional waveguides connected by Jaynes-
Cummings emitters (JCEs) and have two input and two output channels. The von Neumann entropy is introduced
to describe the entanglement between the transmitted states from the two output channels. Two types of the
OWLs are studied, i.e., the OWLs with two identical waveguides (i-OWLs) and those with two different
waveguides (d-OWLs). When the OWLs contain only one JCE, the SP transport behavior in the i-OWLs is the
same as that in the d-OWLs. When two JCEs are introduced, the quantum interference among the JCE-scattered
waves can lead to the SP jumping with a 100% chance between the waveguides for the i-OWLs, while this is
hard for the d-OWLs. As a result, the i-OWLs can serve as a SP router with respect to the d-OWLs. When the
number of JCEs increases to a large value (e.g., 16), the transmission probabilities of the two output channels
both tend to be 0.25 for the i-OWLs, but zero for d-OWLs. Correspondingly, the entanglements approximate a
constant of 1 for the i-OWLs, but of zero for the d-OWLs. It shows that a large number of JCEs can suppress
the influence of other system parameters including the SP frequency and JCE loss. Therefore, the i-OWLs with
a large number of the JCEs show potential for a SP splitter and entanglement generator.
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I. INTRODUCTION

One-dimensional (1D) waveguides [1–5] show many di-
versities in quantum informatics as they couple with quantum
emitters, since such types of optical structures can tune the
transport of photon states [6–10]. Quantum emitters, includ-
ing quantum dots [11–13], two-level atoms [14–20], side
optical cavities [21,22], and cavities with an atom [23–26] or
Kerr medium [27] inside, are responsible for plenty of phys-
ical phenomena, for example, electromagnetically induced
transparency [28–31], Fano resonance [32–34], polarization
effects [35], slow light behavior [29,36], and multiphoton
transmission [37,38]. Photons, as information carriers, fly in
the 1D waveguide, which could be controlled by the quantum
emitters coupled with the waveguides, behaving as a gate.
Since the two ends of the waveguide are two natural ports
for introducing and extracting information, the photonic ar-
chitecture of the waveguide coupled with quantum emitters is
a candidate for designing complex optical quantum devices.
Some quantum devices based on this architecture have been
proposed or implemented, such as frequency combs [3], pho-
ton memory [29], isolators [39], single-photon (SP) switching
[40–43], transistors [44–46], band filters [47], SP frequency
converters [48], and so on. The quantum interference between
the guided photons and those emitted from the quantum
emitters can result in a perfect reflection [49,50]. These
works essentially focused on the architectures of a single 1D
waveguide coupled with two-level systems or qubits on the SP
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level. These architectures could be achieved experimentally
by superconducting circuits [51,52], neutral atoms [53–55],
quantum dots in photonic crystals [56–59], and an optical
cavity with an atom inside [60]. However, the architectures
with many 1D waveguides are more interesting and powerful
in practice because they can compose photonic quantum net-
works.

Quantum networks are profound subjects that can com-
plete nonclassical tasks. One typical platform for quantum
networks is based on cavity quantum electrodynamics [61],
namely, photonic quantum networks that require suitable
nodes and channels. Quantum emitters can serve as the
quantum nodes and 1D waveguides are competent as the
channels through which photons can transport over a long
distance with almost negligible loss or decoherence [62,63].
Researchers have attempted to design quantum architectures
based on a waveguide-emitter system to control the photon
transport, such as SP level routers [64–69]. The quantum
routers can redirect the incident photons to any of the output
channels with an approximate unity probability. In the present
work, we study the SP transport in the photonic quantum
network shown in Fig. 1(a), i.e., an optical waveguide ladder
(OWL) which consists of two 1D waveguides connected by
Jaynes-Cummings emitters [(JCEs), being the cavity with one
embedded two-level atom inside].

The SPs are incident from the two left ports of In 1 and
In 2. The JCEs scatter them into the ports of In 1 and In 2 as
reflection and into the two right ports of Out 1 and Out 2 as
transmission. A similar structure also with two input ports and
two output ports has been demonstrated in experiment for an
all-optical SP router [70] (where the chiral coupling between
the waveguide and one �-type atom was used), indicating that
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FIG. 1. (a) Schematic drawing of an optical waveguide ladder:
two 1D waveguides are connected by N Jaynes-Cummings emitters
(JCEs). The JCE is the optical cavity with an embedded two-level
atom inside. The nth JCE located at xn (n = 1, 2, . . . , N ) is coupled
to waveguides 1 and 2 with strengths of V1,n and V2,n, respectively.
tm,n and rm,n (m = 1, 2) are the coefficients of the rightward and
leftward moving photon in the mth waveguide between xn and
xn+1. (b) Example of dispersions for two different waveguides. They
have the group velocities of ±0.6c and ±0.9c at the energy of ω0,
corresponding to the wave vectors of ±k0 and ±1.5k0, respectively,
where c and k0 are the vacuum light speed and unit of the wave vector.

the OWLs are achievable. As a rational conjecture, the reflec-
tion and transmission of the SPs in the OWL should present
more potential with respect to the single-waveguide system,
since one more waveguide is considered. For example, there
is a correlation between the two transmitted states from the
ports of Out 1 and Out 2 in the OWLs, while none in the
single-waveguide system, since it has only one output port.
The dispersions of the two waveguides can be the same as
or different from each other, which brings us diversities also;
see Fig. 1(b). For easy writing we denote the OWLs with two
identical (different) waveguides as i-OWLs (d-OWLs). The
number of the JCEs and group velocities of the waveguides
show strong influence on the SP transport and entanglement
of the two transmitted states. To describe them, the transfer
and scattering matrix theories are built up and von Neumann
entropy is introduced.

The rest of this work is organized as follows. In Sec. II,
we first introduce the theoretical model for the OWL and then
derive the transfer and scattering matrices for the SP trans-
port. Subsequently, the SP transport properties are studied in
Sec. III for the OWLs with identical and different waveguides.

In Sec. IV, the entanglement between the two transmitted
states is calculated and discussed. At last, a brief conclusion
is summarized in Sec. V.

II. MODEL AND FORMULAS

A. Hamiltonian and wave functions

The OWL in Fig. 1(a) has two input ports, In 1 and In 2,
and two output ports, Out 1 and Out 2. The JCEs connect the
two waveguides at coordinates xn. The Hamiltonian for the
OWL is written as

H = HW + HJC + HI , (1)

where HW , HJC , and HI describe the two waveguides, all
isolated JCEs, and all interactions between the JCEs and
waveguides, respectively. For convenience, the Planck con-
stant is set to be h̄ = 1 hereafter.

To describe the SP transport properties in the OWLs,
it is convenient to write HW in the real space, which can
be achieved by linearizing the waveguide dispersion [21].
Throughout this work, we denote the SP energy in the mth
waveguide as εm(km) with km being the corresponding wave
vector. Around the concerned energy of ω0, εm(km) can be
linearized as εm(km) = (ω0 − v

g
mk0

m) ± v
g
mkm for the right- and

left-moving photons (vg
m and k0

m are the group velocity and
wave vector of the SP at the energy of ω0, respectively); see
Fig. 1(b). Accordingly, HW has the form [21,43,44,71–74]

HW =
2∑

m=1

∫
dx L̂†

m(x)

(
ω0 − vg

mk0
m + ivg

m

∂

∂x

)
L̂m(x)

+
2∑

m=1

∫
dx R̂†

m(x)

(
ω0 − vg

mk0
m − ivg

m

∂

∂x

)
R̂m(x),

(2)

where L̂†
m(x) and L̂m(x) [R̂†

m(x) and R̂m(x)] are the creation and
annihilation field operators for the left-moving (right-moving)
photons at coordinate x in the mth waveguide.

For the Hamiltonian of the JCEs, the rotating wave ap-
proximation is often used to maintain the conservation law
of particle number, namely, HJC is written as [4,5,21,43]

HJC =
N∑

n=1

[
ω̃c

nĉ†
nĉn + ω̃e

nê†
nên

+ωgĝ†
nĝn + �n(ĉ†

nσ̂
−
n + H.c.)

]
, (3)

where ĉ†
n and ĉn are the creation and annihilation operators

of the nth cavity with the eigenfrequency of ω̃c
n. ê†

n and ên

(ĝ†
n and ĝn) are the creation and annihilation operators of

the excited (ground) state with the energy of ω̃e
n (ωg) for the

nth two-level atom. σ̂+
n = ê†

nĝn (σ̂−
n = ĝ†

nên) gives the atomic
raising (lowering) ladder operator. The Rabi energy �n de-
scribes the coupling between the atom and cavity. Besides, the
nonzero imaginary parts of ω̃c

n and ω̃e
n give the non-Hermitian

dissipative processes in the system, accounting for the leakage
of photons into those nonwaveguide modes.

For the interaction between the JCEs and waveguides,
the following δ-type coupling Hamiltonian is adopted
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[5,43,71–73]:

HI =
2∑

m=1

N∑
n=1

∫
dx Vm,nδ(x−xn){ĉ†

n[R̂m(x) + L̂m(x)] + H.c.},

(4)

where Vm,n describes the coupling strength between the mth
waveguide and nth cavity; see Fig. 1(a). This type of Hamilto-
nian has been proved to be effective as the frequency width
of the incident pulsed wave is much smaller than the SP
frequency. Under this condition, one can take the coupling
strength between the JCEs and waveguides to be indepen-
dent of the photon frequency [45], which corresponds to the
Markovian approximation [75]. In addition, we assume that
the distance between the two waveguides is much larger than
the system characteristic length, so that the direct coupling
between them can be neglected. This assumption is realizable
in experiments [76,77], as long as the distance between the
waveguides is about ten times of the system characteristic
length.

For the single particle excitation, the eigenstate of H takes
the form [5,71–73]

|	〉 =
{

2∑
m=1

∫
dx[Rm(x)R̂†

m(x) + Lm(x)L̂†
m(x)]

+
N∑

n=1

(Cnĉ†
n + Anσ̂

+
n )

}
|∅〉, (5)

where |∅〉 is the vacuum state, i.e., no photon in any waveg-
uide or any cavity, and all atoms are in the ground state. Cn

(An) represents the excitation amplitude of the nth cavity
(atom). Rm(x) [Lm(x)] is the wave function of the photon
rightward (leftward) moving in the mth waveguide. For the ar-
chitecture in Fig. 1(a), they have the following forms [10,44]:

Rm(x) = eikmx
[
tm,0θ (x1−x) + tm,Nθ (x−xN )

+
N−1∑
n=1

tm,nθ (x−xn)θ (xn+1−x)

]
, (6)

Lm(x) =e−ikmx

[
rm,0θ (x1−x)+

N−1∑
n=1

rm,nθ (x−xn)θ (xn+1−x)

]
,

(7)

where θ (x) is the unit step function. tm,n and rm,n determine
the SP wave functions and are denoted in Fig. 1(a) for clarity.

B. Transfer matrix theory

The SP transmission probability can be calculated by the
transfer matrix, Mn, connecting the coefficient vector Fn and
Fn−1, i.e.,

Fn = MnFn−1, (8)

where Fn is defined as

Fn =
(

tn

rn

)
, (9)

with tn = (t1,n, t2,n)T and rn = (r1,n, r2,n)T (T gives the trans-
pose of the vector). Substituting Eqs. (1) and (5) into the
steady Schrödinger equation,

H |	〉 = ε|	〉, (10)

one can find Mn after some algebra derivations as follows:

Mn = G−1Q∗
n

(
I − iY n −iY n

iY n I + iY n

)
QnG. (11)

The detailed derivation for Mn is given in Appendix A. Here,
I and Y n are 2 × 2 matrices, namely,

I =
(

1 0
0 1

)
, Y n= 1

ζn

(
J1,n

√
J1,nJ2,n√

J1,nJ2,n J2,n

)
, (12)

where ζn = ε − ω̃c
n − �2

n
ε−ω̃a

n
and Jm,n = V 2

m,n/v
g
m. The 4 × 4

diagonal matrices of G and Qn are given by

G = diag
(√

v
g
1,

√
v

g
2,

√
v

g
1,

√
v

g
2

)
, (13)

Qn = diag(eik1xn , eik2xn , e−ik1xn , e−ik2xn ). (14)

Here, diag(· · · ) represents the diagonal matrix.
With Mn the total transfer matrix of M can be written as

M = MN MN−1 · · · M1, (15)

which determines the system transmission and reflection co-
efficients. According to Eq. (9), it is convenient to divide Mn

and M into four 2 × 2 matrices, i.e.,

Mn =
(

Mtt
n Mtr

n

Mrt
n Mrr

n

)
, M =

(
Mtt Mtr

Mrt Mrr

)
. (16)

Finally, the reflection and transmission coefficients of r0 and
tN can be found as

r0 = −(
Mrr

)−1
Mrt t0, (17)

tN = [Mtt − Mtr (Mrr )−1Mrt ]t0. (18)

Here, t0 represents the incident coefficient; see Fig. 1(a). It
takes two possible values of (1, 0)T and (0, 1)T , representing
the incidence from the ports of In 1 and In 2, respectively. If
we introduce tmm′ (rmm′ ) to denote the transmission (reflection)
coefficient from port of In m′ to that of Out m (In m), the
corresponding transmission and reflection probabilities have
the following expressions:

Tmm′ = v
g
m

v
g
m′

|tmm′ |2, Rmm′ = v
g
m

v
g
m′

|rmm′ |2. (19)

They depend on the group velocities when v
g
1 �= v

g
2 and have

four components. When the two waveguides are the same
as each other (implying v

g
1 = v

g
2), they are just the absolute

square of the coefficients, which is similar to the SP transport
in the structure with only one waveguide [21].

C. Scattering matrix theory

Equation (12) indicates that the transfer matrix elements
are very large as ζn ∼ 0, resulting in that the transfer matrix
method may fail for the large N (number of the JCEs). This
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problem can be overcome by the scattering matrix theory
being more stable than the transfer matrix.

The scattering matrix of Sn is defined to connect the vectors
(t0, rn)T and (tn, r0)T ,

(
tn

r0

)
= Sn

(
t0

rn

)
=

(
Stt

n Str
n

Srt
n Srr

n

)(
t0

rn

)
. (20)

These connected coefficients, respectively, describe the inci-
dent and scattered waves with respect to the former n JCEs
in the OWL; see Fig. 1(a). The total scattering matrix of SN

connects the incident and scattered waves of the OWL, i.e.,
(t0, rN )T and (tN , r0)T , and can be found by the following
iteration scheme:

Stt
n = (

W tt
n − Str

n−1W
rt
n

)−1
Stt

n−1,

Str
n = (

W tt
n − Str

n−1W
rt
n

)−1(
Str

n−1W
rr
n −W tr

n

)
,

Srt
n = Srt

n−1 + Srr
n−1W

rt
n

(
W tt

n − Str
n−1W

rt
n

)−1
Stt

n−1,

Srr
n = Srr

n−1

[
W rt

n

(
W tt

n −Str
n−1W

rt
n

)−1
(Str

n−1W
rr
n −W tr

n )+W rr
n

]
,

(21)

where W n is the inverse of Mn, i.e.,

W n = M−1
n =

(
W tt

n W tr
n

W rt
n W rr

n

)
. (22)

The detailed derivation for the iteration scheme of the scat-
tering matrices is shown in Appendix B. When N is very
large, the scattering matrix SN should be used to calculate the
transmission and reflection probabilities.

In numerical calculation, we take ω0 and k0 as the units
of the energy and wave vector, and the corresponding length
and velocity units are λ0 = 2π/k0 and vacuum light speed of
c. All JCEs have the same parameters, that is, ω̃c

n = ωc − iγc,
ω̃a

n = ωa − iγa, �n = �, and Jmn = Jm. ωc and γc (ωa and γa)
measure the cavity (two-level atom) eigenfrequency and loss,
respectively. Other assumptions for the system parameters
are as follows: ωc = ωa = ω0, � = 0.02ω0, and J1 = J2 =
0.005ω0; for the i-OWLs v

g
1 = v

g
2 = 0.6c and k0

1 = k0
2 = k0,

while for the d-OWLs v
g
1 = 0.6c, v

g
2 = 0.9c, k0

1 = k0, and
k0

2 = 1.5k0 as an example; see Fig. 1(b). These values of the
parameters are consistent with those used in the theoretical
works [6,21,43,71,72] and experiments [60,70].

III. TRANSMISSION AND REFLECTION

This section is divided into two subsections: (A) i-OWLs
and (B) d-OWLs. For the i-OWLs and d-OWLs the SP trans-
port properties are calculated and compared with each other
in detail.

A. i-OWLs

Figure 2 shows the SP transmission and reflection spectra
for the i-OWLs with one JCE (N = 1). T11 and T22 have two
dips at the two eigenfrequencies of the JCE (i.e., 0.98ω0 and
1.02ω0), while T21, T12 and all Rmm′ present two peaks. Their
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FIG. 2. SP transmission and reflection spectra for the i-OWLs
with one JCE (N = 1). Parameters: ωc = ωa = ω0, � = 0.02ω0,
J1 = J2 = 0.005ω0, k0

1 = k0
2 = k0, vg

1 = v
g
2 = 0.6c, and γa = γc = 0.

expressions can be written as

Tmm =
∣∣∣∣ 1 + iJm̄

1 + i(J1 + J2)

∣∣∣∣
2

, (23a)

Rmm =
∣∣∣∣ −iJm

1 + i(J1 + J2)

∣∣∣∣
2

, (23b)

Tmm̄ = Rmm̄ =
∣∣∣∣ −i

√
J1J2

1 + i(J1 + J2)

∣∣∣∣
2

, (23c)

where

Jm = Jm

ε − ωc + iγc − �2

ε−ωa+iγa

, (24)

and m̄ = 1 and 2 when m = 2 and 1, respectively. Since
J1 = J2, ωc = ωa = ω0, and γc = γa = 0 are adopted, the
above expressions give T11 = T22 = 1 and zero for all other
probabilities when ε = ω0; see Fig. 2. In this case, there is
no SP jump between two waveguides. On the contrary, all
transmission and reflection probabilities are equal to 0.25
for ε = 0.98ω0 and 1.02ω0, showing a definite SP jumping.
Combining these two situations, the i-OWLs could be used to
adjust the SP probability distribution among the four ports.

The SP transport properties of the i-OWLs with one JCE
can be compared with those of the single-waveguide structure
coupled with one JCE (denoted as SWS) [21]. Let’s first recall
the expressions of the transmission and reflection probabilities
of the SWS,

T =
∣∣∣∣∣

ε − ωc + iγc − �2

ε−ωa+iγa

ε − ωc + iγc − �2

ε−ωa+iγa
+ iJ

∣∣∣∣∣
2

, (25a)

R =
∣∣∣∣∣ −iJ

ε − ωc + iγc − �2

ε−ωa+iγa
+ iJ

∣∣∣∣∣
2

, (25b)

where J measures the coupling strength between the JCE
and waveguide. Equations (25a) and (25b) are the same as
Eqs. (23a) and (23b), respectively, under the mapping of
J ⇔ Jm and γc ⇔ γc + Jm̄. Therefore, the influence of the
second waveguide on the SP transport in the first one is just to
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FIG. 3. (a)–(c) Contour maps of the transmission and reflection spectra for the i-OWLs with two JCEs (N = 2), as functions of the photon
energy, ε, and distance between the two JCEs, �x. Their values are normalized to their maxima denoted by “Max”. (d)–(f) Transmission and
reflection spectra for �x ∈ [0.3λ0, 0.7λ0] with a step of 0.05λ0, located in the light green region in (a)–(c), respectively. For easy observation,
lines are offset from the bottom with a step of 0.5. Parameters: ωc = ωa = ω0, � = 0.02ω0, J1 = J2 = 0.005ω0, k0

1 = k0
2 = k0, vg

1 = v
g
2 = 0.6c,

and γa = γc = 0.

increase the cavity loss. In other words, the SWS with cavity
loss can be mapped to the i-OWLs without cavity loss for the
SP transport, implying that the i-OWLs are more general than
the SWS.

From Eq. (23c) it is found that T21 = T12 and neither
of them could reach 1. When J1 = J2 is adopted in Fig. 2,
we have T11 = T22 and T21 = T12 = R11 = R22 = R12 = R21.
They tell that the SP jumping with a 100% chance between
two waveguides cannot take place for the i-OWLs with one
JCE, see Fig. 2, while the i-OWLs with two JCEs (N = 2)
can; see Fig. 3, where the distance between the two JCEs is
denoted as �x. When more than one JCEs are introduced,
these JCEs can induce the quantum interference among the
scattered SP waves [74]. The quantum interference caused by
the two JCEs has been studied for the single-waveguide model
[73]. For the present two-waveguide model, i.e., the i-OWLs
with two JCEs, the system transmission and reflection can be
expressed as

Tmm =
∣∣∣∣ 1 + Jm̄[i2 + (J1 + J2)(ei2k�x − 1)]

1 + i2(J1 + J2) + (J1 + J2)2(ei2k�x − 1)

∣∣∣∣
2

, (26a)

Rmm =
∣∣∣∣Jm[(J1 + J2)(ei2k�x − 1) + i(ei2k�x + 1)]

1 + i2(J1 + J2) + (J1 + J2)2(ei2k�x − 1)

∣∣∣∣
2

, (26b)

Tmm̄ =
∣∣∣∣

√
J1J2[i2 + (J1 + J2)(ei2k�x − 1)]

1 + i2(J1 + J2) + (J1 + J2)2(ei2k�x − 1)

∣∣∣∣
2

, (26c)

Rm̄m = Jm̄

Jm
Rmm, (26d)

where the two waveguides in the i-OWLs have the same
photon wave vector, k. The 100% chance of the SP jumping
between two waveguides requires Tmm = 0, giving the
condition of 1 + Jm̄[i2 + (J1 + J2)(ei2k�x − 1)] = 0. When
�x = 0 it becomes Jm̄ = −i/2, which is hardly satisfied;
see Eq. (24). However, when �x �= 0 the condition becomes
much easier to meet. For example, Fig. 3(b) shows that Tmm̄

can reach 1 for some values of �x. Since J1 = J2 is adopted in
Fig. 3, it holds T11 = T22, T21 = T12, and R11 = R21 = R12 =
R22, which can be derived out from Eq. (26). To demonstrate
the SP jumping between two waveguides, the transmission
and reflection spectra are plotted in Figs. 3(d)–3(f), corre-
sponding to Figs. 3(a)–3(c), respectively. For �x ∼ 0.5λ0,
Tmm̄ has two sharp peaks up to 1 and, simultaneously, Tmm and
Rmm′ have two sharp dips down to zero. These peaks and dips
are broadened and no longer reach 1 and zero, respectively,
when �x is away from 0.5λ0. The quantum interference
caused by the two JCEs is responsible for the SP jumping with
a 100% chance between two waveguides. Different from this
mechanism, the chiral coupling between the quantum emitters
and waveguides was also proposed to achieve the SP jumping
from one waveguide into another [68], which associates with
the so-called spin-orbit interaction of light [78].

On the other hand, the quantum interference accounts for
the periodical variation of the transmission and reflection
probabilities with �x; see Figs. 3(a)–3(c). Similar results have
been shown for the single waveguide coupled with two JCEs
in Ref. [73]. The period equals 2π

2k ∼ 0.5λ0 for k ∼ k0. As
a result, there are lots of values for �x to achieve the SP
jumping with a 100% chance between two waveguides. But
for a certain �x only two peaks in the spectra (near the two
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FIG. 4. Transmission and reflection spectra for the i-OWLs with
two JCEs (N = 2) under four large values of �x. Lines are offset
from the bottom with a step of 0.5. Other parameters are the same as
those for Fig. 3.

JCE eigenfrequencies) meet such SP jumping; see Figs. 3(d)–
3(f). Since the 100% chance of the SP jumping originates
from the quantum interference caused by the two JCEs, we
can further increase �x to induce more resonant peaks in the
transmission and reflection spectra; see Fig. 4. The distance of
�ε between the two neighbor peaks is inverse proportional to
�x, i.e., �ε ∼ vg

2π
�x , and thus the peak number increases for

increasing �x. The spectra of T21 and T12 near the two eigen-
frequencies of the JCEs (i.e., 0.98ω0 and 1.02ω0) split into
several peaks with values approaching 1; see Fig. 4(b). On the
other hand, the SPs prefer to transport in identical waveguides
when the frequency is away from these two eigenfrequencies,
that is, T11 and T22 approach 1; see Figs. 3 and 4. Accordingly,
researchers could design the output channel for the SPs in the
i-OWLs.

Different from the i-OWLs with one JCE, the influence of
the second waveguide in the i-OWLs with two JCEs cannot
be mapped to the cavity loss in the SWS (also with two
JCEs), owing to the quantum interference. Figure 5 shows
the influence of the JCE loss (i.e., the losses of the atom and
cavity) on the transmission and reflection spectra. Apparent
sharp peaks for T21 and T12 can be found when γa and γc

are both small, see Figs. 5(b) and 5(e), while they disappear
as γa and γc increase. Since large γa and γc can depress the

FIG. 5. Transmission and reflection spectra for the i-OWLs with
two JCEs (N = 2) under four values of atom (left column) and cavity
(right) losses. In calculation, �x = 0.5λ0 and other parameters are
the same as those for Fig. 3.

quantum interference caused by the two JCEs, they can also
break down the 100% chance of the SP jumping between the
two waveguides.

For the JCE works like a cavity when γa > � [see
Eq. (24)], the spectra of Tmm gradually transform from the
line shape with two dips to that with one as γa increases
[see Fig. 5(a)]. On the contrary, for small γa the value of
Tmm|ε=ω0 ∼ 1 is almost independent of γc, see Eq. (26a), and
thus the line shape of Tmm always maintains two dips when γc

increases, even when γc > �; see Fig. 5(d). The cavity and
atom losses present different effects on the transmission and
reflection spectra, but they both decrease the sharpness of the
spectra. The losses of γa and γc should be less than one-tenth
of the Rabi coupling between the atom and cavity for the
SP jumping with a high chance between two waveguides.
This efficient SP jumping can be realized by adjusting the
distance between the two JCEs. We draw the conclusion that
the quantum interference caused by the two JCEs can make
the SP jumping from one waveguide to another efficiently,
which makes the i-OWLs possible to serve as a SP router.
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FIG. 6. Transmission, reflection, and absorption spectra for
the i-OWLs with N JCEs. All JCEs are uniformly spaced
and the nearest-neighbor distance is �x = 0.5λ0. Lines are offset
from the bottom with a step of 0.5. In calculation, γa = γc = 0.001ω0

and other parameters are the same as those for Fig. 3.

Figures 2 to 5 show that the SP transmission and reflection
depend on the SP frequency strongly. According to Eqs. (11),
(12), and (15), this strong dependence may be avoided by con-
sidering more JCEs in the i-OWLs, because multiplication of
many ζn [see Eq. (12)] in Eq. (15) could depress the influence
of other system parameters; see Fig. 6, where four values of N
are considered. For N = 24, there are several oscillations for
Tmm and Tmm̄; see Figs. 6(a) and 6(b). When N increases, more
oscillations are induced by the quantum interference among
the JCE-scattered waves but with a decrease in amplitude.
Ultimately, Tmm and Tmm̄ approach 0.25 for sufficiently large
N , being independent of the SP frequency. For the reflection
probabilities in Fig. 6(c), they also approximate 0.25 in out-
side of the two JCE eigenfrequencies. In one sentence, all
transmission and reflection probabilities approximate 0.25 for
large N in outside of the two JCE eigenfrequencies. Moreover,
the absorption in this region tends to be zero, see Fig. 6(d),
also owing to the quantum interference caused by the JCEs.
Mathematically speaking, the multiplication of many ζn in
the transfer matrix M is responsible for it. As a result, the
i-OWLs with more JCEs can serve as an ideal SP splitter, i.e.,
all transmission and reflection probabilities approximate 0.25
with no or marginal loss. The minimum number of the JCEs
for the splitter depends slightly on the JCE loss. For γa = γc =
0.001ω0 used in Fig. 6, the maximum deviation from 0.25 for
all transmission and reflection probabilities is ∼0.014 when
N = 24, which indicates that the present method is valid for
designing an ideal SP splitter.

For understanding the extension behavior of N , the spectra
are numerically calculated for N up to 210, though these
cases are difficult for experimentalists. The absorption in-
creases for increasing N when ε is between the two JCE
eigenfrequencies, except the central point of ω0. The former
is intuitive because each JCE enhances the system loss, while

the latter also originates from the quantum interference caused
by the JCEs or the multiplication of many ζn in M, since the
point of ω0 is the farther point away from the two JCE eigen-
frequencies between them. At the point of ω0, the i-OWLs for
very large N (e.g., 210) also behave like an ideal splitter. The
transmission probabilities all tend to be 0.25 between the two
JCE eigenfrequencies, and thus the SPs have half a chance to
be transmitted and half a chance to be reflected or absorbed.
Under the limitation of N the transmission and reflection
spectra show weak dependence on the system parameters,
such as losses, indicating that the quantum interference caused
by the JCEs plays an important role for the SP transport within
the i-OWLs. Especially, if the i-OWLs contain a large number
of the JCEs, all the transmission and reflection probabilities
approximate 0.25, which shows potential for a SP splitter.

B. d-OWLs

The two waveguides in the OWLs could have different
group velocities whose influence on the SP transport is fo-
cused by the present subsection. Different group velocities
commonly result in different SP wave vectors, which is the
key difference between the d-OWLs and i-OWLs. Since the
transmission and reflection for the d-OWLs with one JCE do
not explicitly depend on the wave vectors, see Eq. (23), their
spectra are the same as those of the i-OWLs also with one JCE
and, therefore, they are not shown here.

However, when the d-OWLs include two JCEs, their trans-
mission and reflection spectra depend on the wave vectors
and, accordingly, are different from those of the i-OWLs.
Considering that their analytical expressions are too involuted,
we only show their numerical results in Fig. 7. Comparing
Fig. 7 with Figs. 3(a)–3(c), one can see the spectra differences
between the d-OWLs and i-OWLs both with two JCEs. For
the d-OWLs, it does not have T11 = T22 or R11 = R22, while
still holding T21 = T12 and R21 = R12. The different group
velocities and system reversibility are responsible for them,
respectively. The period of T and R with �x is about 2λ0 for
the d-OWLs, which is different from 0.5λ0 for the i-OWLs.
It can be understood as follows. For the d-OWLs k1 (∼k0)
and k2 (∼1.5k0) give the periods of λ0 and 2

3λ0 for the two
waveguides and 2λ0 is their least common multiple; see Fig. 7.
This periodical variation provides a chance for the reflection
probabilities up to 0.7 in the d-OWLs, which is larger than
0.25 in the i-OWLs, comparing Figs. 7(b), 7(e) and 7(f) with
3(c). On the other hand, T21 and T12 can no longer approximate
1, see Fig. 7(c), indicating that the d-OWLs are not suitable
for the SP router. These facts indicate that the quantum
interference caused by the two JCEs plays an important role
in both i-OWLs and d-OWLs structures and thus it is a source
for designing optical devices.

Similar to the i-OWLs, the large �x can also result in many
oscillations in the transmission and reflection spectra for the
d-OWLs; see Fig. 8. These oscillations, roughly speaking,
have a weaker amplitude with respect to those for the i-
OWLs in Fig. 4, because different group velocities make the
SP transport be out of step in the two waveguides. For the
same reason, the quantum interference caused by the two
JCEs cannot make T21 and T12 up to 1, see Fig. 8(c), which
is consistent with the case for small �x; see Fig. 7(c). In

013840-7



DONG, JIANG, HU, ZOU, AND ZHANG PHYSICAL REVIEW A 100, 013840 (2019)

FIG. 7. Contour maps of the transmission and reflection spec-
tra for the d-OWLs with two JCEs (N = 2), as functions of the
photon energy, ε, and distance between the two JCEs, �x. Their
values are normalized to their maxima denoted by “Max”. Parame-
ters: ωc = ωa = ω0, � = 0.02ω0, J1 = J2 = 0.005ω0, k0

1 = k0, k0
2 =

1.5k0, v
g
1 = 0.6c, v

g
2 = 0.9c, and γa = γc = 0.001ω0.

addition, the value of �x being an integer multiple of λ0 is
responsible for the bilateral symmetry of all spectra about the
axis of ε = ω0.

In Fig. 9, we also show the transmission, reflection, and
absorption spectra for the d-OWLs with N JCEs. All trans-
mission spectra (i.e., T11, T22, T21, T12) have the same limit of
zero for increasing N , see Figs. 9(a), 9(c), and 9(e), indicating
that enough JCEs in d-OWLs could fully depress the SP
transmission. It is obviously different from that in the i-OWLs
where they tend to be the value of 0.25; see Figs. 6(a) and
6(b). This difference can also be attributed to the SP out-
of-step transport in the two waveguides in the d-OWLs. On
the other hand, the values of all reflection spectra (i.e., R11,
R22, R21, R12) for the d-OWLs do not change much but with
different shapes. For large N there is a sharp peak near ω0

for R11 [see Fig. 9(b)], while none for R22 [see Fig. 9(f)]. In
addition, there are two wide reflection bands near the two JCE
eigenfrequencies for R11, while just two peaks for R22. The
absorption spectra for A1 and A2 are also different from each
other; see Figs. 9(d) and 9(h). They cannot decrease to zero by
increasing N outside of the two JCE eigenfrequencies, which
is different from the case for the i-OWLs; see Fig. 6(d). To
sum up, enough JCEs in the d-OWLs can fully depress the
SP transmission in a very wide wavelength range. This can be
achieved when the number of the JCEs is not too large, for
example, 24 [see Figs. 9(a), 9(c) and 9(e)].

FIG. 8. Transmission and reflection spectra for the d-OWLs with
two JCEs (N = 2) under four large values of �x. Lines are offset
from the bottom with a step of 0.5. Other parameters are the same as
those for Fig. 7.

IV. ENTANGLEMENT

Compared with the SWS, the present OWLs have two
output channels (see Fig. 1), so that the entanglement between
them can be defined for the SP. In this section we first
introduce the entanglement definition and then discuss its
behavior in the i-OWLs and d-OWLs.

The transmitted SP wave is the superposition of the states
from two channels, which can be written as

|T 〉 = t1|1, 0〉 + t2|0, 1〉. (27)

tm = tm,N denotes the transmission coefficients of the mth
channel and |1, 0〉 (|0, 1〉) represents the SP state from the port
of Out 1 (Out 2). The density matrix of |T 〉 is

ρ̂ = |T 〉〈T | =
(|t1|2 t1t∗

2
t∗
1 t2 |t2|2

)
, (28)

which is expressed under the basis of {|1, 0〉, |0, 1〉}. Since |T 〉
is similar to the Bell state, its entanglement can be defined by
the von Neumann entropy, i.e.,

S = −|t1|2 log2(|t1|2) − |t2|2 log2(|t2|2), (29)

which measures the entanglement of the SP states from the
two output channels.

Figure 10 shows the entanglement spectra for the i-OWLs
and d-OWLs both with one JCE, which have two entropy
humps around the two JCE eigenfrequencies. For the i-OWLs,
the transmitted SP has the same entropy no matter which
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FIG. 9. Transmission, reflection, and absorption spectra
for the d-OWLs with N JCEs. All JCEs are uniformly spaced and
the nearest-neighbor distance is �x = 0.5λ0. Lines are offset from
the bottom with a step of 0.5. In calculation, γa = γc = 0.001ω0 and
other parameters are the same as those for Fig. 7.

channel it is incident from, while these two entropies are
different from each other for the d-OWLs and are higher and
lower than that for the i-OWLs, respectively. Interestingly, the
entropy given by the dotted green line in Fig. 10 can be larger
than 1, which is attributed to that the quantum state in Eq. (27)
is not normalized. The reasons for that the equation (27) is not
normalized are (a) the dissipation of the cavity and atom are
considered and (b) there is photon reflection in the system.
These two factors both lead to |t1|2 + |t2|2 � 1. Under the
condition of |t1|2 + |t2|2 � 1 the entropy can have the largest
value of 2

e log2 e ≈ 1.06 as |t1|2 = |t2|2 = 1
e , a little larger than

1 with respect to the common condition of |t1|2 + |t2|2 = 1.
Figure 10 indicates that the different group velocities in the
two waveguides can induce a larger entanglement between the
SP transmitted states from the two channels.

Figure 11 shows the influence of the quantum interference
caused by the two JCEs on the entropies for the i-OWLs and

FIG. 10. Entanglement spectra for the i-OWLs and d-OWLs with
one JCE (N = 1). The number after d-OWL denotes the incident
channel of the SP. In calculation, γa = γc = 0.001ω0 and other
parameters for the i-OWLs and d-OWLs are the same as those in
Figs. 3 and 7, respectively.

FIG. 11. Entanglement spectra for the (a) i-OWLs and (b), (c) d-
OWLs with two JCEs (N = 2) under several small and large �x. In
(b) and (c) the SP is incident from the first and second channels,
respectively. Lines are offset from the bottom with a step of 0.5. In
calculation, γa = γc = 0.001ω0 and other parameters for the i-OWLs
and d-OWLs are the same as those in Figs. 3 and 7, respectively.
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FIG. 12. Entanglement spectra for the (a) i-OWLs and (b)–(e) d-
OWLs with N JCEs (N is given on the right side). In (b), (d) and (c),
(e) the SP is incident from the first and second channels, respectively.
Lines are offset from the bottom with a step of 0.5. In calculation,
�x = 0.5λ0, γa = γc = 0.001ω0 and other parameters for the i-
OWLs and d-OWLs in (b), (c) are the same as those in Figs. 3 and 7,
respectively. For (d), (e), v

g
1 = 0.6c, v

g
2 = 0.7c, k0

1 = k0, k0
2 = 7k0/6,

and other parameters are the same as those in Fig. 7.

d-OWLs with two JCEs. Similar to Fig. 10, the entropies
for the SP incident from the two channels are the same as
each other for the i-OWLs, while being different for the d-
OWLs. But they all present more and more oscillations with
increasing �x, owing to the quantum interference caused by
the two JCEs; see Fig. 11. Comparing Fig. 11(a) with Fig. 10,
the quantum interference widens the two entropy humps
for the i-OWLs no matter what the value of �x is. Since
the d-OWLs have different group velocities, their entropy
curves are complicated and have a certain randomness; see
Figs. 11(b) and 11(c). Roughly speaking, the entropy is larger
for the SP incident from the second waveguide than that from
the first one. A conclusion can be drawn that the quantum
interference caused by the JCEs shows important influence on
the entanglement for the two transmitted states, thus providing
a way to adjust the entanglement.

The effect of the number of the JCEs (i.e., N) is drawn
in Fig. 12. For the i-OWLs the variation of the entropy is
consistent with that of T11 and T21 because of T11 = |t1|2
and T21 = |t2|2. For sufficiently large N , the entropy has a
constant value of 1 in almost full wavelength range (where
|t1|2 = |t2|2 = 0.25); see Figs. 12(a) and 6(a), 6(b). For finite
N this range shrinks and the part near ω0 is excluded. For
example, the entropy approaches 1 only in the outside of the
two JCE eigenfrequencies when N = 24, see the black solid

line in Fig. 12(a). Different from the i-OWLs, the entropy
in the d-OWLs tends to be zero for large N , because its
transmission probabilities of T11 and T22 tend to be zero; see
Figs. 12(b), 12(c) and 9(a), 9(e). As the difference between
the two waveguides becomes slight, more JCEs are required
for the entropy tending to be zero in the d-OWLs, comparing
Figs. 12(d), 12(e) (where v

g
1/v

g
2 = 6/7) with Figs. 12(b),

12(c) (where v
g
1/v

g
2 = 6/9), respectively. When N is finite,

the region where the entropy has a large value is around the
energy of ω0. For example, the values of the lines with N =
24 and 26 in Figs. 12(b)–12(e) approximate 0.5. In general,
the entropy is hard to reach 1 for the d-OWLs, being fully
different from that in the i-OWLs. Since the entropy shows
very weak dependence on other parameters such as the loss as
N is large and approximates a constant value of 1, the i-OWLs
can serve as an entanglement generator for the SPs.

V. CONCLUSION

Family properties of the SP transport in the OWLs com-
posed of two 1D waveguides connected by many JCEs were
studied by the transfer and scattering matrix theories. When
only one JCE is considered, the transmission and reflection
spectra for the i-OWLs and d-OWLs are the same as each
other, since they do not explicitly depend on the waveg-
uide group velocities. With respect to the structure of one
waveguide coupled with one JCE, the influence of the second
waveguide in the i-OWLs can be taken as the loss of the
cavity. When more than one JCEs are considered, the quantum
interference caused by them makes the SP transport properties
in the i-OWLs and d-OWLs different. When two JCEs are
considered, the quantum interference enables the SP to be able
to jump with a 100% chance between two waveguides in the i-
OWLs, while it is hard in the d-OWLs. Therefore, the i-OWLs
with two JCEs can serve as a SP router. Simultaneously, their
transmission and reflection spectra all present more and more
oscillation peaks with the increasing distance between two
JCEs. The sharpness of these oscillations can be reduced by
the dissipations of the JCEs which, therefore, smooth the
transmission and reflection spectra. As the number of the
JCEs increases to a large value (e.g., 16), the transmission
probabilities tend to be 0.25 for the i-OWLs, but zero for the
d-OWLs, which shows potential for the i-OWLs with a large
number of the JCEs as a SP splitter.

Finally, we use the von Neumann entropy to describe the
entanglement between the transmitted states from the two
output channels. The entanglements for the SPs incident from
the two input channels are the same as each other for the
i-OWLs, while are different for the d-OWLs. When OWLs
contain only one JCE, the entanglements are always less
than 1 for the i-OWLs, but can be larger than 1 for the d-
OWLs. If more JCEs are considered, the entanglement spectra
become complicated due to the quantum interference among
the JCE-scattered waves. Especially when the number of JCEs
is sufficiently large (e.g., 16), the entanglements approximate
a constant of 1 for the i-OWLs, but of zero for the d-OWLs.
This indicates that a large number of JCEs can suppress the
influence of other system parameters such as SP frequency
and JCE loss and the i-OWLs with a large number of the JCEs
can also serve as an entanglement generator for the SPs.
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APPENDIX A: DERIVATION FOR Mn

To derive Mn, one can substitute Eqs. (1) and (5) into (10)
and obtain

−ivg
m

∂

∂x
Rm(x) +

N∑
n=1

Vm,nδ(x − xn)Cn = ε̄mRm(x),

(A1a)

ivg
m

∂

∂x
Lm(x) +

N∑
n=1

Vm,nδ(x − xn)Cn = ε̄mLm(x),

(A1b)
2∑

m=1

Vm,n[Rm(xn) + Lm(xn)] + �nAn = (ε − ω̃c
n)Cn,

(A1c)

�nCn = (ε − ω̃a
n )An,

(A1d)

where ε̄m = ε − ω0 + v
g
mkg

m, ω̃a
n = ω̃e

n − ωg (ωg is taken as
the energy reference point), and ε is the SP energy. Further
substituting Eqs. (6) and (7) into (A1), the transmission and
reflection coefficients of tm,n and rm,n are

tm,n = tm,n−1 −
2∑

m′=1

iVm,nVm′,n/v
g
m

(ε − ω̃c
n) − �2

n
ε−ω̃a

n

× [e−i(km−km′ )xntm′,n−1 + e−i(km+km′ )xn rm′,n−1],

(A2a)

rm,n = rm,n−1 +
2∑

m′=1

iVm,nVm′,n/v
g
m

(ε − ω̃c
n) − �2

n
ε−ω̃a

n

× [ei(km+km′ )xntm′,n−1 + ei(km−km′ )xn rm′,n−1].

(A2b)

Then we introduce the transfer matrix of Mn(
tn

rn

)
= Mn

(
tn−1

rn−1

)
=

(
Mtt

n Mtr
n

Mrt
n Mrr

n

)(
tn−1

rn−1

)
, (A3)

with tn = (t1,n, t2,n)T and rn = (r1,n, r2,n)T . Here, Mn is a 4 ×
4 matrix, which can be divided into four 2 × 2 matrices, i.e.,
Mtt

n , Mtr
n , Mrt

n , and Mrr
n . They can be found as

Mtt
n (m, m′) = 1√

v
g
m

e−ikmxn

[
δmm′ − i

√
Jm,nJm′n

ζn

]
eikm′ xn

√
v

g
m′ ,

(A4a)

Mtr
n (m, m′) = 1√

v
g
m

e−ikmxn

[
− i

√
Jm,nJm′n

ζn

]
e−ikm′ xn

√
v

g
m′ ,

(A4b)

Mrt
n (m, m′) = 1√

v
g
m

eikmxn

[
i
√

Jm,nJm′n

ζn

]
eikm′ xn

√
v

g
m′ ,

(A4c)

Mrr
n (m, m′) = 1√

v
g
m

eikmxn

[
δmm′ + i

√
Jm,nJm′n

ζn

]
e−ikm′ xn

√
v

g
m′ ,

(A4d)

where Jm,n = V 2
m,n

v
g
m

and ζn = ε − ω̃c
n − �2

n
ε−ω̃a

n
.

Using the matrices I, Y n, G, and Qn defined in Eqs. (12)–
(14), we can write the matrix of Mn in a compact form, i.e.,

Mn = G−1Q∗
n

(
I − iY n −iY n

iY n I + iY n

)
QnG, (A5)

which is Eq. (11).

APPENDIX B: DERIVATION FOR EQ. (21)

In the present Appendix, we show the derivation of
Eq. (21). We denote the inverse matrix of Mn as W n and divide
it into four 2 × 2 matrices, i.e.,

W n = M−1
n =

(
W tt

n W tr
n

W rt
n W rr

n

)
. (B1)

Subsequently, (
tn−1

rn−1

)
=

(
W tt

n W tr
n

W rt
n W rr

n

)(
tn

rn

)
. (B2)

From Eq. (20), one can further get(
tn−1

r0

)
=

(
Stt

n−1 Str
n−1

Srt
n−1 Srr

n−1

)(
t0

rn−1

)
. (B3)

Using Eq. (B2), one can replace tn−1 and rn−1 in Eq. (B3) with
tn and rn, and subsequently obtain

tn = (
W tt

n − Str
n−1W

rt
n

)−1
Stt

n−1t0

+(
W tt

n − Str
n−1W

rt
n

)−1(
Str

n−1W
rr
n −W tr

n

)
rn, (B4a)

r0 = Srt
n−1 + Srr

n−1W
rt
n

(
W tt

n − Str
n−1W

rt
n

)−1
Stt

n−1t0

+Srr
n−1

[
W rt

n

(
W tt

n −Str
n−1W

rt
n

)−1(
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(B4b)

Comparing Eq. (B4) with Eq. (20), the connection between
Sn and Sn−1 can be derived as follows:

Stt
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)
,
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W rt
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(
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n

)+W rr
n

]
,

(B5)

which is just Eq. (21).
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